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the best optimizer is between your ears



ement of Code Optimization 
This book is devdted to a topic near  and  dear to my heart: writing software that 
pushes PCs to the n-of-the-mill  software, PCs run like the 97-pound- 
weakling rninicompu e. Give them  the proper care, however, and those 
ugly boxes are capable es. The key is this:  Only on microcomputers do you 
have the run of the whole machine, without layers of operating systems, drivers, and 
the like getting in $e way.  You can do anything you  want, and you can understand 

ng  on, if you so wish. 
you should  indeed so wish. 

Is performance stiIl’$n  issue in this era of cheap 486 computers and super-fast Pentium 
computers? You bet3,How many programs that you use  really run so fast that you 
wouldn’t be happier 3 they ran faster? We’re so used to slow software that when a 
compile-and-link sequence  that took two minutes on a PC takes just ten seconds on 
a 486 computer, we’re ecstatic-when in  truth we should be settling for  nothing less 
than  instantaneous response. 
Impossible, you say? Not with the  proper design, including  incremental compilation 
and linking,  use of extended and/or expanded memory, and wellcrafted code. PCs can 
do just about anything you  can  imagine  (with a few  obvious exceptions,  such  as  applica- 
tions involving super-computer-class number-crunching) if  you  believe that it can be 
done, if you understand  the  computer inside and  out,  and if you’re willing to think 
past the obvious solution to unconventional but potentially more  fmitful approaches. 
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My point is  simply  this: PCs can work wonders. It’s not easy coaxing them  into  doing 
that,  but it’s rewarding-and  it’s sure as heck fun.  In this book, we’re going  to work 
some of those wonders, starting.. . 
. . .now. 

Understanding High Performance 
Before we can  create  high-performance  code, we must understand what high  perfor- 
mance is. The objective (not always attained) in creating  high-performance software 
is to make the software able to carry out its appointed tasks so rapidly that  it  responds 
instantaneously, as f i r  as the user is concerned. In other words, high-performance code 
should ideally run so fast that any further improvement in the code would  be  pointless. 
Notice that the above definition most  emphatically does not say anything about making 
the software as fast as possible. It also does not say anything about using  assembly  lan- 
guage, or an optimizing  compiler, or, for that matter, a compiler at all. It also doesn’t say 
anything about how the code was designed and written.  What it does say is that high- 
performance code shouldn’t  get in the user’s way-and that’s all. 
That’s an  important  distinction, because all too many programmers  think  that as- 
sembly language, or the  right compiler, or a  particular high-level language, or a 
certain design approach is the answer to  creating  high-performance  code.  They’re 
not, any more  than  choosing  a  certain set of tools is the key to  building  a  house. You 
do indeed  need tools to  build  a  house, but any of many sets of tools will do. You also 
need a  blueprint,  an  understanding of everything that goes into  a  house,  and the 
ability to use the tools. 
Likewise, high-performance  programming  requires  a  clear  understanding of the 
purpose of the software being  built,  an overall program  design,  algorithms  for imple- 
menting  particular tasks, an  understanding of what the  computer can do  and of 
what  all relevant software is doing-and solid programming skills, preferably using 
an optimizing  compiler or assembly language. The optimization at  the  end  isjust  the 
finishing  touch, however. 

mthout good design, good algorithms, and complete understanding  of  the  program k p operation, your carefully optimized code will amount to one  of mankindb least 
fruitful creations-a fast slow program. 

‘What’s  a fast slow program?” you  ask. That’s  a  good  question, and a brief (true) 
story is perhaps  the best answer. 

When Fast  Isn’t  Fast 
In  the early 1970s, as the first hand-held  calculators were hitting  the  market,  I knew 
a fellow named Irwin. He was a  good  student,  and was planning to be an engineer. 
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Being an engineer back then  meant knowing  how to use a slide rule,  and Irwin could 
jockey a  slipstick  with the best  of them.  In  fact, he was so good  that  he challenged a 
fellow  with a calculator to a duel-and  won, becoming a local legend  in  the process. 
When you get  right down to it,  though, Irwin  was spitting into  the wind. In a few 
short years  his hard-earned slipstick  skills  would be worthless, and  the  entire disci- 
pline would be essentially  wiped from the face  of the  earth. What’s more,  anyone 
with  half a brain  could see that changeover coming, Irwin had basically  wasted the 
considerable  effort and time he had spent optimizing his soon-to-be-obsolete skills. 

What does all  this  have to do with programming? Plenty. When you spend time opti- 
mizing poorlydesigned assembly code, or when you count on an optimizing compiler 
to make your code fast,  you’re  wasting the optimization, much as  Irwin did. Particu- 
larly in assembly,  you’ll find  that without proper up-front  design and everything  else 
that goes into high-performance design,  you’ll  waste  considerable effort and time on 
making an inherently slow program as  fast  as possible-which  is still slow-when you 
could easily  have  improved performance a great deal more with just a little thought. As 
we’ll see, handcrafted assembly language and optimizing  compilers  matter, but less 
than you might think,  in the  grand scheme of  things-and  they  scarcely matter at all 
unless they’re used  in the context of a good design and a thorough  understanding of 
both  the task at hand  and  the PC. 

Rules for Building  High-Performance  Code 
We’ve got  the following rules for creating  high-performance software: 

Know  where  you’re  going  (understand  the  objective of the  software). 
Make a  big  map  (have  an  overall  program  design  firmly  in  mind, so the  various 
parts  of  the  program  and  the  data  structures  work  well  together). 
Make lots of  little  maps  (design  an  algorithm  for  each  separate  part of the  over- 
all  design). 
Know  the  territory  (understand  exactly  how  the  computer  carries  out  each  task). 
Know  when  it  matters  (identify  the  portions of your  programs  where  perfor- 

Always  consider  the  alternatives  (don’t  get  stuck  on  a  single  approach;  odds  are 

Know  how  to  turn  on  the  juice  (optimize  the  code  as  best  you  know  how  when  it 

mance  matters,  and  don’t  waste  your  time  optimizing  the  rest). 

there’s a  better  way,  if  you’re  clever  and  inventive  enough). 

does matter). 
Making rules is  easy; the  hard  part is figuring out how to apply them  in  the  real 
world. For my money, examining  some actual working code is  always a good way to 
get a handle  on  programming concepts, so let’s look at some of the  performance 
rules in  action. 
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Know Where You’re Going 
If we’re going  to  create  high-performance  code,  first we have to know  what that  code 
is going  to  do. As an  example, let’s  write a  program  that  generates  a 16-bit checksum 
of the bytes in  a file. In other words, the  program will add each byte in a specified file 
in  turn  into  a 16-bit value. This checksum value might  be used to make sure  that  a 
file hasn’t  been  corrupted, as might  occur during transmission over a  modem  or if a 
Trojan horse virus rears its ugly head. We’re not going  to do anything with the 
checksum value other than print it  out, however; right now we’re only interested  in 
generating  that  checksum value  as rapidly as possible. 

Make a Big Map 
How are we going  to  generate  a  checksum value for  a specified file? The logical 
approach is to  get  the file name, open the file, read  the bytes out of the file, add 
them  together, and  print  the result. Most  of those  actions are straightforward;  the 
only  tricky part lies in  reading  the bytes and  adding  them together. 

Make Lots of Little Maps 
Actually, we’re only going  to make one little  map, because we only  have one  program 
section that  requires  much thought-the section  that  reads  the bytes and adds  them 
up. What’s the best way to do this? 
It would be convenient to load  the  entire file into  memory and  then sum the bytes in 
one loop. Unfortunately, there’s no  guarantee  that any particular file will fit  in  the 
available memory;  in fact, it’s a  sure  thing  that many files won’t fit into memory, so 
that  approach is out. 
Well, if the whole  file  won’t fit into memory, one byte  surely  will. If we read the file one 
byte at  a time, adding each byte to the checksum  value  before reading the  next byte, 
we’ll  minimize  memory requirements and be  able  to handle any  size  file at all. 
Sounds  good, eh? Listing 1.1 shows an  implementation of this approach. Listing  1.1 
uses C’s read() function to read  a single byte, adds  the byte into the  checksum value, 
and loops back to  handle  the  next byte until  the  end of the file is reached. The code 
is compact, easy to write, and functions perfectly-with one slight hitch: 
It’s slow. 

LISTING 1.1 11-1.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t   c h e c k s u m   o f   a l l   b y t e s   i n   t h e  
* s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s  one a t  a t i m e   v i a   r e a d 0 .  
* l e t t i n g  DOS p e r f o r m   a l l   d a t a   b u f f e r i n g .  
*I  
#i n c l  ude < s t d i  0. h> 
# i n c l u d e   < f c n t l   . h >  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  ( 
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i n t  Handle;  
uns igned   cha r   By te ;  
u n s i g n e d   i n t  Checksum: 
i n t  ReadLength; 

i f  ( a r g c  !- 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

1 
i f  ( (Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1 ) I 

p r i n t f ( " C a n ' t  open f i l e :   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 

/ *  I n i t i a l i z e   t h e  checksum  accumulator  * /  
Checksum - 0;  

/ *  Add e a c h   b y t e   i n   t u r n   i n t o   t h e   c h e c k s u m   a c c u m u l a t o r  * /  
w h i l e  ( (ReadLength - r e a d ( H a n d 1 e .   & B y t e .   s i z e o f ( B y t e ) ) )  > 0 ) { 

} 
i f  ( ReadLength - -1 ) { 

Checksum +- ( u n s i g n e d   i n t )   B y t e ;  

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) ;  
e x i t ( 1 ) :  

) 

/ *  R e p o r t   t h e   r e s u l t  * /  
p r i n t f ( " T h e  checksum i s :  % u \ n " .  Checksum); 
e x i t ( 0 ) ;  

) 

Table 1.1 shows the time  taken for Listing 1.1 to generate a checksum  of the WordPerfect 
version 4.2 thesaurus file,  TH.WP (362,293 bytes in size), on a 10 MHz  AT machine of 
no special parentage. Execution times are given for Listing 1.1 compiled with Borland 
and Microsoft compilers, with optimization both on  and off; all four times are pretty 
much  the same, however, and all are  much too slow to  be acceptable. Listing 1.1 re- 
quires over two and one-half minutes to checksum one file! 

Listings 1.2 and 1.3 form the Uassembly equivalent to Listing 1.1,  and  Listings e 1.6 and 1.7 form the Uassembly equivalent to Listing 1.5. 

These results make it clear that it's  folly  to  rely on your compiler's optimization to 
make your programs fast.  Listing 1.1 is simply  poorly designed, and  no  amount of 
compiler optimization will compensate for that failing. To drive home  the point, con- 
sider Listings 1.2 and 1.3, which together are equivalent to  Listing 1.1 except that  the 
entire checksum loop is written in tight assembly code. The assembly language imple- 
mentation is indeed faster than any  of the C versions,  as  shown in Table 1.1, but it's  less 
than 10 percent faster, and it's still  unacceptably slow. 
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LISTING  1.2  11-2.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t   c h e c k s u m   o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s   o n e   a t  a t i m e   i n  
* a s s e m b l e r .   v i a   d i r e c t   c a l l s   t o  00s. 
* I  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < f c n t l . h >  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ l )  { 
i n t  Hand1 e;  
u n s i g n e d   c h a r   B y t e :  
u n s i g n e d   i n t  Checksum: 
i n t  

i f  ( 

1 
i f  ( 

ReadLength: 

a r g c  !- 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

(Handle - open(argvC11. 0-RDONLY I 0-BINARY)) - -1 ) I 
p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

1 
i f  ( !ChecksumFile(Handle.  &Checksum) ) { 

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) :  

1 

I* R e p o r t   t h e   r e s u l t  *I  
p r i n t f ( " T h e   c h e c k s u m  i s :  %u\n".  Checksum): 
e x i t ( 0 ) ;  

1 
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LISTING  1.3  11  -3.ASM 
; A s s e m b l e r   s u b r o u t i n e   t o   p e r f o r m  a 1 6 - b i t  checksum  on t h e   f i l e  
; opened on t h e   p a s s e d - i n   h a n d l e .   S t o r e s   t h e   r e s u l t   i n   t h e  
; p a s s e d - i n   c h e c k s u m   v a r i a b l e .   R e t u r n s  1 f o r   s u c c e s s ,  0 f o r   e r r o r .  

; C a l l   a s :  
i n t  ChecksumFi le(uns igned i n t  Hand le ,   uns igned   i n t   *Checksum) ;  

; where: 
Handle - hand le  # u n d e r   w h i c h   f i l e   t o   c h e c k s u m   i s  open 
Checksum - p o i n t e r   t o   u n s i g n e d   i n t   v a r i a b l e   c h e c k s u m  i s  
t o  b e   s t o r e d   i n  

; P a r a m e t e r   s t r u c t u r e :  

Parms s t r u c  
dw ? ;pushed BP 
dw ? ; r e t u r n   a d d r e s s  

Hand1  e dw ? 
Checksum dw ? 
Pa rms ends 

TempWord  1 abe l  
TempByte 

- ChecksumFi le 

ChecksumLoop: 

E r ro rEnd :  

Success : 

.model  smal 1 

. d a t a  
word 
db 
db 

.code 
pub1 i c 
p r o c   n e a r  
push 
mov 
push 

mov 
sub 

mov 

mov 

mov 
i n t  
j c  
and 
jz 
add 

jmp 

sub 
jmp 

mov 
mov 
mov 

? ;each   by te   read   by  DDS will b e   s t o r e d   h e r e  
0 ; h i g h   b y t e   o f  TempWord i s  a lways 0 

; f o r   1 6 - b i t  adds 

- ChecksumFi l e  

bp 
bp.  sp 
s i  : s a v e   C ' s   r e g i s t e r   v a r i a b l e  

bx. [bp+Handle l  ; g e t   f i l e   h a n d l e  
s i   , s i  : ze ro   t he   checksum 

;accumu la to r  

; r e a d  

;wh ich  DOS s h o u l d   s t o r e  
: e a c h   b y t e   r e a d  

cx.1  ; request   one  byte  on  each 

d x . o f f s e t  TempByte ; p o i n t  DX t o   t h e   b y t e   i n  

a h , 3 f h  :DOS r e a d   f i l e   f u n c t i o n  # 
21h ; r e a d   t h e   b y t e  
E r ro rEnd  :an e r r o r   o c c u r r e d  
ax.ax ;any   by tes   read? 
Success ;no-end o f   f i l e  reached-we're  done 
si.[TempWord] ; a d d   t h e   b y t e   i n t o   t h e  

;checksum t o t a l  
ChecksumLoop 

a x , a x   ; e r r o r  
s h o r t  Done 

bx.[bp+Checksuml ; p o i n t   t o   t h e   c h e c k s u m   v a r i a b l e  
[ b x l   , s i  ; save   t he  new checksum 
ax .1  ;success 
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Done: 
POP s i  
POP bP 
r e t  

end 
- ChecksumFile  endp 

: r e s t o r e  C ’ s  r e g i s t e r   v a r i a b l e  

The lesson is clear:  Optimization makes code faster, but  without proper design,  opti- 
mization just creates fast slow code. 
Well, then, how are we going  to improve our design? Before we can do  that, we have 
to  understand what’s wrong with the current design. 

Know the  Territory 
Just why is Listing  1.1 so slow? In  a word: overhead. The C library  implements  the 
read() function by calling DOS to  read  the  desired number of  bytes. (I figured this 
out by watching the  code  execute with a  debugger,  but you can buy library source 
code  from  both Microsoft and Borland.) That  means that Listing  1.1 (and Listing 
1.3 as  well) executes one DOS function  per byte  processed-and DOS functions, 
especially this one,  come with a  lot of overhead. 
For starters, DOS functions  are invoked with interrupts,  and  interrupts  are  among 
the slowest instructions of the x86 family CPUs. Then, DOS has to  set up internally 
and  branch to  the  desired  function,  expending  more cycles in  the process. Finally, 
DOS has to  search its  own buffers to see  if the  desired byte has already been  read, 
read  it  from  the disk if not,  store  the byte in  the specified location, and  return. All  of 
that takes a long time-far, far  longer  than  the  rest of the  main  loop  in Listing 1.1. In 
short, Listing 1.1  spends virtually  all of its time executing read(), and most of that 
time is spent  somewhere down in DOS. 
You can verify this for yourself by watching the  code with a  debugger or using a  code 
profiler, but take my word for it: There’s  a  great  deal of overhead  to DOS calls, and 
that’s what’s draining  the life out of Listing 1.1. 
How can we speed up Listing 1.1? It should be clear  that we must somehow avoid 
invoking DOS for every  byte in  the file, and that  means  reading  more  than  one byte 
at  a time, then buffering  the  data and parceling  it out  for  examination one byte at  a 
time. By gosh, that’s a  description of C’s stream 1 / 0  feature, whereby C reads files in 
chunks and buffers the bytes internally, doling  them out to  the  application as needed 
by reading  them  from  memory  rather  than calling DOS. Let’s try using stream 1 / 0  
and see what happens. 
Listing 1.4 is similar to Listing 1 .l, but uses fopen() and getc() (rather than open() 
and read()) to access the file being  checksummed.  The  results  confirm  our  theories 
splendidly, and validate our new design. As shown in Table 1.1, Listing 1.4 runs  more 
than  an  order of magnitude  faster  than even the assembly  version  of  Listing 1.1, men 
though Listing 1.1 and  Listing 1.4 look almost the same. To the casual observer, read() 
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and getc() would  seem  slightly different  but pretty much  interchangeable,  and yet in 
this application the  performance  difference between the two  is about  the same  as 
that between a 4.77 MHz PC and a  16 MHz 386. 

Make sure you understand  what really goes on when you insert  a  seemingly- p innocuous function call into  the time-critical portions of your code. 

In this case that  means knowing how DOS and  the C/Ctt  file-access libraries do 
their work. In other words, know the  territory ! 

LISTING  1.4  11-4.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   O b t a i n s   t h e   b y t e s   o n e   a t  a t i m e   v i a  
* g e t c 0 .   a l l o w i n g  C t o   p e r f o r m   d a t a   b u f f e r i n g .  
* /  
# i n c l u d e   < s t d i o .  h> 

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  { 
F ILE   *CheckF i l e :  
i n t   B y t e :  
u n s i g n e d   i n t  Checksum: 

i f  ( a r g c  != 2 ) { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

I 
i f  ( ( C h e c k F i l e  = f o p e n ( a r g v C 1 1 .   " r b " ) )  =- NULL ) ( 

p r i n t f ( " C a n ' t  open f i l e :   % s \ n " .   a r g v [ l ] ) :  
e x i t ( 1 ) :  

I 

/*  I n i t i a l i z e   t h e  checksum  accumulator * /  
Checksum = 0:  

/ *  Add e a c h   b y t e   i n   t u r n   i n t o   t h e  checksum  accumulator * /  
w h i l e  ( ( B y t e  = g e t c ( C h e c k F i 1 e ) )  != EOF { 

I 
Checksum += ( u n s i g n e d   i n t )   B y t e :  

/ *  R e p o r t   t h e   r e s u l t  * /  
p r i n t f ( " T h e   c h e c k s u m  i s :  %u\n". Checksum): 
e x i t ( 0 ) :  

T 

Know  When It Matters 
The last section contained  a particularly interesting  phrase: the time-criticalportions of 
your code. Time-critical portions of your code  are  those  portions  in which the  speed 
of the  code makes a significant difference  in the overall performance of your pro- 
gram-and by "significant," I don't  mean  that it makes the  code 100 percent faster, 
or 200 percent,  or any particular amount  at all, but  rather  that it makes the  program 
more responsive and/or usable from the  user's  perspective. 
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Don’t waste time optimizing non-time-critical code:  set-up  code, initialization code, 
and  the like. Spend your time improving the  performance of the  code  inside heavily- 
used  loops and in the  portions of your programs  that directly affect response time. 
Notice, for  example,  that I haven’t bothered to implement  aversion of the checksum 
program  entirely in assembly; Listings 1.2 and 1.6 call  assembly subroutines  that 
handle  the time-critical operations,  but C is still used for checking  command-line 
parameters,  opening files, printing,  and  the like. 

p Ifyou were  to  implement  any of the listings in this chapter entirely in hand-opti- 
mized  assembly, I suppose you might get  a performance  improvement of a few 
percent-but Irather  doubtyou  iiget even  that  much, andyou  iisure  as heckspend 
an  awful lot of time for whatever  meager  improvement does result. Let C do what 
it does  well, and  use  assembly  only  when it makes a  perceptible dzfference. 

Besides, we don’t want to optimize  until the design is refined to our satisfaction, and 
that won’t be  the case until we’ve thought  about  other  approaches. 

Always  Consider  the  Alternatives 
Listing 1.4 is good,  but let’s see if there  are other-perhaps  less obvious-ways to  get 
the same results faster. Let’s start by considering why Listing 1.4 is so much  better 
than Listing 1.1. Like read(),  getc() calls DOS to read  from  the file; the  speed im- 
provement of Listing 1.4 over Listing 1.1 occurs because getc()  reads many  bytes at 
once via DOS, then manages  those bytes for us. That’s  faster than  reading  them  one 
at a time using  read()-but  there’s no reason to think  that it’s faster than having our 
program  read  and manage blocks itself. Easier,  yes, but  not faster. 
Consider this: Every invocation of getc() involves pushing  a  parameter,  executing  a 
call to  the C library function,  getting  the  parameter  (in  the C library code), looking 
up information about  the desired  stream,  unbuffering the  next byte from  the stream, 
and  returning to the calling code.  That takes a considerable amount of time, espe- 
cially by contrast with simply maintaining  a  pointer to a  buffer and whizzing through 
the  data  in  the buffer  inside  a single loop. 
There  are  four reasons  that many programmers would  give for  not trying to  improve 
on Listing 1.4: 
1. The  code  is  already  fast  enough. 
2. The  code  works,  and  some  people  are  content  with  code  that  works,  even  when  it’s  slow 

enough  to  be  annoying. 
3. The C library  is  written  in  optimized  assembly,  and  it’s  likely  to  be  faster  than  any  code 

that  the  average  programmer  could  write  to  perform  essentially  the  same  function. 
4. The C library  conveniently  handles  the  buffering of file data,  and  it  would  be a nui- 

sance  to  have  to  implement  that  capability. 
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I'll  ignore  the first reason,  both because performance is no longer  an issue if the 
code is fast enough  and because the  current application  does not run fast enough- 
1 3  seconds is a  long time. (Stop and wait for 1 3  seconds while you're  doing  something 
intense,  and you'll see just how long it is.) 
The second  reason is the hallmark of the mediocre  programmer. Know when opti- 
mization matters-and then optimize when it does! 
The  third reason is often fallacious. C library functions are  not always written in 
assembly, nor  are they always particularly well-optimized. (In fact,  they're  often writ- 
ten  for portability, which has nothing to do with optimization.) What's more, they're 
general-purpose  functions, and often can be  outperformed by well-but-not-  brilliantly- 
written code  that is well-matched to  a specific task. As an example,  consider Listing 
1.5, which uses internal  buffering to handle blocks of  bytes at a time. Table 1.1 shows 
that Listing 1.5 is 2.5 to 4 times faster  than Listing 1.4 (and as much as 49 times faster 
than Listing 1.1  !), even though it uses no assembly at all. 

Clearly, you can do well by using  special-purpose C code  in  place of a  C  library p function-ifyou  have a  thorough  understanding of how  the C  library function 
operates  and  exactly  what your application needs  done.  Otherwise,  you'll end up 
rewriting C library functions in C, which makes  no  sense  at all. 

LISTING  1.5  11-5.C 
I* 
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   B u f f e r s   t h e   b y t e s   i n t e r n a l l y ,   r a t h e r  
* t h a n   l e t t i n g  C o r  DOS do t h e   w o r k .  
* I  
#i n c l   u d e   < s t d i  0. h> 
d i n c l   u d e   < f c n t l  . h> 
# i n c l u d e   < a l l o c . h >  I* a l 1 o c . h   f o r   B o r l a n d .  

r n a l 1 o c . h   f o r   M i c r o s o f t  *I  

# d e f i n e  BUFFER-SIZE 0x8000 I* 32Kb d a t a   b u f f e r  * /  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ I )  [ 
i n t  Hand1 e ;  
u n s i g n e d   i n t  Checksum: 
uns igned   cha r   *Work ingBu f fe r .   *Work ingP t r ;  
i n t  Work ingLength .   Lengthcount ;  

i f  ( a rgc  != 2 1 { 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a r n e \ n " ) :  
e x i t ( 1 ) ;  

I 
i f  ( (Handle = o p e n ( a r g v [ l ] .  0-RDONLY I 0-BINARY)) -- -1 ) I 

p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " ,   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 

I* Get memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  *I  
i f  ( ( W o r k i n g B u f f e r  = malloc(BUFFER-SIZE)) == NULL ) { 

p r i n t f ( " C a n ' t   g e t   e n o u g h   m e m o r y \ n " ) :  
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I* I n i t i a l i z e   t h e  checksum  accumulator  * I  
Checksum = 0:  

I* P r o c e s s   t h e   f i l e   i n  BUFFER-SIZE chunks * I  
do { 

i f  ( (Work ingLength  = read(Hand1e.   Work ingBuf fe r .  

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v [ l ] ) ;  
e x i t ( 1 ) ;  

BUFFER-SIZE)) == -1 ) { 

1 
I* Checksum t h i s   c h u n k  * I  
W o r k i n g P t r  - W o r k i n g B u f f e r :  
Lengthcount  = Work ingLength :  
w h i l e  ( Lengthcount "  1 
I* Add e a c h   b y t e   i n   t u r n   i n t o   t h e  checksum  accumulator  *I  

1 
Checksum += ( u n s i g n e d   i n t )   * W o r k i n g P t r + + :  

1 w h i l e  ( Work ingLength  ) ;  

I* R e p o r t   t h e   r e s u l t  * I  
p r i n t f ( " T h e   c h e c k s u m   i s :  %u\n" .  Checksum); 
e x i t ( 0 ) ;  

I 

That brings us to the  fourth reason: avoiding an internal-buffered implementation 
like  Listing 1.5 because of the difficulty  of coding such an  approach. True,  it is easier 
to let a C library function do  the work, but it's not all that  hard to do  the buffering 
internally. The key  is the  concept of handling data in restartable  blocks; that is, reading 
a chunk of data,  operating on  the data  until  it runs  out,  suspending  the  operation 
while more data is read  in,  and  then  continuing as though  nothing  had  happened. 
In Listing 1.5  the  restartable  block  implementation is pretty  simple  because 
checksumming works  with one byte at  a time, forgetting about each byte immedi- 
ately after  adding  it  into  the total. Listing 1.5 reads  in  a block of  bytes from  the file, 
checksums the bytes in the block, and gets another block, repeating the process 
until the  entire file has been processed. In  Chapter 5, we'll see a  more  complex 
restartable block implementation, involving searching  for text strings. 
At any rate, Listing 1.5 isn't much  more complicated than Listing 1.4-and it's a lot 
faster. Always consider the alternatives; a bit of  clever thinking and  program rede- 
sign can go a  long way. 

Know How to Turn On the  Juice 
I have  said time and again that optimization is pointless until the design is settled. 
When  that time comes, however, optimization can indeed make  a significant differ- 
ence. Table 1.1 indicates that  the optimized version of Listing 1.5 produced by 
Microsoft C  outperforms  an  unoptimized version  of the same code by more  than 60 
percent. What's more, a mostly-assembly  version of Listing 1.5, shown  in  Listings 1.6 
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and 1.7, outperforms even the best-optimized C version of Listing 1.5 by 26 percent. 
These  are  considerable  improvements, well worth pursuing-once the design has 
been maxed out. 

LISTING 1.6 11-6.C 
/ *  
* Program t o   c a l c u l a t e   t h e   1 6 - b i t  checksum o f   t h e   s t r e a m   o f   b y t e s  
* f r o m   t h e   s p e c i f i e d   f i l e .   B u f f e r s   t h e   b y t e s   i n t e r n a l l y ,   r a t h e r  
* t h a n   l e t t i n g  C o r  DOS do t h e   w o r k ,   w i t h   t h e   t i m e - c r i t i c a l  

* I  
* p o r t i o n   o f   t h e   c o d e   w r i t t e n   i n   o p t i m i z e d   a s s e m b l e r .  

# i n c l u d e   < s t d i o . h >  
# i n c l u d e   < f c n t l  . h> 
# i n c l u d e   < a l l o c . h >  / *  a l 1 o c . h   f o r   B o r l a n d .  

m a l 1 o c . h   f o r   M i c r o s o f t  * /  

# d e f i n e  BUFFER-SIZE 0x8000 / *  32K d a t a   b u f f e r  * I  

m a i n ( i n t   a r g c .   c h a r   * a r g v [ ] )  t 
i n t  Handle:  
u n s i g n e d   i n t  Checksum: 
u n s i g n e d   c h a r   * W o r k i n g B u f f e r :  
i n t   W o r k i n g L e n g t h ;  

i f  ( a r g c  != 2 ) I 
p r i n t f ( " u s a g e :   c h e c k s u m   f i l e n a m e \ n " ) :  
e x i t ( 1 ) :  

I 
i f  ( (Hand le  = o p e n ( a r g v [ l ] .  0-ROONLY I 0-BINARY)) == -1 ) 1 

p r i n t f ( " C a n ' t   o p e n   f i l e :   % s \ n " .   a r g v [ l l ) :  
e x i t ( 1 ) ;  

1 

/ *  Get memory i n  w h i c h   t o   b u f f e r   t h e   d a t a  * /  
i f  ( ( W o r k i n g B u f f e r  = malloc(BUFFER-SIZE)) == NULL 1 t 

p r i n t f ( " C a n ' t   g e t   e n o u g h   m e m o r y \ n " ) :  
e x i t ( 1 ) ;  

I 

/*  I n i t i a l i z e   t h e  checksum  accumulator  * /  
Checksum = 0 :  

I*  P r o c e s s   t h e   f i l e   i n  32K chunks * /  
do 

i f  ( (Work ingLength  = read(Hand1e.   Work ingBuf fe r .  
BUFFER-SIZE)) == -1 ) 1 

p r i n t f ( " E r r o r   r e a d i n g   f i l e   % s \ n " .   a r g v C 1 1 ) :  
e x i t ( 1 ) ;  

I 
/ *  Checksum t h i s  chunk i f  t h e r e ' s   a n y t h i n g   i n  i t  * /  
i f  ( Work ingLength  ) 

] w h i l e  ( Work ingLength  ) :  

/ *  R e p o r t   t h e   r e s u l t  * /  
p r in t f ( "The   checksum  i s :   %u \n " .   Checksum) :  
e x i t ( 0 ) :  

ChecksumChunk(WorkingBuffer.  WorkingLength.  &Checksum); 

The Best Optimizer Is between Your Ears 17 



LISTING 1.7 11 -7.ASM 
; A s s e m b l e r   s u b r o u t i n e   t o   p e r f o r m  a 1 6 - b i t  checksum  on a b l o c k   o f  
; b y t e s  1 t o  64K i n   s i z e .  Adds  checksum f o r   b l o c k   i n t o   p a s s e d - i n  
: checksum. 

; C a l l   a s :  
; vo id   ChecksumChunk(uns igned  char   *Buf fe r .  
: u n s i g n e d   i n t   B u f f e r L e n g t h .   u n s i g n e d   i n t   * C h e c k s u m ) ;  

; where: 
; B u f f e r  = p o i n t e r   t o   s t a r t   o f   b l o c k   o f   b y t e s   t o  checksum 
; B u f f e r L e n g t h  - # o f   b y t e s   t o  checksum ( 0  means  64K. n o t  0 )  
; Checksum = p o i n t e r   t o   u n s i g n e d   i n t   v a r i a b l e  checksum i s  
; s t o r e d   i n  

: P a r a m e t e r   s t r u c t u r e :  

Parms s t r u c  
dw ? ;pushed BP 
dw ? : r e t u r n   a d d r e s s  

B u f f e r  dw ? 
B u f f e r L e n g t h  dw ? 
Checksum dw ? 
Parms  ends 

.model  smal l  

.code 
p u b l i c  _ChecksumChunk 

-ChecksumChunk p r o c   n e a r  
push  bp 
mov bp.sp 
push s i  ; s a v e   C ' s   r e g i s t e r   v a r i a b l e  

c l  d ;make LODSB i n c r e m e n t  SI  
mov s i   . [ b p + B u f f e r l  ; p o i n t  t o  b u f f e r  
mov c x . [ b p + B u f f e r L e n g t h l  ; g e t   b u f f e r   l e n g t h  
mov bx.[bp+Checksuml : p o i n t   t o  checksum  va r iab le  
mov d x ,   [ b x l  ; g e t   t h e   c u r r e n t   c h e c k s u m  
sub  ah,ah ; s o  A X  will be a 1 6 - b i t   v a l u e   a f t e r  LODSB 

1 odsb ; g e t   t h e   n e x t   b y t e  
add  dx.ax :add i t  i n t o   t h e  checksum t o t a l  
l o o p  ChecksumLoop : c o n t i n u e   f o r   a l l   b y t e s   i n   b l o c k  
mov [ b x ]  , dx  ; s a v e   t h e  new checksum 

pop s i   ; r e s t o r e   C ' s   r e g i s t e r   v a r i a b l e  

r e t  

end 

ChecksumLoop: 

POP bp 

- ChecksumChunk  endp 

Note  that  in Table 1.1, optimization makes little difference  except  in the case  of 
Listing 1.5, where the design has been refined considerably. Execution time in the 
other cases is dominated by time spent in DOS and/or  the C library, so optimization 
of the  code you  write  is pretty much irrelevant. What's more, while the approxi- 
mately  two-times improvement we got by optimizing is not to be sneezed at,  it pales 
against the up-to-50-times improvement we got by redesigning. 
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By the way, the execution times  even of Listings 1.6 and 1.7 are dominated by DOS 
disk  access  times.  If a disk cache is enabled  and  the file to be checksummed is al- 
ready in the cache, the assembly  version  is three times  as  fast  as the C version. In 
other words, the  inherent  nature of this application limits the  performance improve- 
ment that can be obtained via  assembly. In applications that are  more CPU-intensive 
and less disk-bound, particularly those applications in which string instructions and/ 
or unrolled loops can be used effectively,  assembly tends to be considerably faster 
relative to C  than it is in this very  specific  case. 

Don’t  get hung  up on optimizing  compilers or assembly  language-the  best 1 optimizer is between your  ears. 

All this is  basically a way of  saying:  Know where you’re going, know the territory, and 
know when  it matters. 

Where We’ve  Been, What We’ve  Seen 
What have we learned? Don’t let other people’s code-even  DOS-do the work for 
you when  speed matters, at least not without knowing  what that  code  does and how 
well it  performs. 
Optimization only matters after you’ve done your part on  the  program design end. 
Consider the ratios on  the vertical  axis  of  Table 1.1,  which  show that optimization is 
almost totally  wasted in the checksumming application without an efficient design. 
Optimization is no panacea. Table 1.1 shows a two-times improvement  from optimi- 
zation-and a 50-times-plus improvement  from redesign. The longstanding debate 
about which C compiler optimizes code best doesn’t matter  quite so much in light of 
Table 1 .l, does  it? Your organic optimizer matters much  more  than your compiler’s 
optimizer, and there’s always  assembly for those usually  small sections of code  where 
performance really matters. 

Where We‘re Going 
This chapter has presented  a quick  step-by-step  overview of the design process. I’m 
not claiming that this is the only way to create  high-performance  code; it’s just  an 
approach  that works for  me. Create code however  you want, but never forget  that 
design matters more  than  detailed optimization. Never stop looking for inventive 
ways to boost performance-and never waste time speeding up code that doesn’t 
need to be sped  up. 
I’m going to focus on specific ways to create  high-performance  code  from now on. 
In  Chapter 5, we’ll continue to look at restartable blocks and  internal buffering, in 
the  form of a  program  that searches files for text strings. 
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