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startling results. Nonetheless, the 486 was still too simple to mark  a return to the 
golden age of optimization. 

The Return of Optimization as Art 
Then  the  Pentium came around,  and filled our  code with optimization hazards, and 
life was good  again. The  Pentium has two execution  pipelines and  enough rules and 
exceptions to those rules to bringjoy to the  heart of the hardest-core assemblyjunkie. 
For a  change,  Intel  documented  most of the  Pentium optimization rules and  spread 
the word about  them, so we don’t have to go through as much  spelunking of the 
Pentium as  with  its predecessors. They’ve done this, I suspect, largely because more 
than any previous x86 processor, the Pentium’s performance is highly dependent  on 
properly optimized code. 
In  the worst case, where the second execution  pipe is dormant most of the time, the 
Pentium won’t perform all that  much  better  than  a 486 at  the same clock speed. In 
the best case, where the  second pipe is  heavily used  and  the Pentium’s other advan- 
tages (such as branch prediction, write-back cache, 64bit full speed  external bus, 
and  dual 8K caches) can kick in,  the  Pentium can be more  than twice  as fast  as a 486. 
In a critical inner loop, hand optimization can  double  or even triple  performance 
over  486-optimized  code-and that’s on  top of the sorts of algorithmic and design 
optimizations that  are routinely performed  on any processor. Good compilers can 
make  a big difference on  the  Pentium, too, but  there  are some gotchas there, to 
which I’ll return later. 
It’s been a long time coming,  but hard-core, big-payoff  assembly language optimiza- 
tion is back in style, and  for  the rest of this book I’ll be delving into  the Byzantine 
wonders of the  Pentium.  In this chapter, I’ll do a quick overview, then cover a variety 
of smaller Pentium optimization topics. In  the  next chapter, I’ll  tackle the 900-pound 
gorilla of Pentium optimization: superscalar (dual  execution  pipe)  programming. 
Trust me, this’ll  be fun. 
Listen, do you  want to know a  secret? This lead-in has been  brought to you with the 
help of  “classic rock”-another way of  saying “music Baby Boomers listened to back 
when they cared  more  about music than 401Ks and regular flossing.” There  are so 
many of us Boomers  that our music, even the worst  of it, will never go away. When 
we’re 90  years old,  propped  up in our Kraftmatic adjustable beds  and surfing the 
5,000-channel information superhighway from  one infomercial to the next, the  sound 
system in the retirement communitywill  be piping in a Muzak  version  of  “Louie,  Louie,” 
while on  the holovid Country Joe McDonald and  the Fish pitch Preparation H. I can 
hardly wait. 
Gimme a “P”. . . . 
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The  Pentium: An Overview 
Architecturally, the Pentiurn is  vastly different  in many ways from  the 486, but most 
of those  differences are  transparent  to  programmers. After all, the whole idea be- 
hind  the Pentium is that it runs  the  same  code as previous x86 processors, but faster; 
otherwise,  Intel  could have made  a faster, cheaper RISC processor. Still, knowledge 
of the  Pentium’s  architecture is useful for understanding exactly  how code will per- 
form,  and a few of the architectural  differences  are most decidedly not transparent 
to performance  programmers. 
The  Pentium is essentially one full 486 execution  unit (EU), plus  a  second  stripped- 
down 486 EU, on a single chip.  The first EU is referred to as the U execution  pipe,  or 
Upipe; the  second,  more  limited  one is called the Vpipe. The two pipes are capable of 
executing  instructions simultaneously, have separate write buffers, and can even ac- 
cess the  data  cache simultaneously (although with certain  limitations  that I’ll discuss 
in the  next  chapter), so on  the Pentium  it is possible to execute two instructions, 
even instructions that access  memory, in a single clock. The cycle times for  instruc- 
tion execution  in a given pipe  (both pipes process instructions at  the same speed) 
are  comparable to those for  the 486, although  some instructions-notably MUL, the 
repeated  string  instructions,  and  some of the shifts and rotates-have gotten faster. 
My first thought  upon  hearing of the Pentium’s dual  pipes was to wonder how often 
the  prefetch queue stalls for lack  of instruction bytes,  given that  the  demand  for in- 
struction bytes can be twice that of the 486. The answer  is: rarely indeed,  and  then only 
because the  code is not in the  internal cache. The 486 has a single 8K cache  that stores 
both  code and data, and prefetching can stall if data  fetching doesn’t allow time for 
prefetching to occur (although this rarely happens in practice). 

The  Pentiurn, on the  other  hand,  has two separate 8K caches,  one for code and one 1 for  data, so codepreftches can never collide with  datafetches;  the prefetch queue 
can stall only when the code being fetched isn ’t in the internal code cache. 

(And yes, self-modifying code still  works; as with  all Pentium  changes,  the  dual caches 
introduce  no incompatibilities with 386/486 code.) Also, because the  code  and  data 
caches are  separate,  code  can’t  be driven out of the cache  in  a  tight  loop  that ac- 
cesses a lot of data,  unlike  the 486. In  addition,  the  Pentium  expands  the 486’s 32-byte 
prefetch queue  to 128 bytes. In  conjunction with the  branch prediction  feature (de- 
scribed next), which  allows the  Pentium to prefetch  properly at most  branches, this 
larger  prefetch queue means  that the Pentium’s two pipes  should  be  better  fed  than 
those of  any previous x86 processor. 

Crossing  Cache Lines 
There  are  three  other characteristics of the  Pentium  that make for  a  healthy supply 
of instruction bytes. One is that  the  Pentium  can  prefetch  instructions across cache 
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lines. Unlike the 486, where there is a 3-cycle penalty for branching  to  an instruction 
that spans a cache line, there’s no such penalty on  the  Pentium.  The second is that 
the  cache  line size (the  number of bytes fetched  from the external cache or main 
memory on a  cache miss) on  the  Pentium is 32 bytes,  twice the size  of the 486’s cache 
line, so a cache miss  causes a  longer run of instructions to be placed in the  cache 
than  on  the 486. The third is that the Pentium’s external bus is twice  as  wide  as the 
486’s, at 64  bits, and  runs twice  as fast, at 66  MHz, so the  Pentium can fetch both 
instruction and data bytes from  the  external cache four times as  fast  as the 486. 

Even  when  the  Pentium  is runningflat-out with  both pipes in use, it  can generally p consume only about twice  as many bytes  as the 486; so the ratio ofexternal memory 
bandwidth to processing power is much improved, although real-world  perfor- 
mance is heavily  dependent on  the size and speed ofthe external cache. 

The  upshot of  all this is that  at  the same  clock speed, with code  and  data that are 
mostly in the internal caches, the  Pentium maxes out somewhere around twice  as 
fast as a 486. (When the caches are missed a lot, the  Pentium can get as much as 
three to four times  faster, due to the  superior external bus and bigger caches.) Most 
of this won’t affect how  you program,  but it is useful to know that you don’t have to 
worry about instruction  fetching. It’s  also  useful  to  know the sizes  of the caches be- 
cause a high cache  hit  rate is crucial to Pentium  performance.  Cache misses are 
vastly  slower than  cache hits (anywhere from two to 50 or more times as  slow, de- 
pending  on  the  speed of the external  cache and  whether  the external cache misses 
as well), and  the  Pentium can’t use the V-pipe on  code that hasn’t already been 
executed  out of the cache at least once. This means  that  it is very important to get the 
working sets of critical loops to fit in  the  internal caches. 
One change in the  Pentium  that you definitely do have to worry about is superscalar 
execution. Utilization  of the V-pipe can range from near zero percent to  100 percent, 
depending  on  the  code  being executed, and careful rearrangement of code can 
have amazing effects.  Maxing out V-pipe use is not a trivial  task;  I’ll spend all  of the 
next  chapter discussing it so as  to  have time to cover it properly. In  the  meantime, 
two good  references  for superscalar programming  and  other  Pentium information 
are Intel’s Pentium Processor User’s Manual: V o l u ~ ~ ~ 3 :  Architecture and BopammingManual 
(ISBN  1-55512-195-0; Intel  order  number 241430-OOl), and  the article “Optimizing 
Pentium  Code” by  Mike Schmidt, in DX Dobb’sJoumal for January 1994. 

Cache Organization 
There  are two other interesting  changes  in the Pentium’s cache organization. First, 
the cache is two-way set-associative, whereas the 486 is four-way  set-associative. The 
details of  this don’t matter, but simply put, this, combined with the 32-byte cache 
line size, means  that  the  Pentium has somewhat coarser granularity in  both space 
and time than  the 486 in terms of packing bytes into  the cache,  although  the total 
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cache space is  now bigger. There’s  nothing you can do  about this, but  it may make it 
a little harder  to get  a  loop’s working set  into  the  cache.  Second,  the  internal  cache 
can now be configured (by the BIOS or OS; you won’t have to worry about  it)  for 
write-back rather  than write-through  operation.  This  means that writes to  the inter- 
nal data  cache  don’t necessarily get  propagated to the  external bus  until  other 
demands for  cache space force  the  data  out of the  cache, making repeated writes to 
memory variables such as loop  counters  cheaper on average than  on  the 486, al- 
though  not as cheap as registers. 
As a final note  on  Pentium  architecture  for this chapter,  the  pipeline stalls (what 
Intel calls  AGIs, for Address Generation Interlocks) that  I discussed earlier  in this book 
(see Chapter 12) are still present in the  Pentium.  In  fact, they’re there in  spades on 
the  Pentium;  the two pipelines  mean  that an AGI can now  slow down execution of 
an instruction that’s three instructions away from  the AGI (because four instructions 
can  execute in two cycles). So, for  example, the  code  sequence 

add  edx.4 ; U - p i p e  cycle 1 
mov ecx.[ebxl ; V - p i p e  cycle 1 
add ebx.4 ; U - p i p e  cycle 2 
mov  [edxl.ecx ; V - p i p e  cycle 3 

; due t o  A G I  
; ( w o u l d  have been 
; V - p i p e  cycle 2 )  

takes three cycles rather  than  the two cycles it should  take, because EDX was modi- 
fied on cycle 1 and  an  attempt was made to use it on cycle  two, before the AGI had 
time to clear-even though  there  are two instructions between the instructions  that 
are actually involved in the AGI. Rearranging the  code like 

mov ecx.[ebxl ; U - p i p e  cycle 1 
add ebx.4 ; V - p i p e  cycle 1 
mov [edx+4].ecx :U -p ipe  cycle 2 
add edx.4 ; V - p i p e  cycle 2 

makes it functionally identical, but cuts the cycles to 2-a 50 percent improvement. 
Clearly, avoiding AGIs becomes  a  much more challenging and rewarding game in  a 
superscalar world, one to which I’ll return in the  next  chapter. 

Faster  Addressing  and  More 
I’ll spend  the rest of this chapter covering a variety of Pentium  optimization tips. For 
starters, effective address calculations (that is, the  addition  and scaling required  to 
calculate a memory operand’s address, as for example in MOV EAX,[EBX+ECX*2+4]) 
never take any extra cycles on  the Pentium (other  than possibly an AGI cycle), even 
for  the use of base+index  addressing  (as  in MOV [ESI+EDI],EAX) or scaling (“2, “4, 
or “8, as in INC ARRAY[ESI*4]). On  the 486, both of the  latter cases cause a l-cycle 
penalty. The faster effective address calculations have the side effect of making LEA 
very attractive as an  arithmetic  instruction. LEA can add any two registers, one of 
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which  can  be  multiplied by one, two, four, or eight, plus a constant value, and can  store 
the result  in  any  register-all in one cycle, apart from AGIs.  Not  only that, but as  we’ll see 
in the  next chapter, LEA can go through  either pipe, whereas SHL can  only  go through 
the U-pipe, so LEA is often a  superior choice for multiplication by three, four, five, 
eight, or nine. (ADD is the best choice for multiplication by two.) If  you use LEA for 
arithmetic, do  remember that unlike ADD and SHL, it  doesn’t modifjr  any  flags. 
As on  the 486, memory operands  should  not cross  any more  alignment  boundaries 
than absolutely necessary.  Word operands  should be word-aligned, dword operands 
should be dword-aligned, and qword operands (double-precision variables) should 
be qword-aligned. Spanning  a  dword boundary, as in 

mov ebx.3 

mov eax.[ebxl 

costs three cycles. On  the  other  hand, as noted above, branch targets can now span 
cache lines with impunity, so on  the  Pentium there’s no good  argument for the para- 
graph  (that is,  16-byte) alignment  that  Intel  recommends  for 486 jump targets. The 
32-byte alignment  might  make  for slightly more efficient Pentium  cache usage, but 
would make  code  much bigger overall. 

p In fact, given that most jump targets aren ’t in performance-critical code, it’s  hard 
to  make  a  compelling  argument for aligning branch targets even  on the 486. I i l  
say that no  alignment  (except  possibly where you know a branch target lies in a 
key loop), or at most dword alignment f o r  the 386)  is plenq, and can  shrink  code 
size considerably. 

Instruction prefixes are awfully expensive; avoid them if you can.  (These  include size 
and addressing  prefixes, segment ovemdes, LOCK, and the OFH prefixes that extend 
the instruction set with instructions such as MOVSX. The exceptions are conditional 
jumps, a fast special case.) At a  minimum,  a prefix byte generally takes an extra cycle 
and shuts down the V-pipe for  that cycle,  effectively costing as much as two normal 
instructions (although prefix  cycles can  overlap with previous  multicycle  instructions, or 
AGIs,  as on  the 486). This means  that using 32-bit addressing or 32-bit operands in  a 
16-bit segment, or vice versa,  makes for bigger code that’s significantly  slower. So, for 
example, you should generally avoid  16-bit variables (shorts,  in C) in 32-bit code, 
although if using 32-bit variables where they’re not  needed makes your data space 
get a  lot bigger, you  may want to stick  with shorts, especially since longs use the  cache 
less  efficiently than shorts. The trade-off depends  on  the  amount of data and  the 
number of instructions  that  reference  that  data. (eight-bit variables, such as chars, 
have no extra overhead and can be used freely, although they may be less desirable 
than longs for compilers that  tend to promote variables to longs when  performing 
calculations.) Likewise,  you should if possible  avoid putting data in the  code seg- 
ment  and referring to it with a CS: prefix, or otherwise using segment overrides. 
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LOCK is a particularly costly instruction, especially on multiprocessor machines, be- 
cause it locks the  bus and requires  that  the hardware be brought  into  a synchronized 
state. The cost varies depending  on  the processor and system, but LOCK can make an 
INC [ r n e m ]  instruction (which normally takes 3 cycles) 5 ,  10, or  more cycles  slower. 
Most programmers will never use LOCK on purpose-it’s primarily an operating sys- 
tem  instruction-but there’s a  hidden  gotcha  here because the XCHG instruction 
always locks the bus when used with a memory operand. 

p XCHG is a tempting  instruction  that b often used  in  assembly  language; for example, 
exchanging with video memory is apopular way to read  and write VGA memory in 
a single instruction-but it b now a bad idea. As it happens, on the 486 and Pentium, 
using MOVs to read and write memory is fastel; anyway; and even on the 486, my 
measurements  indicate  a$ve-cycle tax for LOCK in  general,  and a nine-cycle  execu- 
tion time for XCHG with memory. Avoid XCHG with memory $you possibly can. 

As with the 486, don’t use ENTER or LEAVE, which are slower than  the equivalent 
discrete instructions. Also, start using TEST reg,reginstead of  AND ngregor OR regreg 
to test whether  a register is zero. The  reason, as  we’ll see in  Chapter 21, is that TEST, 
unlike AND and OR, never modifies the target register. Although  in this particular 
case AND and OR don’t modify the target  register  either,  the  Pentium  has no way of 
knowing that  ahead of time, so if  AND or OR goes through  the U-pipe, the  Pentium 
may have to  shut down the V-pipe for  a cycle to avoid potential dependencies  on  the 
result of the AND or OR. TEST suffers from no such potential  dependencies. 

Branch  Prediction 
One brand-spanking-new feature of the  Pentium is hunch prediction, whereby the 
Pentium tries to guess, based on past history, which way (or,  for  conditional  jumps, 
whether  or  not), your  code will jump at  each branch,  and prefetches  along the like- 
lier path. If the guess is correct,  the  branch or fall-through takes only 1 cycle“:! 
cycles  less than a branch  and  the same as a  fall-through on  the 486; if the guess is 
wrong, the  branch  or fall-through takes 4 or 5 cycles (if it executes  in the U- or V- 
pipe, respectively)-1 or 2 cycles more  than  a  branch  and 3 or 4 cycles more  than a 
fall-through on  the 486. 

p Branch prediction is unprecedented in the x86, and fundamentally alters the na- 
ture ofpedal-to-the-metal optimization, for the simple reason that it renders  unrolled 
loops largely obsolete. Rare indeed is the loop that can ’t afford to spare even 1 or 
0 (yes, zero!) cycles per iteration for loop counting, and that j .  how low the cost 
can go for maintaining a loop on the Pentium. 

Also, unrolled  loops  are bigger than  normal loops, so there  are  extra  (and  expen- 
sive) cache misses the first time through  the  loop if the  entire  loop isn’t already in 
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the cache; then, too, an  unrolled  loop will shoulder  other  code  out of the  internal 
and external caches. If in  a critical loop you absolutely need  the time taken by the 
loop control instructions, or if  you need an extra register that can be freed by unrolling 
a loop, then by all  means unroll the loop. Don’t expect the sort of speed-up you get from 
this on  the 486 or especially the 386, though,  and watch out  for  the  cache effects. 
You  may  well wonder exactly w h  the Pentium correctly  predicts branching. Alas, this  is 
one area that Intel has declined to document, beyond saying that you should endeavor 
to fall through  branches  when you  have a choice. That’s good advice on every other 
x86 processor, anyway, so it’s well worth following. Also, it’s a pretty safe bet  that in  a 
tight  loop, the  Pentium will start guessing the right branch direction at  the  bottom 
of the  loop pretty quickly, so you can treat  loop  branches as  one-cycle instructions. 
It’s an equally safe bet  that it’s a  bad move to have in a  loop  a  conditional branch  that 
goes both ways on a random basis;  it’s hard to see how the  Pentium  could consis- 
tently predict such branches correctly, and mispredicted branches are  more expensive 
than they might  appear to be. Not only does  a mispredicted branch take 4 or 5 
cycles, but  the  Pentium can potentially execute as  many  as 8 or 10 instructions  in 
that time-3 times as  many as the 486 can execute during its branch time-so cor- 
rect  branch  prediction  (or  eliminating  branch instructions, if possible) is very 
important in inner loops. Note  that on  the 486  you can count  on a branch to take 1 
cycle when  it falls through,  but  on  the  Pentium you can’t be sure  whether  it will take 
1 or either  4  or 5 cycles on any  given iteration. 

As things currently stand, branch prediction is an annoyance for assembly lan- p guage optimization because it’s impossible to be certain exactly how code will 
perform until you measure it, and even then it j. drflcult to be sure exactly where 
the cycles  went. All I can say is try to fall through  branches ifpossible, and try to 
be consistent in your branching ifnot. 

Miscellaneous Pentium Topics 
The  Pentium has all the instructions of the 486, plus a few  new ones. One much- 
needed instruction  that has finally made  it  into  the  instruction set is CPUID, which 
allows your code to determine what processor it’s running  on. CPUID is 15 years 
late, but  at least it’s  finally here.  Another new instruction is CMPXCHGSB, which 
does  a  compare  and  conditional  exchange  on  a qword. CMPXCHGSB doesn’t  seem 
to me to be a particularly useful instruction, but I’m sure  Intel wouldn’t have added 
it without a reason; if you  know  of a use for it, please pass it  along to me. 

486 versus Pentium Optimization 
Many Pentium optimizations help, or  at least don’t  hurt,  on  the 486.  Many, but  not 
all-and  many do hurt  on  the 386. As I discuss  various Pentium optimizations, I will 
attempt to note  the effects on  the 486  as  well, but  doing this in  complete detail 
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would double  the sizes  of these discussions and make them  hard  to follow. In gen- 
eral,  I’d  recommend reserving Pentium  optimization  for your most critical code, 
and even there, it’s a  good  idea to have at least two code  paths, one for the 386 and 
one  for  the  486/Pentium. It’s also a  good  idea  to time your code on a 486 before and 
after  Pentium-optimizing it, to make sure you haven’t hurt  performance  on what will 
be,  after all, by far the most important processor over the  next  couple of  years. 
With that  in  mind, is optimizing  for the  Pentium even worthwhile today? That de- 
pends  on your application and its market-but if  you want absolutely the best possible 
performance  for  your DOS and Windows apps on  the fastest hardware,  Pentium 
optimization can make your code scream. 

Going Superscalar 
In  the next chapter, we’ll  look into  the single  biggest element of Pentium performance, 
cranking up  the Pentium’s  second  execution  pipe.  This is the  area in which  com- 
piler  technology is most touted  for  the  Pentium,  the two thoughts  apparently  being 
that (1) most existing code is in C, so recompiling to use the  second  pipe  better is an 
automatic win, and (2) it’s so complicated to optimize  Pentium  code that only a 
compiler  can do it well. The first point is a  reasonable one,  but  it  does suffer from 
one flaw for  large  programs,  in  that  Pentium-optimized  code is larger than 486- or 
386-optimized code,  for reasons that will become apparent in the  next  chapter. Larger 
code  means more cache misses and  more page faults; and while  most  of the  code  in 
any program is not critical to  performance, compilers optimize code indiscriminately. 
The result is that  Pentium  compiler  optimization not only expands  code,  but  can  be 
less beneficial than  expected  or even slower in  some cases.  What  makes more sense 
is enabling  Pentium  optimization only for key code.  Better yet, you could  hand-tune 
the most important code-and  yes,  you can absolutely do a better  job with a small, 
critical loop  than any PC compiler I’ve ever seen,  or  expect  to see.  Sure, you keep 
hearing how great  each new compiler  generation is, and compilers certainly have 
improved; but they play  by the same rules we do,  and we’re more flexible and know 
more  about what we’re doing-and  now we have the wonderfully complex and pow- 
erful  Pentium  upon which to loose our carbon-based optimizers. 
A compiler  that  generates  better  code  than  a  good assembly programmer?  That’ll be 
the day. 
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