
chapter 19

pentium: not the same old song

371

startling results. Nonetheless, the 486 was still too simple to mark a return to the
golden age of optimization.

The Return of Optimization as Art
Then the Pentium came around, and filled our code with optimization hazards, and
life was good again. The Pentium has two execution pipelines and enough rules and
exceptions to those rules to bringjoy to the heart of the hardest-core assemblyjunkie.
For a change, Intel documented most of the Pentium optimization rules and spread
the word about them, so we don’t have to go through as much spelunking of the
Pentium as with its predecessors. They’ve done this, I suspect, largely because more
than any previous x86 processor, the Pentium’s performance is highly dependent on
properly optimized code.
In the worst case, where the second execution pipe is dormant most of the time, the
Pentium won’t perform all that much better than a 486 at the same clock speed. In
the best case, where the second pipe is heavily used and the Pentium’s other advan-
tages (such as branch prediction, write-back cache, 64bit full speed external bus,
and dual 8K caches) can kick in, the Pentium can be more than twice as fast as a 486.
In a critical inner loop, hand optimization can double or even triple performance
over 486-optimized code-and that’s on top of the sorts of algorithmic and design
optimizations that are routinely performed on any processor. Good compilers can
make a big difference on the Pentium, too, but there are some gotchas there, to
which I’ll return later.
It’s been a long time coming, but hard-core, big-payoff assembly language optimiza-
tion is back in style, and for the rest of this book I’ll be delving into the Byzantine
wonders of the Pentium. In this chapter, I’ll do a quick overview, then cover a variety
of smaller Pentium optimization topics. In the next chapter, I’ll tackle the 900-pound
gorilla of Pentium optimization: superscalar (dual execution pipe) programming.
Trust me, this’ll be fun.
Listen, do you want to know a secret? This lead-in has been brought to you with the
help of “classic rock”-another way of saying “music Baby Boomers listened to back
when they cared more about music than 401Ks and regular flossing.” There are so
many of us Boomers that our music, even the worst of it, will never go away. When
we’re 90 years old, propped up in our Kraftmatic adjustable beds and surfing the
5,000-channel information superhighway from one infomercial to the next, the sound
system in the retirement communitywill be piping in a Muzak version of “Louie, Louie,”
while on the holovid Country Joe McDonald and the Fish pitch Preparation H. I can
hardly wait.
Gimme a “P”. . . .

372 Chapter 19

The Pentium: An Overview
Architecturally, the Pentiurn is vastly different in many ways from the 486, but most
of those differences are transparent to programmers. After all, the whole idea be-
hind the Pentium is that it runs the same code as previous x86 processors, but faster;
otherwise, Intel could have made a faster, cheaper RISC processor. Still, knowledge
of the Pentium’s architecture is useful for understanding exactly how code will per-
form, and a few of the architectural differences are most decidedly not transparent
to performance programmers.
The Pentium is essentially one full 486 execution unit (EU), plus a second stripped-
down 486 EU, on a single chip. The first EU is referred to as the U execution pipe, or
Upipe; the second, more limited one is called the Vpipe. The two pipes are capable of
executing instructions simultaneously, have separate write buffers, and can even ac-
cess the data cache simultaneously (although with certain limitations that I’ll discuss
in the next chapter), so on the Pentium it is possible to execute two instructions,
even instructions that access memory, in a single clock. The cycle times for instruc-
tion execution in a given pipe (both pipes process instructions at the same speed)
are comparable to those for the 486, although some instructions-notably MUL, the
repeated string instructions, and some of the shifts and rotates-have gotten faster.
My first thought upon hearing of the Pentium’s dual pipes was to wonder how often
the prefetch queue stalls for lack of instruction bytes, given that the demand for in-
struction bytes can be twice that of the 486. The answer is: rarely indeed, and then only
because the code is not in the internal cache. The 486 has a single 8K cache that stores
both code and data, and prefetching can stall if data fetching doesn’t allow time for
prefetching to occur (although this rarely happens in practice).

The Pentiurn, on the other hand, has two separate 8K caches, one for code and one 1 for data, so codepreftches can never collide with datafetches; the prefetch queue
can stall only when the code being fetched isn ’t in the internal code cache.

(And yes, self-modifying code still works; as with all Pentium changes, the dual caches
introduce no incompatibilities with 386/486 code.) Also, because the code and data
caches are separate, code can’t be driven out of the cache in a tight loop that ac-
cesses a lot of data, unlike the 486. In addition, the Pentium expands the 486’s 32-byte
prefetch queue to 128 bytes. In conjunction with the branch prediction feature (de-
scribed next), which allows the Pentium to prefetch properly at most branches, this
larger prefetch queue means that the Pentium’s two pipes should be better fed than
those of any previous x86 processor.

Crossing Cache Lines
There are three other characteristics of the Pentium that make for a healthy supply
of instruction bytes. One is that the Pentium can prefetch instructions across cache

Pentium: Not the Same Old Song 373

lines. Unlike the 486, where there is a 3-cycle penalty for branching to an instruction
that spans a cache line, there’s no such penalty on the Pentium. The second is that
the cache line size (the number of bytes fetched from the external cache or main
memory on a cache miss) on the Pentium is 32 bytes, twice the size of the 486’s cache
line, so a cache miss causes a longer run of instructions to be placed in the cache
than on the 486. The third is that the Pentium’s external bus is twice as wide as the
486’s, at 64 bits, and runs twice as fast, at 66 MHz, so the Pentium can fetch both
instruction and data bytes from the external cache four times as fast as the 486.

Even when the Pentium is runningflat-out with both pipes in use, it can generally p consume only about twice as many bytes as the 486; so the ratio ofexternal memory
bandwidth to processing power is much improved, although real-world perfor-
mance is heavily dependent on the size and speed ofthe external cache.

The upshot of all this is that at the same clock speed, with code and data that are
mostly in the internal caches, the Pentium maxes out somewhere around twice as
fast as a 486. (When the caches are missed a lot, the Pentium can get as much as
three to four times faster, due to the superior external bus and bigger caches.) Most
of this won’t affect how you program, but it is useful to know that you don’t have to
worry about instruction fetching. It’s also useful to know the sizes of the caches be-
cause a high cache hit rate is crucial to Pentium performance. Cache misses are
vastly slower than cache hits (anywhere from two to 50 or more times as slow, de-
pending on the speed of the external cache and whether the external cache misses
as well), and the Pentium can’t use the V-pipe on code that hasn’t already been
executed out of the cache at least once. This means that it is very important to get the
working sets of critical loops to fit in the internal caches.
One change in the Pentium that you definitely do have to worry about is superscalar
execution. Utilization of the V-pipe can range from near zero percent to 100 percent,
depending on the code being executed, and careful rearrangement of code can
have amazing effects. Maxing out V-pipe use is not a trivial task; I’ll spend all of the
next chapter discussing it so as to have time to cover it properly. In the meantime,
two good references for superscalar programming and other Pentium information
are Intel’s Pentium Processor User’s Manual: V o l u ~ ~ ~ 3 : Architecture and BopammingManual
(ISBN 1-55512-195-0; Intel order number 241430-OOl), and the article “Optimizing
Pentium Code” by Mike Schmidt, in DX Dobb’sJoumal for January 1994.

Cache Organization
There are two other interesting changes in the Pentium’s cache organization. First,
the cache is two-way set-associative, whereas the 486 is four-way set-associative. The
details of this don’t matter, but simply put, this, combined with the 32-byte cache
line size, means that the Pentium has somewhat coarser granularity in both space
and time than the 486 in terms of packing bytes into the cache, although the total

374 Chapter 19

cache space is now bigger. There’s nothing you can do about this, but it may make it
a little harder to get a loop’s working set into the cache. Second, the internal cache
can now be configured (by the BIOS or OS; you won’t have to worry about it) for
write-back rather than write-through operation. This means that writes to the inter-
nal data cache don’t necessarily get propagated to the external bus until other
demands for cache space force the data out of the cache, making repeated writes to
memory variables such as loop counters cheaper on average than on the 486, al-
though not as cheap as registers.
As a final note on Pentium architecture for this chapter, the pipeline stalls (what
Intel calls AGIs, for Address Generation Interlocks) that I discussed earlier in this book
(see Chapter 12) are still present in the Pentium. In fact, they’re there in spades on
the Pentium; the two pipelines mean that an AGI can now slow down execution of
an instruction that’s three instructions away from the AGI (because four instructions
can execute in two cycles). So, for example, the code sequence

add edx.4 ; U - p i p e cycle 1
mov ecx.[ebxl ; V - p i p e cycle 1
add ebx.4 ; U - p i p e cycle 2
mov [edxl.ecx ; V - p i p e cycle 3

; due t o A G I
; (w o u l d have been
; V - p i p e cycle 2)

takes three cycles rather than the two cycles it should take, because EDX was modi-
fied on cycle 1 and an attempt was made to use it on cycle two, before the AGI had
time to clear-even though there are two instructions between the instructions that
are actually involved in the AGI. Rearranging the code like

mov ecx.[ebxl ; U - p i p e cycle 1
add ebx.4 ; V - p i p e cycle 1
mov [edx+4].ecx :U -p ipe cycle 2
add edx.4 ; V - p i p e cycle 2

makes it functionally identical, but cuts the cycles to 2-a 50 percent improvement.
Clearly, avoiding AGIs becomes a much more challenging and rewarding game in a
superscalar world, one to which I’ll return in the next chapter.

Faster Addressing and More
I’ll spend the rest of this chapter covering a variety of Pentium optimization tips. For
starters, effective address calculations (that is, the addition and scaling required to
calculate a memory operand’s address, as for example in MOV EAX,[EBX+ECX*2+4])
never take any extra cycles on the Pentium (other than possibly an AGI cycle), even
for the use of base+index addressing (as in MOV [ESI+EDI],EAX) or scaling (“2, “4,
or “8, as in INC ARRAY[ESI*4]). On the 486, both of the latter cases cause a l-cycle
penalty. The faster effective address calculations have the side effect of making LEA
very attractive as an arithmetic instruction. LEA can add any two registers, one of

Pentium: Not the Same Old Song 375

which can be multiplied by one, two, four, or eight, plus a constant value, and can store
the result in any register-all in one cycle, apart from AGIs. Not only that, but as we’ll see
in the next chapter, LEA can go through either pipe, whereas SHL can only go through
the U-pipe, so LEA is often a superior choice for multiplication by three, four, five,
eight, or nine. (ADD is the best choice for multiplication by two.) If you use LEA for
arithmetic, do remember that unlike ADD and SHL, it doesn’t modifjr any flags.
As on the 486, memory operands should not cross any more alignment boundaries
than absolutely necessary. Word operands should be word-aligned, dword operands
should be dword-aligned, and qword operands (double-precision variables) should
be qword-aligned. Spanning a dword boundary, as in

mov ebx.3

mov eax.[ebxl

costs three cycles. On the other hand, as noted above, branch targets can now span
cache lines with impunity, so on the Pentium there’s no good argument for the para-
graph (that is, 16-byte) alignment that Intel recommends for 486 jump targets. The
32-byte alignment might make for slightly more efficient Pentium cache usage, but
would make code much bigger overall.

p In fact, given that most jump targets aren ’t in performance-critical code, it’s hard
to make a compelling argument for aligning branch targets even on the 486. I i l
say that no alignment (except possibly where you know a branch target lies in a
key loop), or at most dword alignment f o r the 386) is plenq, and can shrink code
size considerably.

Instruction prefixes are awfully expensive; avoid them if you can. (These include size
and addressing prefixes, segment ovemdes, LOCK, and the OFH prefixes that extend
the instruction set with instructions such as MOVSX. The exceptions are conditional
jumps, a fast special case.) At a minimum, a prefix byte generally takes an extra cycle
and shuts down the V-pipe for that cycle, effectively costing as much as two normal
instructions (although prefix cycles can overlap with previous multicycle instructions, or
AGIs, as on the 486). This means that using 32-bit addressing or 32-bit operands in a
16-bit segment, or vice versa, makes for bigger code that’s significantly slower. So, for
example, you should generally avoid 16-bit variables (shorts, in C) in 32-bit code,
although if using 32-bit variables where they’re not needed makes your data space
get a lot bigger, you may want to stick with shorts, especially since longs use the cache
less efficiently than shorts. The trade-off depends on the amount of data and the
number of instructions that reference that data. (eight-bit variables, such as chars,
have no extra overhead and can be used freely, although they may be less desirable
than longs for compilers that tend to promote variables to longs when performing
calculations.) Likewise, you should if possible avoid putting data in the code seg-
ment and referring to it with a CS: prefix, or otherwise using segment overrides.

376 Chapter 19

LOCK is a particularly costly instruction, especially on multiprocessor machines, be-
cause it locks the bus and requires that the hardware be brought into a synchronized
state. The cost varies depending on the processor and system, but LOCK can make an
INC [r n e m] instruction (which normally takes 3 cycles) 5 , 10, or more cycles slower.
Most programmers will never use LOCK on purpose-it’s primarily an operating sys-
tem instruction-but there’s a hidden gotcha here because the XCHG instruction
always locks the bus when used with a memory operand.

p XCHG is a tempting instruction that b often used in assembly language; for example,
exchanging with video memory is apopular way to read and write VGA memory in
a single instruction-but it b now a bad idea. As it happens, on the 486 and Pentium,
using MOVs to read and write memory is fastel; anyway; and even on the 486, my
measurements indicate a$ve-cycle tax for LOCK in general, and a nine-cycle execu-
tion time for XCHG with memory. Avoid XCHG with memory $you possibly can.

As with the 486, don’t use ENTER or LEAVE, which are slower than the equivalent
discrete instructions. Also, start using TEST reg,reginstead of AND ngregor OR regreg
to test whether a register is zero. The reason, as we’ll see in Chapter 21, is that TEST,
unlike AND and OR, never modifies the target register. Although in this particular
case AND and OR don’t modify the target register either, the Pentium has no way of
knowing that ahead of time, so if AND or OR goes through the U-pipe, the Pentium
may have to shut down the V-pipe for a cycle to avoid potential dependencies on the
result of the AND or OR. TEST suffers from no such potential dependencies.

Branch Prediction
One brand-spanking-new feature of the Pentium is hunch prediction, whereby the
Pentium tries to guess, based on past history, which way (or, for conditional jumps,
whether or not), your code will jump at each branch, and prefetches along the like-
lier path. If the guess is correct, the branch or fall-through takes only 1 cycle“:!
cycles less than a branch and the same as a fall-through on the 486; if the guess is
wrong, the branch or fall-through takes 4 or 5 cycles (if it executes in the U- or V-
pipe, respectively)-1 or 2 cycles more than a branch and 3 or 4 cycles more than a
fall-through on the 486.

p Branch prediction is unprecedented in the x86, and fundamentally alters the na-
ture ofpedal-to-the-metal optimization, for the simple reason that it renders unrolled
loops largely obsolete. Rare indeed is the loop that can ’t afford to spare even 1 or
0 (yes, zero!) cycles per iteration for loop counting, and that j . how low the cost
can go for maintaining a loop on the Pentium.

Also, unrolled loops are bigger than normal loops, so there are extra (and expen-
sive) cache misses the first time through the loop if the entire loop isn’t already in

Pentium: Not the Same Old Song 377

the cache; then, too, an unrolled loop will shoulder other code out of the internal
and external caches. If in a critical loop you absolutely need the time taken by the
loop control instructions, or if you need an extra register that can be freed by unrolling
a loop, then by all means unroll the loop. Don’t expect the sort of speed-up you get from
this on the 486 or especially the 386, though, and watch out for the cache effects.
You may well wonder exactly w h the Pentium correctly predicts branching. Alas, this is
one area that Intel has declined to document, beyond saying that you should endeavor
to fall through branches when you have a choice. That’s good advice on every other
x86 processor, anyway, so it’s well worth following. Also, it’s a pretty safe bet that in a
tight loop, the Pentium will start guessing the right branch direction at the bottom
of the loop pretty quickly, so you can treat loop branches as one-cycle instructions.
It’s an equally safe bet that it’s a bad move to have in a loop a conditional branch that
goes both ways on a random basis; it’s hard to see how the Pentium could consis-
tently predict such branches correctly, and mispredicted branches are more expensive
than they might appear to be. Not only does a mispredicted branch take 4 or 5
cycles, but the Pentium can potentially execute as many as 8 or 10 instructions in
that time-3 times as many as the 486 can execute during its branch time-so cor-
rect branch prediction (or eliminating branch instructions, if possible) is very
important in inner loops. Note that on the 486 you can count on a branch to take 1
cycle when it falls through, but on the Pentium you can’t be sure whether it will take
1 or either 4 or 5 cycles on any given iteration.

As things currently stand, branch prediction is an annoyance for assembly lan- p guage optimization because it’s impossible to be certain exactly how code will
perform until you measure it, and even then it j. drflcult to be sure exactly where
the cycles went. All I can say is try to fall through branches ifpossible, and try to
be consistent in your branching ifnot.

Miscellaneous Pentium Topics
The Pentium has all the instructions of the 486, plus a few new ones. One much-
needed instruction that has finally made it into the instruction set is CPUID, which
allows your code to determine what processor it’s running on. CPUID is 15 years
late, but at least it’s finally here. Another new instruction is CMPXCHGSB, which
does a compare and conditional exchange on a qword. CMPXCHGSB doesn’t seem
to me to be a particularly useful instruction, but I’m sure Intel wouldn’t have added
it without a reason; if you know of a use for it, please pass it along to me.

486 versus Pentium Optimization
Many Pentium optimizations help, or at least don’t hurt, on the 486. Many, but not
all-and many do hurt on the 386. As I discuss various Pentium optimizations, I will
attempt to note the effects on the 486 as well, but doing this in complete detail

378 Chapter 19

would double the sizes of these discussions and make them hard to follow. In gen-
eral, I’d recommend reserving Pentium optimization for your most critical code,
and even there, it’s a good idea to have at least two code paths, one for the 386 and
one for the 486/Pentium. It’s also a good idea to time your code on a 486 before and
after Pentium-optimizing it, to make sure you haven’t hurt performance on what will
be, after all, by far the most important processor over the next couple of years.
With that in mind, is optimizing for the Pentium even worthwhile today? That de-
pends on your application and its market-but if you want absolutely the best possible
performance for your DOS and Windows apps on the fastest hardware, Pentium
optimization can make your code scream.

Going Superscalar
In the next chapter, we’ll look into the single biggest element of Pentium performance,
cranking up the Pentium’s second execution pipe. This is the area in which com-
piler technology is most touted for the Pentium, the two thoughts apparently being
that (1) most existing code is in C, so recompiling to use the second pipe better is an
automatic win, and (2) it’s so complicated to optimize Pentium code that only a
compiler can do it well. The first point is a reasonable one, but it does suffer from
one flaw for large programs, in that Pentium-optimized code is larger than 486- or
386-optimized code, for reasons that will become apparent in the next chapter. Larger
code means more cache misses and more page faults; and while most of the code in
any program is not critical to performance, compilers optimize code indiscriminately.
The result is that Pentium compiler optimization not only expands code, but can be
less beneficial than expected or even slower in some cases. What makes more sense
is enabling Pentium optimization only for key code. Better yet, you could hand-tune
the most important code-and yes, you can absolutely do a better job with a small,
critical loop than any PC compiler I’ve ever seen, or expect to see. Sure, you keep
hearing how great each new compiler generation is, and compilers certainly have
improved; but they play by the same rules we do, and we’re more flexible and know
more about what we’re doing-and now we have the wonderfully complex and pow-
erful Pentium upon which to loose our carbon-based optimizers.
A compiler that generates better code than a good assembly programmer? That’ll be
the day.

Pentium: Not the Same Old Song 379

	next:
	home:
	previous:

