

Chapt

:;I
nj"i

sjnin si". ,*si
.,*a8

of Algorithmic Optimization
.&tomata Game

I've spent a lot of m cussing assembly language optimization, which I con-
derappreciated topic. However, I'd like to take this

t there is much, much more to optimization than as-
s essential for absolute maximum performance, but
ecessary but not sufficient, if you catch my drift-and

ing for improved but not maximum performance.
imes: Optimize your algorithm first. Devise new ap-

This is, of course, o&hat, stuff you know like the back of your hand. Or is it? As Jeff
Duntemann pointed out to me the other day, performance programmers are made,
not born. While I'm merrily gallivanting around in this book optimizing 486
pipelining and turning simple tasks into horribly complicated and terrifylngly fast
state machines, many of you are still developing your basic optimization skills. I don't
want to shortchange those of you in the latter category, so in this chapter, we'll dis-
cuss some high-level language optimizations that can be applied by mere mortals
within a reasonable period of time. We're going to examine a complete optimization
process, from start to finish, and what we will find is that it's possible to get a 50-times
speed-up without using one byte of assembly! It's all a matter of perspective-how you
look at your code and data.

'"I&

th said, Premature optimization is the root of all evil.

323

the triumph of algorithm optimization in a cellular automata game

Conway‘s Game
The program that we’re going to optimize is Conway’s famous Game of Life, long-
ago favorite of the hackers at MIT’s AI Lab. If you’ve never seen it, let me assure you:
Life is neat, and more than a little hypnotic. Fractals have been the hot graphics topic
in recent years, but for eye-catching dazzle, Life is hard to beat.
Of course, eye-catching dazzle requires real-time performance-lots of pixels help
too-and there’s the rub. When there are, say, 40,000 cells to process and display, a
simple, straightforward implementation just doesn’t cut it, even on a 33 MHz 486.
Happily, though, there are many, many ways to speed up Life, and they illustrate a
variety of important optimization principles, as this chapter will show.
First, I’ll describe the ground rules of Life, implement a very straightforward version
in C++, and then speed that version up by about eight times without using any dras-
tically different approaches or any assembly. This may be a little tame for some of
you, but be patient; for after that, we’ll haul out the big guns and move into the 30 to
40 times speed-up range. Then in the next chapter, I’ll show you how several pro-
grammers really floored it in taking me up on my second Optimization Challenge,
which involved the Game of Life.

The Rules of the Game
The Game of Life is ridiculously simple. There is a cellmap, consisting of a rectangu-
lar matrix of cells, each of which may initially be either on or off. Each cell has eight
neighbors: two horizontally, two vertically, and four diagonally. For each succeeding
generation of cells, the game logic determines whether each cell will be on or off
according to the following rules:

If a cell is on and has either two or three neighbors that are on in the current
generation, it stays on; otherwise, the cell turns off.
If a cell is off and has exactly three “on” neighbors in the current generation, it
turns on; otherwise, it stays off. That’s all the rules there are-but they give rise
to an astonishing variety of forms, including patterns that spin, march across the
screen, and explode.

It’s only a little more complicated to implement the Game of Life than it is to de-
scribe it. Listing 17.1, together with the display functions in Listing 17.2, is a C++
implementation of the Game of Life, and it’s very straightforward. A cellmap is an
object that’s accessible through member functions to set, clear, and test cell states,
and through a member function to calculate the next generation. Calculating the
next generation involves nothing more than using the other member functions to
set each cell to the appropriate state, given the number of neighboring on-cells and
the cell’s current state. The only complication is that it’s necessary to place the next
generation’s cells in another cellmap, and then copy the final result back to the

324 Chapter 17

original cellmap. This keeps us from corrupting the current generation’s cellmap
before we’re done using it to calculate the next generation.
All in all, Listing 17.1 is a clean, compact, and elegant implementation of the Game
of Life. Were it not that the code is as slow as molasses, we could stop right here.

LISTING 17.1 11 7-1 .CPP
/ * C++ Game o f L i f e i m p l e m e n t a t i o n f o r a n y mode f o r w h i c h mode s e t

a n d d r a w p i x e l f u n c t i o n s c a n b e p r o v i d e d .
T e s t e d w i t h B o r l a n d C++ i n t h e s m a l l m o d e l . * /

#i n c l u d e < s t d l i b. h>
{ [i n c l u d e < s t d i o . h>
i n c l u d e < i o s t r e a m . h >
i n c l ude <coni 0. h>
{ [inc lude < t ime.h>
{ [inc lude <dos. h>
#i nc l ude <b ios . h>
#i nc l ude <mem. h>

d e f i n e ON-COLOR 15 / / o n - c e l l p i x e l c o l o r
{ [def ine OFF-COLOR 0 / / o f f - c e l l p i x e l c o l o r
% d e f i n e MSG-LINE 10 / / row f o r t e x t messages
d e f i n e GENERATION-LINE 1 2 / / row f o r g e n e r a t i o n # d i s p l a y
d e f i n e LIMIT-18-HZ 1 / / s e t 1 f o r maximum f r a m e r a t e = 18Hz
{ [def ine WRAP-EDGES 1 / / s e t t o 0 t o d i s a b l e w r a p p i n g a r o u n d

c l a s s c e l l m a p {
p r i v a t e :

/ / a t c e l l map edges

u n s i g n e d c h a r * c e l l s :
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t w i d t h - i n - b y t e s :
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s :

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) :
vo id copy-ce l l s (ce l1map &sourcemap) :
v o i d s e t _ c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
v o i d next-generation(cellmap& dest-map):

p u b l i c :

1 :

e x t e r n v o i d enter-display-mode(void):
e x t e r n v o i d exit-display-mode(void):
e x t e r n v o i d d r a w - p i x e l (u n s i g n e d i n t X . u n s i g n e d i n t Y .

e x t e r n v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) :

/ * C o n t r o l s t h e s i z e o f t h e c e l l map. Must be w i t h i n t h e c a p a b i l i t i e s
o f t h e d i s p l a y mode, and must be l i m i t e d t o l e a v e room f o r t e x t
d i s p l a y a t r i g h t . * /

uns igned i n t C o l o r :

u n s i g n e d i n t c e l l m a p - w i d t h - 9 6 ;
u n s i g n e d i n t c e l l m a p - h e i g h t = 96:
/* Wid th & h e i g h t i n p i x e l s o f e a c h c e l l as d i s p l a y e d on screen. * /
u n s i g n e d i n t m a g n i f i e r - 2:

The Game of Life 325

v o i d m a i n 0
(

u n s i g n e d i n t i n i t - l e n g t h . x . y , s e e d :
u n s i g n e d l o n g g e n e r a t i o n - 0;
char gen- textC801;
l o n g b i o s - t i m e . s t a r t - b i o s - t i m e :

c e l l m a p current-map(cel1map-height. ce l lmap-w id th) ;
c e l l m a p next-map(cel1map-height. ce l lmap-w id th) :

11 Get the seed: seed randomly i f 0 e n t e r e d
c o u t << "Seed (0 f o r random seed): ":
c i n >> seed:
i f (seed - 0) seed - (uns igned) t ime(NULL1:

11 Randomly i n i t i a l i z e t h e i n i t i a l c e l l map
c o u t << " I n i t i a l i z i n g . . .";
s r a n d (s e e d) ;
i n i t - l e n g t h - (c e l l m a p - h e i g h t * ce l lmap-w id th) I 2;
do {

x - random(cel1map-width) ;
y - random(cel1map-height) ;
n e x t - m a p . s e t - c e l l (x , y) :

3 w h i l e (- i n i t - l e n g t h) ;
current_map.copy-cel ls(next_map): 11 p u t i n i t map i n current-map

en te r -d i sp lay -mode() :

/ I Keep r e c a l c u l a t i n g and r e d i s p l a y i n g g e n e r a t i o n s u n t i l a key
/ I i s p r e s s e d
show-text (0. MSG-LINE, "Genera t i on : "1;
s t a r t - b i o s - t i m e - -bios-timeofday(-TIME-GETCLOCK, & b i o s - t i m e) ;
do (

generat ion++;
s p r i n t f (g e n - t e x t . "%101u" . genera t i on) ;
show- tex t (1 . GENERATION-LINE. g e n - t e x t) :
/ I R e c a l c u l a t e a n d d r a w t h e n e x t g e n e r a t i o n
current_map.next-generation(next-map);
/ I Make c u r r e n t - m a p c u r r e n t a g a i n

#if LIMIT-18-HZ
current-map.copy-cells(next~map):

/ I L i m i t t o a maximum o f 1 8 . 2 f r a m e s p e r s e c o n d . f o r v i s i b i l i t y
do I

3 w h i l e (s t a r t - b i o s - t i m e - b i o s - t i m e) :
s t a r t - b i o s - t i m e - b ios - t ime :

- bios-t imeofday(-TIMELGETCLOCK. &bios-t ime):

e n d i f
I w h i l e (! k b h i t O) ;
g e t c h (1: 11 c l e a r k e y p r e s s
ex i t -d i sp lay -mode() ;
c o u t << " T o t a l g e n e r a t i o n s : " << g e n e r a t i o n << "\nSeed: " <<

seed << " \n" :
3

I* c e l l m a p c o n s t r u c t o r . *I
cellmap::cellmap(unsigned i n t h . u n s i g n e d i n t w)
{

w i d t h - w;
w id th - i n -by tes - (w + 7) I 8;
h e i g h t - h;

326 Chapter 17

/* cellmap destructor. */
cellmap::-cellmap(void)
I

1
delete[] cells:

/* Copies one cellmap's cells to another cellmap. Both cellmaps are

void cel1map::copy-cells(cel1map &sourcemap)
(

I

/* Turns cell on. * /
void cellmap::set_cell(unsigned int x. unsigned int y)

assumed to be the same size. */

memcpy(cel1s. sourcemap.cells, length-in-bytes):

r
unsigned char *cell-ptr =

cells + (y * width-in-bytes) + (x / 8) ;

*(cell_ptr) I- Ox80 >> (x & 0x07):
1

/ * Turns cell off. * /
void cellmap::clear_cell(unsigned int x. unsigned int y)
f

unsigned char *cell-ptr -
cells + (y * width-in-bytes) + (x / 8) ;

I

/* Returns cell state (1-on or 0-off). optionally wrapping at the

int cel1map::cell-state(int x. int y)
(

*(cell-ptr) &- -(Ox80 >> (x & 0x07)):

borders around to the opposite edge. * /

unsigned char *cell-ptr:

#if WRAP-EDGES
while (x < 0) x +- width: / / wrap, if necessary
while (x >- width) x -- width:
while (y < 0) y +- height:
while (y >- height) y -- height;

if ((x < 0) 1 1 (x >- width) 1) (y < 0) 1 1 (y >- height))
#else

return 0: / / return 0 for off edges if no wrapping
lendi f

cell-ptr - cells + (y * width-in-bytes) + (x / 8) ;
return (*cell-ptr & (0x80 >> (x & 0x07))) ? 1 : 0;

1

/* Calculates the next generation of a cellmap and stores it in

void ce1lmap::next-generation(cellmap& next-map)
t

next-map. * /

unsigned int x. y. neighbor-count;

The Game of Life 327

f o r (y - 0 ; y < h e i g h t : y++) {
f o r (x -0 ; x<wid th ; x++) t

/ / F i g u r e o u t how many n e i g h b o r s t h i s c e l l h a s
ne ighbor -count - c e l l - s t a t e (x - 1 . y - 1) + c e l l - s t a t e (x . y -1) +

c e l l - s t a t e (x + l . y -1) + c e l l - s t a t e (x - 1 , y) +
c e l l - s t a t e (x + l . y) + c e l l - s t a t e (x - 1 . y+ l) +
c e l l s t a t e (x . y + l) + c e l l - s t a t e t x + l . y+l);

i f (c e l l - s t a t e (x , y) - 1) I
-

/ / The c e l l i s on; does i t s t a y on?
if ((n e i g h b o r - c o u n t !- 2) && (ne ighbor -count != 3)) I

n e x t - m a p . c l e a r - c e l l (x . y); / / t u r n it o f f
d r a w - p i x e l (x . y . OFF-COLOR);

I
I e l s e t

/ / The c e l l i s o f f : does it t u r n on?
i f (ne ighbor -count -- 3) I

next -map.se t -ce l l (x . y) ; / / t u r n i t on
d r a w - p i x e l (x , y . ON-COLOR):

I
I

I
1

I

LISTING 17.2 11 7-2.CPP
/* VGA mode 1 3 h f u n c t i o n s f o r Game o f L i f e .

i n c l u d e < s t d i o . h >
i n c l u d e < c o n i o . h >
l i n c l ude <dos. h>

d e f i n e TEXT-X-OFFSET 27
d e f i n e SCREEN-WIDTH-IN-BYTES 320

/ * Wid th & h e i g h t i n p i x e l s o f e a c h c e l l . * /
e x t e r n u n s i g n e d i n t m a g n i f i e r ;

/ * Mode 1 3 h d r a w p i x e l f u n c t i o n . P i x e l s a r e o f w i d t h & h e i g h t

v o i d d r a w - p i x e l (u n s i g n e d i n t x . u n s i g n e d i n t y . u n s i g n e d i n t c o l o r)
t
d e f i n e SCREEN-SEGMENT OxAOOO

T e s t e d w i t h B o r l a n d C++. * /

s p e c i f i e d b y m a g n i f i e r . * /

u n s i g n e d c h a r f a r * s c r e e n - p t r ;
i n t i. j ;

FP-SEG(screen-ptr) - SCREEN-SEGMENT;
FP_OFF(screen-ptr) -
f o r (i - 0 ; i < m a g n i f i e r : i++) I

y * m a g n i f i e r * SCREEN-WIDTH-IN-BYTES + x * m a g n i f i e r ;

f o r (j-0; j < m a g n i f i e r ; j++) t

I
* (s c r e e n - p t r + j) - c o l o r ;

sc reen-p t r +- SCREEN-WIDTH-IN-BYTES;
I

I

/* Mode 13h m o d e - s e t f u n c t i o n . * /
v o i d e n t e r - d i s p l a y - m o d e 0
{

u n i o n REGS r e g s e t :

328 Chapter 17

r e g s e t . x . a x = 0x0013;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) :

1

I* T e x t mode m o d e - s e t f u n c t i o n . * /
v o i d e x i t - d i s p l a y - m o d e 0
{

u n i o n R E G S r e g s e t :

r e g s e t . x . a x = 0x0003;
i n t 8 6 (0 x 1 0 . & r e g s e t . & r e g s e t) ;

1

/* T e x t d i s p l a y f u n c t i o n . O f f s e t s t e x t t o n o n - g r a p h i c s a r e a o f

v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t)
I

screen. * I

gotoxy(TEXTpX_OFFSET + x . y) :
p u t s (t e x t) :

I

Where Does the Time Go?
How slow is Listing 17.1? Table 17.1 shows that even on a 486, Listing 17.1 does fewer
than three 96x96 generations per second. (The times in Table 17.1 are for 1,000
generations of a 96x96 cell map with seed=l, LIMIT-l8-HZ=O, M”-EDGES=l,
and mapifier=2, running on a 33 MHz 486.) Since my target is 18 generations per
second with a 200x200 cellmap on a 20 MHz 386, Listing 17.1 is too slow by a rather
wide margin-about 75 times too slow, in fact. You might say we have a little optimiz-
ing to do.
The first rule of optimization is: Only optimize where it matters. Use a profiler, or
risk making a fool of yourself. Consider Listings 17.1 and 17.2. Where do you think

The Game of Life 329

the potential for significant speed-up lies? I’ll tell you one place where I thought
there was considerable potential-in draw-pixel(). As a programmer of high-speed
graphics, I figured any drawing function that was not only written in C/C++ but also
recalculated the target address from scratch for each pixel would be among the first
optimization targets. I also expected to get major gains out of going to a Ping-Pong
arrangement so that I didn’t have to copy the new cellmap back to current-map
after calculating the next generation.
I was wrong. Wrong, wrong, wrong. (But at least I was smart enough to use a profiler
before actually writing any new code.) Table 17.1 shows where the time actually goes
in Listings 17.1 and 17.2. As you can see, the time taken by draw-pixel(), copy-cells(),
and atmythingother than calculating the next generation is nothing more than noise.
We could optimize these routines right down to executing instantaneously, and you know
what? It wouldn’t make the slightest perceptible difference in how fast the program
runs. Given the present state of our Game of Life implementation, the only areas
worth looking at for possible optimizations are cell-state() and nextsenerationo.

Its worth noting, though, that one reason drawqixelo doesn ’t much affectperfor- p mance is that in Listing 17.1, we 5-e smart enough to redrawpixels only when their
states change, rather than during every generation. Detecting and eliminating re-
dundant operations is part of knowing the nature of your data, and is a potent
optimization technique that will be extremely useful a little later in this chapter.

The Hazards and Advantages of Abstraction
How can we speed up cell-state() and nextsenerationo? I’ll tell you how not to do
it: By writing those member functions in assembly. It’s tempting to say that cell-state()
is taking all the time, so we need to speed it up with assembly, but what we really need
to do is figure out why cell-state() is taking all the time, then address that aspect of
the program directly.
Once you know where you need to optimize, the one word to keep in mind isn’t
assembly, it’s.. .plastics. No, actually, it’s abstraction. Well-written C and especially C++
programs are highly abstract models. For example, Listing 17.1 essentially creates a
new programming language in which cells are tangible things, with built-in manipu-
lation instructions. Given the cellmap member functions, you don’t even need to
know the cell storage format! This is a wonderful thing, in general; it saves program-
ming time and bugs, and frees you to work on the application’s needs, rather than
implementation details.

However, ifyou never look beneath the suflace of the abstract model at the implemen- p tation details, you have no idea of what the truepe$nnance cost of various operations
is, and, without that, you have largeb surrendered control over performance.

330 Chapter 17

Having said that, let me hasten to add that algorithmic improvements can make a
big difference even when working at a purely abstract level. For a large unordered
data set, a high-level Quicksort will beat the pants off the best-implemented inser-
tion sort you can imagine. Still, you can optimize your algorithm from here 'til
doomsday, and if you have a fast algorithm running on top of a highly abstract pro-
gramming model, you'll almost certainly end up with a slow program. In Listing
17.1, the abstraction that's killing us is that of looking at the eight neighbors with
eight completely independent operations, requiring eight calls to cell-state() and
eight calculations of cell address and cell mask. In fact, given the nature of cell stor-
age, the eight neighbors are in a fixed relationship to one another, and the addresses
and masks of all eight can generally be found very easily via hard-wired offsets and
shifts once the address and mask of any one is known.
There's a kicker here, though, and that's the counting of neighbors for cells at the edge of
the cellmap. When cellmap wrapping is enabled (so that the cellmap becomes essentially a
toroid, with each edge joined seamlessly to the opposite edge, as opposed to having a
border of offcells), neighbors that reside on the other edge of the cellmap can't be
accessed by the standard fixed offset, as shown in Figure 17.1. So, in general, we could
improve performance by hard-wiring our neighborcounting for the bit-percell cellmap

The left neighbors for this
cell are not at the usual
adjacent addresses but are rather on

L
the other side of the
cellmap. 1

All neighbors for this cell are at the
usual adjacent addresses.

J
Cellmap

Edge-wrapping complications.
Figure 1 7.1

The Game of Life 331

format, but it seems we’d need a lot of conditional code to handle wrapping, and that
would slow things back down again.
When a problem doesn’t lend itself well to optimization, make it a practice to see if
you can change the problem definition to one that allows for greater efficiency. In
this case, we’ll change the problem by putting padding bytes around the edge of the
cellmap, and duplicating each edge of the cellmap in the padding bytes at the oppo-
site side, as shown in Figure 17.2. That way, a hard-wired neighbor count will find
exactly what it should-the opposite edge-without any special code at all.
But doesn’t that extra copying of the edges take time? Sure, but only a little; we can
build it into the cellmap copying function, and then frankly we won’t even notice it.
Avoiding tens or hundreds of thousands of calls to cell-state(), on the other hand,
will be very noticeable. Listing 17.3 shows the alterations to Listing 1’7.1 required to
implement a hard-wired neighborcounting function. This is a minor change, in truth,
implemented in about half an hour and not making the code significantly larger-
but Listing 17.3 is 3.6 times faster than Listing 17.1, as shown in Table 17.1. We’re up
to about 10 generations per second on a 486; not where we want to be, but it is a
vast improvement.

All neighbors for this cell are at
the usual adjacent addresses,
thanks to the padding cells.

Fbdding Cells
I I Fbdding Cells -

I
JI I *
0 0 / 0 O O O 0 0 . 0

Boundary of normal cellmap (excluding padding cells).

1
J

Cellmap

The “adding cells” solution.
Figure 17.2

332 Chapter 17

LISTING 17.3 11 7-3.CPP
/* c e l l m a p c l a s s d e f i n i t i o n , c o n s t r u c t o r , c o p y - c e l l s o , s e t L c e l l 0 ,

c l e a r - c e l l O . c e l l L s t a t e 0 . c o u n t L n e i g h b o r s 0 . and
n e x t - g e n e r a t i o n 0 f o r f a s t , h a r d - w i r e d n e i g h b o r c o u n t a p p r o a c h .
O t h e r w i s e , t h e same as L i s t i n g 1 7 . 1 * /

c l a s s c e l l m a p 1
p r i v a t e :

u n s i g n e d c h a r * c e l l s ;
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t w i d t h - . i n - b y t e s ;
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s ;

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) ;
vo id copy-ce l l s (ce l1map &sourcemap) :
v o i d s e t - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
i n t c o u n t - n e i g h b o r s (i n t x . i n t y) ;
v o i d next-generation(cellmap& dest._map);

p u b l i c :

} :

/ * c e l l m a p c o n s t r u c t o r . P a d s a r o u n d c e l l s t o r a g e a r e a w i t h 1 e x t r a
b y t e , u s e d f o r h a n d l i n g e d g e w r a p p i n g . * I

cellmap::cellmap(unsigned i n t h . u n s i g n e d i n t w)
i

w i d t h = w ;
w id th - in -by tes = ((w + 7) / 8) + 2 : / / p a d e a c h s i d e w i t h

h e i g h t = h ;
leng th- in -by tes = wid th- in -by tes * (h + 2) ; / / pad t op /bo t tom

c e l l s - new uns igned charC length- in -by tes] ; / / c e l l s t o r a g e
memse t (ce l1s . 0 . l eng th - in -by tes) : / I c l e a r a l l c e l l s . t o s t a r t

/ / 1 e x t r a b y t e

I / w i t h 1 e x t r a b y t e

1

/ * C o p i e s o n e c e l l m a p ' s c e l l s t o a n o t h e r c e l l m a p . I f wrapp ing i s
e n a b l e d . c o p i e s e d g e (w r a p) b y t e s i n t o o p p o s i t e p a d d i n g b y t e s i n
s o u r c e f i r s t , s o t h a t t h e p a d d i n g b y t e s o f f e a c h e d g e h a v e t h e
same va lues as wou ld be f ound by w rapp ing a round to t he oppos i te
edge. Both ce l lmaps are assumed t o b e t h e same s i z e . * /

v o i d cel1map::copy-cells(cel1map &sourcemap)
I

u n s i g n e d c h a r * c e l l - p t r ;
i n t i;

i f WRAP-EDGES
/ / Copy l e f t and r i g h t edges i n t o p a d d i n g b y t e s on r i g h t and l e f t

c e l l - p t r = sourcemap.ce l l s + wid th- in -by tes :
f o r (i=O; i < h e i g h t ; i++) {

* c e l l - p t r = * (c e l l - p t r + wid th- in -by tes - 2) :
* (c e l l - p t r + w id th - in -by tes - 1) = * (c e l l L p t r + 1) :
c e l l - p t r += wid th- in -by tes :

I
/ / Copy t o p a n d b o t t o m e d g e s i n t o p a d d i n g b y t e s on b o t t o m a n d t o p

rnemcpy(sourcemap.cells, sourcemap.ce l l s + length- in -by tes -

memcpy(sourcemap.cel1s + l e n g t h - i n - b y t e s - w id th - in -by tes .
(w id th - in -by tes * 2) . w i d t h - i n - b y t e s) :

sourcemap.cel1.s + w i d t h - i n - b y t e s . w i d t h - i n - b y t e s) ;

The Game of Life 333

#endi f
/ / Copy all cells to the destination
memcpy(cel1s. sourcemap.cells. length-in-bytes);

I

/ * Turns cell on. x and y are offset by 1 byte down and to the right,to compensate for the
padding bytes around the cellmap. * I
void ce1lmap::set-cell(unsigned int x . unsigned int y)
e

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1);

1
*(cell-ptr) I- Ox80 >> (x & 0x07) ;

/ * Turns cell off. x and y are offset by 1 byte down and to the right,

void cel1map::clear-cell(unsigned int x . unsigned int y)
e

to compensate for the padding bytes around the cell map. */

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1):

I
*(cell-ptr) &- -40x80 >> (x & 0 x 0 7)) ;

/ * Returns cell state (1-on or 0-off). x and y are offset by 1 byte
down and to the right. to compensate for the padding bytes around
the cell map. */

int cel1map::cell-state(int x . int y)
{

unsigned char *cell-ptr -
cells + ((y + 1) * width-in-bytes) + ((x / 8) + 1);

return (*cell-ptr & (Ox80 >> (x & 0 x 0 7))) ? 1 : 0;
1

/ * Counts the number of neighboring on-cells for specified cell. */
int cel1map::count-neighbors(int x . int y)
c

unsigned char *cell-ptr. mask;
unsigned int neighbor-count:

/ /
if
/ /
if

I /
if

I
I /
if
/ /

/ / Point to upper left neighbor
cell-ptr - cells + ((y * widthkin-bytes) + ((x + 7) / 8)) ;
mask - Ox80 >> ((x - 1) & 0x07) ;
/ / Count upper left neighbor
neighbor-count - (*cell-ptr & mask) ? 1 : 0;

Count left neighbor
((*(cell-ptr +-width-in-bytes) & mask)) neighbor-count++;
Count lower left neighbor
((*(cellLptr + (width-in-bytes * 2)) & mask)) neighbor-count++;

Point to upper neighbor
((mask >>- 1) - 0)
mask - 0x80;
cell-ptr++;

Count upper
((*cell-ptr
Count lower

neighbor
& mask)) neighbor-count++;
neighbor

334 Chapter 17

i f ((* (c e l l - p t r + (w i d t h - i n - b y t e s * 2)) & mask))
neighbor-count++;

I 1 P o i n t t o u p p e r r i g h t n e i g h b o r
i f ((mask >>- 1) = 0) {

mask = 0x80:
c e l l - p t r + + ;

I
/ / C o u n t u p p e r r i g h t n e i g h b o r
i f ((* c e l l _ p t r & mask)) ne ighbor-count++;
/ / Count r i g h t n e i g h b o r
i f ((* (c e l l - p t r + w i d t h - i n - b y t e s) & mask)) ne ighbor-count++:
I / C o u n t l o w e r r i g h t n e i g h b o r
i f ((* (c e l l L p t r + (width-in..bytes * 2)) & mask))

neighbor-count++;

1
r e t u r n n e i g h b o r - c o u n t :

/* C a l c u l a t e s t h e n e x t g e n e r a t i o n o f c u r r e n t - m a p a n d s t o r e s it i n

v o i d cellmap::next_generation(cellmap& next tmap)
f

next-map. * I

u n s i g n e d i n t x . y . n e i g h b o r - c o u n t :

f o r (y - 0 ; y < h e i g h t : y++) 1
f o r (x=O; x < w i d t h ; x++) I

ne ighbor -count = c o u n t - n e i g h b o r s (x . y) :
i f (c e l l - s t a t e (x . y) == 1) I

if ((n e i g h b o r - c o u n t != 2) && (ne ighbor -count != 3))
n e x t - m a p . c l e a r - c e l l (x , y) : / I t u r n it o f f
d r a w - p i x e l (x , y . OFF-COLOR) :

1
I e l s e

i f (ne ighbor -count == 3) {
n e x t - m a p . s e t - c e l l (x . y) : / I t u r n i t on
d r a w - p i x e l (x . y . ONKCOLOR):

I
1

1
1

In Listing 17.3, note the padded cellmap edges, and the alteration of the member
functions to compensate for the padding. Also note that the width now has to be a
multiple of eight, to facilitate the process of copying the edges to the opposite padding
bytes. We have decreased the generality of our Game of Life implementation in ex-
change for better performance. That’s a very common trade-off, as common as trading
memory for performance. As a rule, the more general a program is, the slower it is.
A corollary is that often (not always, but often), the more heavily optimized a pro-
gram is, the more complex and the more difficult to implement it is. You can often
improve performance a good deal by implementing only the level of generality you
need, but at the same time decreased generality makes it more difficult to change or
port the program at some later date. A Game of Life implementation, such as Listing
17.1, that’s built on set-cell(), clear-cell(), and get-cell() is completely general; you

The Game of Life 335

can change the cell storage format simply by changing the constructor and those
three functions. Listing 17.3 is harder to change because count-neighborso would
also have to be altered, and it’s more complex than any of the other functions.
So, in Listing 17.3, we’ve gotten under the hood and changed the cellmap format a
little, and gotten impressive results. But now count-neighborso is hard-wired for
optimized counting, and it’s still taking up more than half the time. Maybe now it’s
time to go to assembly?
Not hardly.

Heavy-Duty C++ Optimization
Before we get to assembly, we still have to perform C++ optimization, then see if we can
find an alternative approach that better fits the application. It would actually have made
much more sense if we had looked for a new approach as our first optimization step, but
I decided it would be better to cover straightforward C++ optimizations at this point, and
the mind-bending stuff a little later. Right now, let’s look at some C++ optimizations;
Listing 17.4 is a C++-optimized version of Listing 17.3.

LISTING 17.4 11 7-4.CPP
I* n e x t L g e n e r a t i o n 0 . i m p l e m e n t e d u s i n g f a s t , a l l - i n - o n e h a r d - w i r e d

n e i g h b o r c o u n t / u p d a t e / d r a w f u n c t i o n . O t h e r w i s e , t h e same as
L i s t i n g 1 7 . 3 . *I

I* C a l c u l a t e s t h e n e x t g e n e r a t i o n o f c u r r e n t - m a p a n d s t o r e s i t i n

v o i d cel1map::next-generation(cellmap& next-map)
next-map. * I

u n s i g n e d i n t x . y . ne ighbor -count :
u n s i g n e d i n t wi d th- in-bytesX2 - wid th- i n -by tes << 1;
u n s i g n e d c h a r * c e l l L p t r . * c u r r e n t L c e l l - p t r . m a s k , c u r r e n t t m a s k ;
uns igned char *base-ce l l -p t r . * row-ce l l -p t r . base-mask;
u n s i g n e d c h a r * d e s t - c e l l - p t r = nex t -map.ce l l s ;

11 P r o c e s s a l l c e l l s i n t h e c u r r e n t c e l l m a p
row-cel 1-ptr - c e l l s ; / / p o i n t t o u p p e r l e f t n e i g h b o r o f

f o r (y - 0 : y < h e i g h t : y++) [/ I r e p e a t f o r e a c h r o w o f c e l l s
11 C e l l p o i n t e r a n d c e l l b i t mask f o r f i r s t c e l l i n row
b a s e - c e l l - p t r = r o w - c e l l - p t r ; / I t o access upper l e f t n e i g h b o r
base-mask = 0x01: / I o f f i r s t c e l l i n row
f o r (x -0 : x<wid th ; x++) [/ I r e p e a t f o r e a c h c e l l i n r o w

/ I f i r s t c e l l i n c e l l map

/ I F i r s t , c o u n t n e i g h b o r s
/ / P o i n t t o u p p e r l e f t n e i g h b o r o f c u r r e n t c e l l
c e l l - p t r - b a s e - c e l l - p t r ; / I p o i n t e r a n d b i t mask f o r
mask = basecmask; 11 u p p e r l e f t n e i g h b o r
/ I Count upper l e f t n e i g h b o r
ne ighbor -count - (* c e l l L p t r & mask) ? 1 : 0;
/ / Count l e f t n e i g h b o r
i f ((* (c e l l - p t r + wid th- in -by tes) & mask))

/ I C o u n t l o w e r l e f t n e i g h b o r
i f ((* (c e l l - p t r + w id th - in -by tesX2) & mask))

neighbor-count++:

neighbor-count++;

336 Chapter 17

/ / Point t o upper neighbor
if ((mask >>- 1) -- 0) I

mask - 0x80:
cell-ptr++:

1
/ / Remember where to find the current cell
current-cell-ptr - cell-ptr + widthkin-bytes:
current-mask - mask:
/ I
if
/ I
if

/ I
if

1
/ I
if
/ I
if

/ /
if

if

Count upper neighbor
((*cell-ptr & mask)) neighbor-count++;
Count lower neighbor
((*(cell-ptr + widthkin-bytesX2) & mask))

neighbor-count++;
Point to upper right neighbor
((mask >>- 1) - 0) I
mask - 0x80:
cell-ptr++:

Count upper right neighbor
((*cell-ptr & mask)) neighbor-count++;
Count right neighbor
((*(cell-ptr + width-in-bytes) & mask))
neighbor-count++:
Count lower right neighbor
((*(cell-ptr + width-in-bytesX2) & mask))

(*current-cellLptr & current-mask) t
if ((neighbor-count !- 2) && (neighbor-count !- 3)) t

*(dest-cell-ptr + (current-cell-ptr - cells)) &-
-current-mask: / / turn off cell

draw-pixel(x. y . OFF-COLOR):

neighbor-count++:

1
1 else I

if (neighbor-count -- 3) {
*(dest-cell-ptr + (current-cell-ptr - cells)) 1 -

draw-pixel(x. y . ON-COLOR):
current-mask; / / turn on cell

1
I
/ / Advance t o the next cell on row
if ((base-mask >>- 1) -- 0) {

base-mask - 0x80:
base-cell_ptr++: / / advance to the next cell byte

I
1
row-cell-ptr +- width-in-bytes: / / point to start o f next row

1
I

Listing 17.4 and Listing 17.3 are functionally the same; the only difference lies in
how nextsenerationo is implemented. (Only nextsenerationo is shown in Listing
1’7.4; the program is otherwise identical to Listing 17.3.) Listing 17.4 applies the
following optimizations to nextsenerationo:
The neighbor-counting code is brought into nextseneration, eliminating many func-
tion calls and from-scratch address/mask calculations; all multiplies are eliminated by
using pointers and addition; and all cells are accessed directly via pointers and masks,
eliminating all remaining function calls and from-scratch address/mask calculations.

The Game of Life 337

The net effect of these optimizations is that Listing 17.4 is more than twice as fast as
Listing 17.3; we’ve achieved the desired 18 generations per second, albeit only on a
486, and only at 96x96. (The #define that enables code limiting the speed to 18 Hz,
which seemed ridiculous in Listing 17.1, is actually useful for keeping the genera-
tions from iterating too quickly when Listing 17.4 is running on a 486, especially with
a small cellmap like 48x48.) We’ve sped things up by about eight times so far; we
need to increase our speed another ten times to reach our goal of 200~200 at 18
generations per second on a 20 MHz 386.
It’s undoubtedly possible to improve the performance of Listing 17.4 further by fine-
tuning the code, but no tremendous improvement is possible that way.

Once you’ve reached the point offine-tuningpointer usage and register variables p and the like in Cor C++, you ’ve become compiler-dependent; you therefore might
as well go to assembly and get the real McCoy.

We’re still not ready for assembly, though; what we need is a new perspective that
lends itself to vastly better performance in C++. The Life program in the next section
is three to seven times faster than Listing 17.4-and it’s still in C++.
How is this possible? Here are some hints:

After a few dozen generations, most of the cellmap consists of cells in the off state.
There are many possible cellmap representations other than one bit-per-pixel.
Cells change state relatively infrequently.

Bringing In the Right Brain
In the previous section, we saw how a C++ program could be sped up about eight
times simply by rearranging the data and code in straightforward ways. Now we’re
going to see how right-brain non-linear optimization can speed things up by another
four times-and make the code s imph .

Now that’s Zen code optimization.
I have two objectives to achieve in the remainder of this chapter. First, I want to show
that optimization consists of many levels, from assembly language up to conceptual
design, and that assembly language kicks in pretty late in the optimization process.
Second, I want to encourage you to saturate your brain with everything you know
about any particular optimization problem, then make space for your right brain to
solve the problem.

Re-Examining the Task
Earlier in this chapter, we looked at a straightforward Game of Life implementation,
then increased performance considerably by making the implementation a little less
abstract and a little less general. We made a small change to the cellmap format,

338 Chapter 17

adding padding bytes off the edges so that pointer arithmetic would always work, but
the major optimizations were moving the critical code into a single loop and using
pointers rather than member functions whenever possible. In other words, we took
what we already knew and made it more efficient.
Now it’s time to re-examine the nature of this programming task from the ground
up, looking for things that we don’t yet know. Let’s take a moment to review what the
Game of Life consists of. The basic task is evolving a new generation, and that’s done
by looking at the number of “on” neighbors a cell has and the cell’s own state. If a
cell is on, and two or three neighbors are on, then the cell stays on; otherwise, an on-
cell is turned off. If a cell is off and exactly three neighbors are on, then the cell is
turned on; otherwise, an off-cell stays off. That’s all there is to it. As any fool can see,
the trick is to arrange things so that we can count neighbors and check the cell state
as quickly as possible. Large lookup tables, oddly encoded cellmaps, and lots of bit-
twiddling assembly code spring to mind as possible approaches. Can’t you just feel
your adrenaline start to pump?

Relax. Step back. Try to divine the true nature of theproblem. The object is not to p count neighbors and check cell states as quickly as possible; that k just one pos-
sible implementation. The object is to determine when a cell b state must be changed
and to change it appropriately, and that’s what we need to do as quickly us possible.

What difference does that new perspective make? Let’s approach it this way. What
does a typical cellmap look like? As it happens, after a few generations, the vast ma-
jority of cells are off. In fact, the vast majority of cells are not only off but are entirely
surrounded by off-cells. Also, cells change state infrequently; in any given genera-
tion after the first few, most cells remain in the same state as in the previous generation.
Do you see where I’m heading? Do you hear a whisper of inspiration from your right
brain? The original implementation stored cell states as 1-bits (on), or 0-bits (off).
For each generation and for each cell, it counted the states of the eight neighbors,
for an average of eight operations per cell per generation. Suppose, now, that on
average 10 percent of cells change state from one generation to the next. (The ac-
tual percentage is even lower, but this will do for illustration.) Suppose also that we
change the cell map format to store a byte rather than a bit for each cell, with the
byte storing not only the cell state but also the count of neighboring on-cells for that
cell. Figure 17.3 shows this format. Then, rather than counting neighbors each time,
we could just look at the neighbor count in the cell and operate directly from that.
But what about the overhead needed to maintain the neighbor counts? Well, each
time a cell changes state, eight operations would be needed to update the counts in
the eight neighboring cells. But this happens only once every ten cells, on average-
so the cost of this approach is only one-tenth that of the original approach!
Know your data.

The Game of Life 339

Acting on What We Know
Once we’ve changed the cellmap format to store neighbor counts as well as states,
with a byte for each cell, we can get another performance boost by again examining
what we know about our data. I said earlier that most cells are off during any given
generation. This means that most cells have no neighbors that are on. Since the cell
map representation for an off-cell that has no neighbors is a zero byte, we can skip
over scads of unchanged cells at a pop simply by scanning for non-zero bytes. This is
much faster than explicitly testing cell states and neighbor counts, and lends itself
beautifully to assembly language implementation as REPZ S W B or (with a little
cleverness) REPZ SCASW. (Unfortunately, there’s no C library function that can
scan memory for the next byte that’s non-zero.)
Listing 17.5 is a Game of Life implementation that uses the neighbor-count cell map
format and scans for non-zero bytes. On a 20 MHz 386, Listing 17.5 is about 4.5 times
faster at calculating generations (that is, the generation engine is 4.5 times faster;
I’m ignoring the time consumed by drawing and text display) than Listing 17.4,
which is no slouch. On a 33 MHz 486, Listing 17.5 is about 3.5 times faster than
Listing 17.4. This is true even though Listing 17.5 must be compiled using the large
model. Imagine that-getting a four times speed-up while switching from the small
model to the large model!

LISTING 17.5 11 7-5.CPP
/* C++ Game o f L i f e i m p l e m e n t a t i o n f o r a n y mode f o r w h i c h mode s e t

a n d d r a w p i x e l f u n c t i o n s c a n b e p r o v i d e d . T h e c e l l m a p s t o r e s t h e
n e i g h b o r c o u n t f o r e a c h c e l l a s w e l l a s t h e s t a t e o f e a c h c e l l :
t h i s a l l o w s v e r y f a s t n e x t - s t a t e d e t e r m i n a t i o n . Edges always wrap
i n t h i s i m p l e m e n t a t i o n .
T e s t e d w i t h B o r l a n d C++. To r u n . l i n k w i t h L i s t i n g 17 .2
i n t h e l a r g e m o d e l . * /

i n c l u d e < s t d l i b. h>
#i n c l u d e < s t d i 0. h>
i n c l u d e < i o s t r e a m . h >
i n c l u d e < c o n i o . h >

340 Chapter 17

i n c l u d e < t i m e . h >
#i n c l ude <dos . h>
fki n c l ude <b ios . h>
#i nc l ude <mem. h>

d e f i n e ONKCOLOR 1 5 / I o n - c e l l p i x e l c o l o r
d e f i n e OFF-COLOR 0 / I o f f - c e l l p i x e l c o l o r
Pde f i ne MSG-LINE 10 / I row f o r t e x t messages
d e f i n e GENERATION-LINE 12 / I row f o r g e n e r a t i o n # d i s p l a y
d e f i n e LIMIT-18-HZ 0 / / s e t 1 t o t o maximum f r a m e r a t e - 18Hz
c l a s s c e l l m a p {
p r i v a t e :

u n s i g n e d c h a r * c e l l s :
uns igned cha r * temp-ce l l s :
u n s i g n e d i n t w i d t h :
u n s i g n e d i n t h e i g h t :
u n s i g n e d i n t l e n g t h - i n - b y t e s :

c e l l m a p (u n s i g n e d i n t h . u n s i g n e d i n t v) :
- c e l l m a p (v o i d) :
v o i d s e t - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) :
v o i d c l e a r - c e l l (u n s i g n e d i n t x . u n s i g n e d i n t y) ;
i n t c e l l - s t a t e (i n t x . i n t y) :
i n t c o u n t - n e i g h b o r s (i n t x . i n t y):
v o i d n e x t - g e n e r a t i o n (v o i d) :
v o i d i n i t (v o i d) ;

p u b l i c :

I :

e x t e r n v o i d e n t e r - d i s p l a y m o d e (v o i d) :
e x t e r n v o i d exit-display-mode(void);
e x t e r n v o i d d r a w - p i x e l (u n s i g n e d i n t X . u n s i g n e d i n t Y .

e x t e r n v o i d s h o w - t e x t (i n t x . i n t y . c h a r * t e x t) ;

I* C o n t r o l s t h e s i z e o f t h e c e l l map. Must be w i t h i n t h e c a p a b i l i t i e s
o f t h e d i s p l a y mode, and must be l i m i t e d t o l e a v e room f o r t e x t
d i s p l a y a t r i g h t . * I

u n s i g n e d i n t C o l o r) ;

u n s i g n e d i n t c e l l m a p - w i d t h - 96:
u n s i g n e d i n t c e l l m a p - h e i g h t - 96:

I* Width & h e i g h t i n p i x e l s o f e a c h c e l l . * /
u n s i g n e d i n t m a g n i f i e r - 2;

I* Randomizing seed * /
uns igned i n t seed:

v o i d m a i n 0
{

u n s i g n e d l o n g g e n e r a t i o n - 0:
char gen-textC801:
l o n g b i o s - t i m e . s t a r t - b i o s - t i m e :

ce l lmap current-map(cel1map-height. ce l lmap-w id th) :

c u r r e n t - m a p . i n i t 0 : / / r a n d o m l y i n i t i a l i z e c e l l map

enter-d i sp lay-mode() :

The Game of Life 341

/ / Keep r e c a l c u l a t i n g a n d r e d i s p l a y i n g g e n e r a t i o n s u n t i l a n y k e y
/ I i s p ressed
show- tex t (0 . MSG-LINE. "Genera t i on : ") :
s t a r t - b i o s - t i m e - -bios-timeofday(-TIME-GETCLOCK. &b ios - t ime) :
do {

generat ion++:
s p r i n t f (g e n - t e x t . " % 1 0 1 u " . g e n e r a t i o n) ;
show-text (1. GENERATION-LINE, g e n - t e x t) ;
/ / R e c a l c u l a t e a n d d r a w t h e n e x t g e n e r a t i o n
current-map.next-generationo;

i f LIMIT-18-HZ
/ / L i m i t t o a maximum o f 18.2 f r a m e s p e r s e c o n d , f o r v i s i b i l i t y
do

] w h i l e (s t a r t - b i o s - t i m e - b i o s - t i m e) ;
s t a r t - b i o s - t i m e - b ios - t ime ;

bios-t imeofday(-TIME-GETCLOCK. &bios-t ime):

#endi f
1 w h i l e (! k b h i t O) :

g e t c h 0 ; / I c l e a r k e y p r e s s
e x i t - d i s p l ay-mode() :
c o u t << " T o t a l g e n e r a t i o n s : " << g e n e r a t i o n << "\nSeed: " <<

seed << " \n" :
1

/ * c e l l m a p c o n s t r u c t o r . * /
cellmap::cellmap(unsigned i n t h , u n s i g n e d i n t w)

w i d t h - w:
h e i g h t - h;
l eng th - in -by tes - w * h:
c e l l s - new uns igned cha rC leng th - in -by tes] : / / c e l l s t o r a g e
temp-ce l l s - new u n s i g n e d c h a r [l e n g t h - i n - b y t e s l ; I / temp c e l l s t o r a g e
i f ((c e l l s - NULL) I ((t emp-ce l l s - NULL) 1 I

p r i n t f (" 0 u t o f m e m o r y \ n ") :
e x i t (1) :

I
memset(ce l1s. 0 . l e n g t h - i n - b y t e s) ; I / c l e a r a l l c e l l s , t o s t a r t

I

I* c e l l m a p d e s t r u c t o r . *I
ce l lmap : : - ce l lmap(vo id)
I

d e l e t e C l c e l l s;
d e l e t e [] t e m p - c e l l s :

1

/ * T u r n s a n o f f - c e l l o n , i n c r e m e n t i n g t h e o n - n e i g h b o r c o u n t f o r t h e

v o i d cel1map::set-cell(unsigned i n t x , u n s i g n e d i n t y)
(

e i g h t n e i g h b o r i n g c e l l s . * /

u n s i g n e d i n t w - w i d t h . h - h e i g h t :
i n t x o l e f t . x o r i g h t . y o a b o v e . y o b e l o w ;
u n s i g n e d c h a r * c e l l - p t r - c e l l s + (Y * W) + X :

I / C a l c u l a t e t h e o f f s e t s t o t h e e i g h t n e i g h b o r i n g c e l l s .
/ / a c c o u n t i n g f o r w r a p p i n g a r o u n d a t t h e e d g e s o f t h e c e l l map
i f (x -- 0)

e l s e
x o l e f t - w - 1:

x o l e f t - -1:

342 Chapter 17

i f (y -- 0)
yoabove - leng th - in -by tes - w:

e l s e
yoabove - - w :

i f (x -- (w - 1))
x o r i g h t = - (w - 1):

e l s e
x o r i g h t - 1:

i f (y -- (h - 1))
yobelow - - (l e n g t h - i n - b y t e s - w) :

e l s e
yobelow - w :

* (c e l l - p t r) I - 0x01:
* (c e l l - p t r + yoabove + x o l e f t) +- 2:
* (c e l l - p t r + yoabove) +- 2:
* (c e l l - p t r + yoabove + x o r i g h t) +- 2:
* (c e l l - p t r + x o l e f t) +- 2:
* (c e l l - p t r + x o r i g h t) +- 2:
* (c e l l - p t r + yobelow + x o l e f t) +- 2 :
* (c e l l - p t r + yobelow) +- 2:
* (c e l l - p t r + yobelow + x o r i g h t) +- 2 :

1

I* T u r n s a n o n - c e l l o f f , d e c r e m e n t i n g t h e o n - n e i g h b o r c o u n t f o r t h e

v o i d cel1map::clear-cell(unsigned i n t x . u n s i g n e d i n t y)
(

e i g h t n e i g h b o r i n g c e l l s . *I

u n s i g n e d i n t w - w i d t h , h - h e i g h t ;
i n t x o l e f t , x o r i g h t . y o a b o v e . y o b e l o w :
u n s i g n e d c h a r * c e l l - p t r - c e l l s + (y * w) + x:

I / C a l c u l a t e t h e o f f s e t s t o t h e e i g h t n e i g h b o r i n g c e l l s ,
/ I a c c o u n t i n g f o r w r a p p i n g a r o u n d a t t h e e d g e s o f t h e c e l l map
i f (x - 0)

x o l e f t - w - 1:
e l s e

x o l e f t - -1 :
i f (y -- 0)

yoabove - l e n g t h k i n - b y t e s - w :
e l s e

yoabove - - w :
i f (x -- (w - 1))

x o r i g h t - - (w - 1) ;
e l s e

x o r i g h t - 1:
if (y - (h - 1))

yobelow - - (l e n g t h - i n - b y t e s - w) :
e l s e

yobelow - w ;

* (c e l l L p t r) &- -0x01:
* (c e l l _ p t r +
*(eel 1 -p t r +
* (c e l l - p t r +
*(eel 1 -p t r +
* (c e l l _ p t r +
* (c e l l - p t r +
* (c e l l - p t r +
* (c e l l - p t r +

1

yoabove + x o l e f t) - - 2:
yoabove) -- 2:
yoabove + x o r i g h t) -- 2:
x o l e f t) -- 2:
x o r i g h t) - - 2 :
yobelow + x o l e f t) - - 2:
yobelow) - - 2:
yobelow + x o r i g h t) -- 2:

The Game of Life 343

I* Returns cell state (1-on or 0-off). *I
int cel1map::cell-statecint x, int y)
{

unsigned char *cell-ptr;

cell-ptr - cells + (y * width) + x;
return *cell-ptr & 0x01;

1

I* Calculates and displays the next generation of current-map * I
void cel1map::next-generation0
(

unsigned int x. y. count;
unsigned int h - height, w - width;
unsigned char *cellLptr. *row-cell-ptr;

I1 Copy to temp map, s o we can have an unaltered version from
If which to work
memcpy(temp-cells, cells, length-in-bytes);

/ I Process all cells in the current cell map
cell-ptr - temp-cells; I / first cell in cell map
for (y-0; y<h; y++) I I1 repeat for each row of cells
I1 Process all cells in the current row of the cell map

x - 0:
do (/ / repeat for each cell in row

11 Zip quickly through as many off-cells with no
11 neighbors as possible

while (*cell-ptr - 0) {
cell-ptr++; / I advance to the next cell
if (++x >- w) goto RowDone:

1
I / Found a cell that's either on or has on-neighbors,
/ I so see if its state needs to be changed
count - *cell-ptr >> 1; / I I of neighboring on-cells
if (*cell-ptr & 0x01) I

/ / Cell is on; turn it off if it doesn't have
I1 2 or 3 neighbors
if ((count !- 2) && (count !- 3)) (

clear-ce?l(x. y):
draw-pixel(x. y. OFF-COLOR);

1
1 else {

I f Cell is off; turn it on if it has exactly 3 neighbors
if (count - 3) (

set-cell(x. y);
draw-pixel (x. y. ON-COLOR):

1
3
/ I Advance to the next cell
cell-ptr++; / I advance to the next cell byte

) while (++x < w);
RowDone:

1
1

/* Randomly initializes the cellmap to about 50% on-pixels. * I
void cel1map::initO
{

unsigned int x. y. init-length;

344 Chapter 17

/ / Get the seed; seed randomly i f 0 e n t e r e d
c o u t << “Seed (0 f o r random seed): ”;
c i n >> seed;
i f (seed =- 0) seed = (uns igned) t ime(NULL) :

/ / Randomly i n i t i a l i z e t h e i n i t i a l c e l l map t o 50% a n - p i x e l s
/ / (a c t u a l l y g e n e r a l l y f e w e r , b e c a u s e some c o o r d i n a t e s will be
/ / randomly se lec ted more t han once)
c o u t << “ I n i t i a l i z i n g . . . “ :
s rand (seed) ;
i n i t - l e n g t h - (h e i g h t * w i d t h) / 2:
do {

x = random(w id th) :
y - random(he igh t) ;
i f (c e l l - s t a t e (x . y) -= 0) 1

I
s e t - c e l l (x . y) ;

I
I w h i l e (- i n i t - l e n g t h) ;

The large model is actually not necessary for the 96x96 cellmap in Listing 17.5. How-
ever, I was actually more interested in seeing a fast 200x200 cellmap, and two 200x200
cellmaps can’t fit in a single segment. (This can easily be worked around in assembly
language for cellmaps up to a segment in size; beyond that size, cellmap scanning
becomes pretty complex, although it can still be efficiently implemented with some
clever programming.)
Anyway, using the large model helps illustrate that it’s the data representation and
the data processing approach you choose that matter most. Optimization details like
memory models and segments and in-line functions and assembly language are im-
portant but secondary. Let your mind roam creatively before you start coding.
Otherwise, you may find you’re writing well-tuned slow code, which is by no means
the same thing as fast code.
Take a close look at Listing 17.5. You will see that it’s quite a bit simpler than Listing
17.4. To some extent, that’s because I decided to hard-wire the program to wrap
around from one edge of the cellmap to the other (it’s much more interesting that
way), but the main reason is that it’s a lot easier to work with the neighbor-count
model. There’s no complex mask and pointer management, and the only thing that
reuZ(y needs to be optimized is scanning for zero bytes. (And, in fact, I haven’t opti-
mized even that because it’s done in a Ct+ loop; it should really be REPZ SCASB.)
In truth, none of the code in Listing 17.5 is particularly well-optimized, and, as I
noted, the program must be compiled with the large model for large cellmaps. Also,
of course, the entire program is still in C+t; note well that there’s not a whit of
assembly here.

We’ve gotten more than a 30-times speedup simply by removing a little of the ab- p straction that C++ encourages, and by storing andprocessing the data in a manner
appropriate for the typical nature of the data itselJ: In other words, we’ve done

The Game of Life 345

some linear, left-brained optimization (usingpointers and reducing calls) and some
non-linear, right-brained optimization (understanding the real problem and lis-
tening for the creative whisper of non-obvious solutions).

No doubt we could get another two to five times improvement with good assembly
code-but that’s dwarfed by a 30-times improvement, so optimization at a concep-
tual level must come first.

The Challenge That Ate My Life
The most recent optimization challenge I laid my community of readers was to write
the fastest possible Game of Life generation engine. By “engine” I meant that I didn’t
care about time spent in input or output, only time consumed by the call to next-
generation. The time spent updating the cellmap was what I wanted people to
concentrate on.
Here are the rules I laid down for the challenge:

Readers could modify any code in Listing 17.5, except the main loop, as well as
change the cell map representation any way they liked. However, the code had to
produce exactly the same output as Listing 17.5 under all circumstances in order
to be eligible to win.
Engine code had to be less than 400 lines long in total, excluding the video-

Submissions had to compile/assemble with Borland C++ (in either C++ or C

All submissions had to handle cellmaps at least 200x200 in size.
Assembly language could of course be used to speed up any part of the program.

. C rather than C++ was legal as well, so long as entered implementations pro-
duced the same results as Listing 17.5 and 17.2 together and were less than 400
lines long.
All entries would be timed on the same 33 MHz 486 with a 256K external cache.

related code shown in Listing 17.2.

mode, as desired) and/or TASM.

That was the challenge I put to the readers. Little did I realize the challenge it would
lay on me: Entries poured in from the four corners of the globe. Some were plain, some
were brilliant, some were, well, berserk. Many didn’t even work. But all had to be gone
through, examined for adherence to the rules, read, compiled, linked, run, andjudged.
I learned a lot-about a lot of things, not the least ofwhich was the process (or maybe
the wisdom) of laying down challenges to readers.
Who won? What did I learn? To find out, read on.

346 Chapter 17

	next:
	home:
	previous:

