
chapter 2

a world apart

9.
1:i “ n.

:I; e!:” J

Nature of Assembly Language Optimization
f ‘ As I showed in thd:previous chapter, optimization is by no means always a matter of

“dropping into asse In fact, in performance tuning high-level language code,
assembly should be us d then only after you’ve made sure a badly chosen
or clumsily implemen m isn’t eating you alive. Certainly if you use assem-
bly at all, make absoldtely sure you use it right. The potential of assembly code to run
slowly is poorly unddstood by a lot of people, but that potential is great, especially in

ation, however, happens only at the assembly level, and it happens
amics that is totally different from that governing C/C++
be speaking of assembly-level optimization time and again
0, I think it will be helpful if you have a grasp of those

assembly specific dynamics.
As usual, the best way to wade in is to present a real-world example.

Instructions: The Individual versus the Collective
Some time ago, I was asked to work over a critical assembly subroutine in order to
make it run as fast as possible. The task of the subroutine was to construct a nibble
out of four bits read from different bytes, rotating and combining the bits so that
they ultimately ended up neatly aligned in bits 3-0 of a single byte. (In case you’re
curious, the object was to construct a 16-color pixel from bits scattered over 4 bytes.)

23

the unique nature of assembly languege optimization

I examined the subroutine line by line, saving a cycle here and a cycle there, until
the code truly seemed to be optimized. When I was done, the key part of the code
looked something like this:

LoopTop:
l o d s b ; g e t t h e n e x t b y t e t o e x t r a c t a b i t f r o m
and a1 , a h ; i s o l a t e t h e b i t we want
r o l a1 . c l ; r o t a t e t h e b i t i n t o t h e d e s i r e d p o s i t i o n
o r b l . a 1 : i n s e r t t h e b i t i n t o t h e f i n a l n i b b l e
d e c c x ; t h e n e x t b i t g o e s 1 p l a c e t o t h e r i g h t
d e c d x ; c o u n t down t h e n u m b e r o f b i t s
j n z L o o p T o p : p r o c e s s t h e n e x t b i t , i f any

Now, it’s hard to write code that’s much faster than seven instructions, only one of
which accesses memory, and most programmers would have called it a day at this
point. Still, something bothered me, so I spent a bit of time going over the code
again. Suddenly, the answer struck me-the code was rotating each bit into place
separately, so that a multibit rotation was being performed every time through the
loop, for a total of four separate time-consuming multibit rotations!

While the instructions themselves were individually optimized, the overall approach p did not make the bestpossible use of the instructions.

I changed the code to the following:

LoopTop:
1 odsb
a n d a l . a h
o r b l ,a1
r o l b l $ 1
dec dx
j n z LoopTop
r o l b l . c l

; g e t t h e n e x t b y t e t o e x t r a c t a b i t f r o m
: i s o l a t e t h e b i t we want
: i n s e r t t h e b i t i n t o t h e f i n a l n i b b l e
;make room f o r t h e n e x t b i t
; coun t down t h e number o f b i t s
: p r o c e s s t h e n e x t b i t , i f any
: r o t a t e a l l f o u r b i t s i n t o t h e i r f i n a l
: p o s i t i o n s a t t h e same t i m e

This moved the costly multibit rotation out of the loop so that it was performed just
once, rather than four times. While the code may not look much different from the
original, and in fact still contains exactly the same number of instructions, the per-
formance of the entire subroutine improved by about 10 percent from just this one
change. (Incidentally, that wasn’t the end of the optimization; I eliminated the DEC
andJNZ instructions by expanding the four iterations of the loop-but that’s a tale
for another chapter.)
The point is this: To write truly superior assembly programs, you need to know what
the various instructions do and which instructions execute fastest ... and more. You
must also learn to look at your programming problems from a variety of perspectives
so that you can put those fast instructions to work in the most effective ways.

24 Chapter 2

Assembly Is Fundamentally Different
Is it really so hard as all that to write good assembly code for the PC? Yes! Thanks to
the decidedly quirky nature of the x86 family CPUs, assembly language differs fun-
damentally from other languages, and is undeniably harder to work with. On the
other hand, the potential of assembly code is much greater than that of other lan-
guages, as well.
To understand why this is so, consider how a program gets written. A programmer
examines the requirements of an application, designs a solution at some level of
abstraction, and then makes that design come alive in a code implementation. If not
handled properly, the transformation that takes place between conception and imple-
mentation can reduce performance tremendously; for example, a programmer who
implements a routine to search a list of 100,000 sorted items with a linear rather
than binary search will end up with a disappointingly slow program.

Transformation Inefficiencies
No matter how well an implementation is derived from the corresponding design,
however, high-level languages like C/C++ and Pascal inevitably introduce additional
transformation inefficiencies, as shown in Figure 2.1.
The process of turning a design into executable code by way of a high-level language
involves two transformations: one performed by the programmer to generate source
code, and another performed by the compiler to turn source code into machine

1 Created by the programmer
(Transformation # 1)

High-Level Language

Compiled to machine
language by a high-level
language compiler
(Transformation #2)

Language Code

The high-level language transformation inefficiencies.
Figure 2.1

A World Apart 25

language instructions. Consequently, the machine language code generated by com-
pilers is usually less than optimal given the requirements of the original design.
High-level languages provide artificial environments that lend themselves relatively
well to human programming skills, in order to ease the transition from design to
implementation. The price for this ease of implementation is a considerable loss of
efficiency in transforming source code into machine language. This is particularly
true given that the x86 family in real and 16-bit protected mode, with its specialized
memory-addressing instructions and segmented memory architecture, does not lend
itself particularly well to compiler design. Even the 32-bit mode of the 386 and its
successors, with their more powerful addressing modes, offer fewer registers than
compilers would like.
Assembly, on the other hand, is simply a human-oriented representation of machine
language. As a result, assembly provides a diffkult programming environment-the
bare hardware and systems software of the computer-htprqperh constructed assembly
programs suffer no transformation loss, as shown in Figure 2.2.
Only one transformation is required when creating an assembler program, and that
single transformation is completely under the programmer’s control. Assemblers
perform no transformation from source code to machine language; instead, they
merely map assembler instructions to machine language instructions on a one-to-
one basis. As a result, the programmer is able to produce machine language code
that’s precisely tailored to the needs of each task a given application requires.

1 Created by the programmer
(Transformation # 1)

Assem bler I Source Code c
1 Assembled directly to machine

language (No Transformation)

Language Code

Properly constructed assembly programs sufer no transformation loss.
Figure 2.2

26 Chapter 2

The key, of course, is the programmer, since in assembly the programmer must es-
sentially perform the transformation from the application specification to machine
language entirely on his or her own. (The assembler merely handles the direct trans-
lation from assembly to machine language.)

Self-Reliance
The first part of assembly language optimization, then, is self-reliance. An assembler
is nothing more than a tool to let you design machine-language programs without
having to think in hexadecimal codes. S o assembly language programmers-unlike
all other programmers-must take full responsibility for the quality of their code.
Since assemblers provide little help at any level higher than the generation of ma-
chine language, the assembly programmer must be capable both of coding any
programming construct directly and of controlling the PC at the lowest practical
level-the operating system, the BIOS, even the hardware where necessary. High-
level languages handle most of this transparently to the programmer, but in assembly
everything is fair-and necessary-game, which brings us to another aspect of as-
sembly optimization: knowledge.

Knowledge
In the PC world, you can never have enough knowledge, and every item you add to
your store will make your programs better. Thorough familiarity with both the oper-
ating system APIs and BIOS interfaces is important; since those interfaces are
well-documented and reasonably straightforward, my advice is to get a good book or
two and bring yourself up to speed. Similarly, familiarity with the PC hardware is
required. While that topic covers a lot of ground-display adapters, keyboards, serial
ports, printer ports, timer and DMA channels, memory organization, and more-
most of the hardware is well-documented, and articles about programming major
hardware components appear frequently in the literature, so this sort of knowledge
can be acquired readily enough.
The single most critical aspect of the hardware, and the one about which it is hardest
to learn, is the CPU. The x86 family CPUs have a complex, irregular instruction set,
and, unlike most processors, they are neither straightforward nor well-documented
regarding true code performance. What’s more, assembly is so difficult to learn that
most articles and books that present assembly code settle for code that just works,
rather than code that pushes the CPU to its limits. In fact, since most articles and
books are written for inexperienced assembly programmers, there is very little infor-
mation of any sort available about how to generate high-quality assembly code for
the x86 family CPUs. As a result, knowledge about programming them effectively is
by far the hardest knowledge to gather. A good portion of this book is devoted to
seeking out such knowledge.

A World Apart 27

P Be forewarned, though: No matter how much you learn about programming the
PC in assembly, there 5 always more to discover.

The Flexible Mind
Is the never-ending collection of information all there is to the assembly optimization,
then? Hardly. Knowledge is simply a necessary base on which to build. Let’s take a
moment to examine the objectives of good assembly programming, and the remain-
der of the forces that act on assembly optimization will fall into place.
Basically, there are only two possible objectives to high-performance assembly pro-
gramming: Given the requirements of the application, keep to a minimum either the
number of processor cycles the program takes to run, or the number of bytes in the
program, or some combination of both. We’ll look at ways to achieve both objectives,
but we’ll more often be concerned with saving cycles than saving bytes, for the PC
generally offers relatively more memory than it does processing horsepower. In fact,
we’ll find that two-to-three times performance improvements over already tight assembly
code are often possible if we’re willing to spend additional bytes in order to save cycles.
It’s not always desirable to use such techniques to speed up code, due to the heavy
memory requirements-but it is almost always possible.

You will notice that my short list of objectives for high-performance assembly pro-
gramming does not include traditional objectives such as easy maintenance and speed
of development. Those are indeed important considerations-to persons and com-
panies that develop and distribute software. People who actually buy software, on the
other hand, care only about how well that software performs, not how it was devel-
oped nor how it is maintained. These days, developers spend so much time focusing
on such admittedly important issues as code maintainability and reusability, source
code control, choice of development environment, and the like that they often for-
get rule #1: From the user’s perspective, performance is fundamental.

Comment your code, design it carefully, and write non-time-critical portions in a P high-level language, if you wish-but when you write the portions that interact
with the user and/or affect response time, performance must be your paramount
objective, and assembly is the path to that goal.

Knowledge of the sort described earlier is absolutely essential to fulfilling either of
the objectives of assembly programming. What that knowledge doesn’t do by itself is
meet the need to write code that both performs to the requirements of the applica-
tion at hand and also operates as efficiently as possible in the PC environment.
Knowledge makes that possible, but your programming instincts make it happen.
And it is that intuitive, on-the-fly integration of a program specification and a sea of
facts about the PC that is the heart of the Zen-class assembly optimization.

28 Chapter 2

As with Zen of any sort, mastering that Zen of assembly language is more a matter of
learning than of being taught. You will have to find your own path of learning, although
I will start you on your way with this book. The subtle facts and examples I provide
will help you gain the necessary experience, but you must continue the journey on
your own. Each program you create will expand your programming horizons and
increase the options available to you in meeting the next challenge. The ability of
your mind to find surprising new and better ways to craft superior code from a con-
cept-the flexible mind, if you will-is the linchpin of good assembler code, and you
will develop this skill only by doing.
Never underestimate the importance of the flexible mind. Good assembly code is bet-
ter than good compiled code. Many people would have you believe otherwise, but
they’re wrong. That doesn’t mean that high-level languages are useless; far from it.
High-level languages are the best choice for the majority of programmers, and for the
bulk of the code of most applications. When the best code-the fastest or smallest code
possible-is needed, though, assembly is the only way to go.
Simple logic dictates that no compiler can know as much about what a piece of code
needs to do or adapt as well to those needs as the person who wrote the code. Given
that superior information and adaptability, an assembly language programmer can
generate better code than a compiler, all the more so given that compilers are con-
strained by the limitations of high-level languages and by the process of transformation
from high-level to machine language. Consequently, carefully optimized assembly is
notjust the language of choice but the only choice for the lpercent to 10 percent of
code-usually consisting of small, well-defined subroutines-that determines over-
all program performance, and it is the only choice for code that must be as compact
as possible, as well. In the run-of-the-mill, non-time-critical portions of your pro-
grams, it makes no sense to waste time and effort on writing optimized assembly
code-concentrate your efforts on loops and the like instead; but in those areas
where you need the finest code quality, accept no substitutes.
Note that I said that an assembly programmer can generate better code than a com-
piler, not will generate better code. While it is true that good assembly code is better
than good compiled code, it is also true that bad assembly code is often much worse
than bad compiled code; since the assembly programmer has so much control over
the program, he or she has virtually unlimited opportunities to waste cycles and bytes.
The sword cuts both ways, and good assembly code requires more, not less, forethought
and planning than good code written in a high-level language.
The gist of all this is simply that good assembly programming is done in the context
of a solid overall framework unique to each program, and the flexible mind is the
key to creating that framework and holding it together.

A World Apart 29

Where to Begin?
To summarize, the skill of assembly language optimization is a combination of knowl-
edge, perspective, and a way of thought that makes possible the genesis of absolutely
the fastest or the smallest code. With that in mind, what should the first step be?
Development of the flexible mind is an obvious step. Still, the flexible mind is no
better than the knowledge at its disposal. The first step in the journey toward master-
ing optimization at that exalted level, then, would seem to be learning how to learn.

30 Chapter 2

	next:
	home:
	previous:

