
chapter 21

unleashing the pentium's V-pipe



Ch 

& 

rill 
I 

Keeping Both  Pentium  Pipes  Full 
sted that we each draw the prettiest  picture we 

I won’t comment  on who won, except to note that 
ping toward a  moose with antlers  that  bear an un- 
ller beanie isn’t going to win me any scholarships 
ift. Anyway,  my drawing happened to feature the 
ed with “moose” and “Zeus”-hence the lightning; 
divulge), and she wanted  to  know if the moose was 

had to admit  that I didn’t know, so we went to the dictionary, 
use is a pale apple-green color. Then she brought 

trol Panel, pointed to the selection of predefined colors, and 
asked, ‘Which of those is chartreuse?”-and I realized that I still didn’t know. 
Some things can be described perfectly with  words, but others just have  to be experi- 
enced. Color is one such category, and  Pentium optimization is another. I’ve spent 
the last two chapters detailing the rules for  Pentium optimization, and I’ll spend half 
of  this one  doing so, as well. That’s good; without understanding  the fundamentals, 
we have no chance of optimizing well. It’s not  enough, though. We also need to look 
at a real-world example of Pentium optimization in action, and we’ll do that  later in 
this chapter; after which, you should go out  and  do some  Pentium optimization on 
your own. Optimization is one of those things that you can learn a lot about  from 
reading, but ultimately it has to sink into your pores as  you do it-especially Pentium 

399 



optimization because the  Pentium is perhaps  the most  complex  (and rewarding) 
chip to optimize for  that I’ve ever seen. 
In  the last chapter, we explored  the dual-execution-pipe nature of the  Pentium,  and 
learned which instructions  could pair (execute simultaneously) in which pipes. Now 
we’re  ready  to  look at AGIs and register  contention-two  hazards that can prevent other- 
wise properly  written code from taking  full  advantage  of the Pentiurn’s two pipes, and 
can thereby keep your code  from  pushing  the  Pentium to maximum  performance. 

Address  Generation  Interlocks 
The  Pentium is advertised as having a five-stage pipeline  for each of its execution 
units. All this means is that  at any given time, up to five instructions are in various 
stages  of execution in each  pipe; this overlapping of execution is done  for speed, so 
each  instruction  doesn’t have to wait until the previous one has finished. The only 
way that the Pentium’s pipelining directly affects the way you program is in the areas 
of  AGIs and register dependencies. 
AGIs are Address Generation Interloch, a fancy way of  saying that if a register is used to 
address memory, as  is EBX in this instruction 

mov  [ebxl.eax 

and  the value  of the register is not set  far enough  ahead for the  Pentium to perform 
the addressing calculations before the instruction needs the address, then the Pentium 
will stall the pipe in which the instruction is executing  until the value becomes avail- 
able and  the addressing calculations have been  performed. Remember, also, that 
instructions  execute in lockstep on  the  Pentium, so if one pipe stalls for  a cycle, 
making its instruction take one cycle longer, that  extends by one cycle the time until 
the  other pipe can begin its next instruction, as  well. 
The rule  for AGIs  is simple: If  you modify any part of a register during a cycle,  you 
cannot use that register to address memory during  either  that cycle or  the  next cycle. 
If  you  try to do this, the  Pentium will simply  stall the instruction  that tries to use that 
register to address memory  until two  cycles after the register was modified. This was 
true on  the 486 as  well, but  the Pentium’s new  twist  is that since more  than  one 
instruction can execute  in  a single cycle, an AGI can stall an instruction that’s  as 
many as three instructions away from  the  changing of the addressing register, as 
shown in Figure 21.1, and  an AGI can also cause a stall that costs  as many as three 
instructions, as  shown in Figure 21.2. This  means  that AGIs are  both  much easier to 
cause and potentially more expensive than  on  the 486, and you must keep a sharp 
eye out for  them.  It also means  that it’s often worth calculating a  memory pointer 
several instructions ahead of its actual use. Unfortunately, this tends to extend  the 
lifetimes of pointer registers to span  a  greater  number of instructions, making the 
Pentiurn’s relatively  small register set seem even  smaller. 

400 Chapter 21 



Instruction  Stream 

I I  Instruction execution in  the two pipes 

[ lockstep -Idle- execution I Cycle 1 [ AGI (EGl:kiified on I 
previous cycle] 

An AGI can stall up to three instructions later. 
Figure 2 1.1 

As an example of a  sort of AGI that's new to the  Pentium,  consider  the following test 
for  a NULL pointer, followed by the use of the  pointer if it's not NULL: 

push  ebx : U - p i p e   c y c l e  1 
mov e b x . C P t r 1  : V - p i p e   c y c l e  1 
and  ebx,ebx : U - p i p e   c y c l e  2 
j z  s h o r t   I s N u l l  : V - p i p e   c y c l e  2 
mov e a x . [ e b x l  : U - p i p e   c y c l e  3 A G I  s t a l l  
mov edx.Cebp-81 : V - p i p e   c y c l e  3 l o c k s t e p   i d l e  

: U - p i p e   c y c l e  4 mov e a x . [ e b x ]  
: V - p i p e   c y c l e  4 mov e d x , [ e b p - 8 ]  

This  commonplace  code loses a U-pipe cycle to the AGI caused by AND EBX,EBX, 
followed by the  attempt two instructions  later  to use EBX to  point  to memory. The 
code loses a V-pipe  cycle as well, because lockstep execution won't let  the  next V-pipe 

Unleashing the  Pentium's V-pipe 401 



Instruction  Stream 

ADD  EBX,EDX 
DEC  EAX 

~ 

~ "_ 

- 

- 

1 PUSH EBX I 
Instruction  execution in the two pipes 

U-pipe V-pi pe +I MOV ESI,[Ptr] I Cycle 1 Register contention -Idle- on ESI I 

An AGI can cost as many  as 3 cycles. 
Figure 2 1.2 

instruction  execute  until the  paired U-pipe instruction  that  suffered  the AGI fin- 
ishes. The solution is to use TEST EBX,EBX instead of AND; TEST can't modify 
EBX, so no AGI occurs. Sure, AND EBX,EBX doesn't modify EBX either,  but  the 
Pentium  doesn't know that, so it  has  to  insert the AGI. 
As on  the 486, you should  keep  a  careful eye out  for AGIs involving the stack pointer. 
Implicit  modifiers of  ESP, such as PUSH and POP, are special-cased so you don't 
have to worry about AGIs.  However,  if  you explicitly modify ESP  with this instruction 

sub esp.100h 

for  example,  or with the  popular 

mov esp.ebp 

402 Chapter 21 



you can then  get AGIs if you attempt to use ESP to address memory, either explicitly 
with instructions like this one 

mov eax.[esp+20h] 

or via PUSH, POP, or  other instructions  that implicitly use ESP  as an addressing 
register. 
On the 486, any instruction  that  had both a  constant value and  an addressing dis- 
placement, such as 

mov dword p t r  [ebp+16].1 

suffered  a 1-cycle penalty, taking a  total of 2 cycles. Such  instructions take only one 
cycle on  the  Pentium,  but they cannot pair, so they’re still the  most expensive sort of 
MOV.  Knowing this can  speed up something as simple as zeroing two memory  vari- 
ables, as in 

sub  eax.eax  ;U-p ipe 1 
; a n y   V - p i p e   p a i r a b l e  
; i n s t r u c t i o n   c a n  go h e r e ,  
; o r  SUB c o u l d   b e   i n   V - p i p e  

mov [MemVar l l .eax  ;U-p ipe 2 
mov CMemVar2l.eax ; V - p i p e  2 

which should never be slower and  should potentially be 0.5 cycles faster, and six 
bytes smaller than this sequence: 

mov CMemVarl l .0  :U-pipe 1 
mov [MemVarEl.O  :U-pipe 2 

Note, however, that my experiments  thus  far  indicate  that  the two writes in the first 
case don’t actually pair (possibly because the memory variables have never been 
read  into  the  internal  cache), so you might want to insert  an instruction between the 
two MOVs-and,  of course, this is yet another reason why you should always measure 
your code’s actual  performance. 

Register Contention 
Finally, we come to  the last major component of superscalar  optimization: register 
contention.  The basic premise here is simple: You can’t use the same register in two 
inherently  sequential ways in  a single cycle. For example, you can’t  execute 

i n c   e a x   : U - p i p e   c y c l e  1 
: V - p i p e   i d l e   c y c l e  1 
: due t o  dependency 

and  ebx .eax   ;U-p ipe   cyc le  2 

in  a single cycle; AND EBX,EAX can’t  execute  until the value in EAX  is known, and 
that can’t happen  until INC EAX is done. Consequently, the V-pipe idles while INC 

Unleashing  the Pentium‘s V-pipe 403 



EAX executes in the U-pipe. We  saw this in the last chapter when we discussed  split- 
ting instructions  into simple instructions, and  it is  by far the most  common  sort of 
register contention, known as  read-after-write register contention. Read-after-write 
register contention is the primary reason we have to interleave independent opera- 
tions in order to get  maximum V-pipe usage. 
The  other sort of register contention is known as  write-after-write.  Write-after-write 
register contention  happens when two instructions try to write to the same register 
on  the same cycle.  While that may not seem like a particularly useful operation in 
general,  it can happen when subregisters are  being set, as in the following 

sub   eax .eax   ;U -p ipe   cyc le  1 
; V - p i p e   i d l e   c y c l e  1 
; due t o   r e g i s t e r   c o n t e n t i o n  

mov a l , [ V a r l   ; U - p i p e   c y c l e  2 

where an  attempt is made to set both EAX and its AL subregister on  the same cycle. 
Write-after-write contention implies that the two instructions comprising the above 
substitute for MOVZX should have at least one  unrelated instruction between them 
when SUB EAX,EAX executes in the V-pipe. 

Exceptions to Register Contention 
Intel has special-cased some very useful exceptions to register contention. Happily, 
write-after-read operations do not cause contention. Such  operations, as in 

mov e a x , e d x   ; U - p i p e   c y c l e  1 
sub   edx .edxX   ;V -p ipe   cyc le  1 

are free of charge. 
Also, stack-related instructions  that modify ESP only  implicitly (without ESP as part 
of any explicit operand)  do  not cause AGIs, and  neither  do they cause register con- 
tention with other instructions that use ESP only  implicitly; such instructions  include 
PUSH reg/immed, POP reg, and CALL. (However, these instructions do cause regis- 
ter contention  on ESP-but not AGIs-with instructions  that use ESP  explicitly, such 
as MOV EAX,[ESP+4].) Without this  special  case, the following sequence would hardly 
use the V-pipe at all: 

mov eax,[MemVar] ; U - p i p e   c y c l e  1 
p u s h   e s i  ; V - p i p e   c y c l e  1 
push  eax ; U - p i p e   c y c l e  2 
p u s h   e d i  ; V - p i p e   c y c l e  2 
push  ebx ; U - p i p e   c y c l e  3 
c a l l   F o o T i l d e  ; V - p i p e   c y c l e  3 

But in fact, all the instructions pair,  even though ESP is modified five times in the 
space of six instructions. 
The final register-contention special case  is both  remarkable  and remarkably impor- 
tant. There is  exactly one sort of instruction that can pair only in the V-pipe: branches. 

404 Chapter 21 



Any near call or conditional or  unconditional  near  jump can  execute  in  the V-pipe 
paired with any pairable U-pipe instruction, as illustrated by this sequence: 

LoopTop: 
mov [ e s i l . e a x  ; U - p i p e   c y c l e  1 
add e s i . 4  ; V - p i p e   c y c l e  1 
dec  ecx ; U - p i p e   c y c l e  2 
j n z  LoopTop ; V - p i p e   c y c l e  2 

Branches  can’t  pair in the U-pipe; a branch  that executes in  the U-pipe runs  alone, 
with the V-pipe idle. If a call orjump is correctly predicted by the Pentium’s branch 
prediction circuitry (as discussed in the last chapter), it executes  in  a single cycle, 
pairing if it runs  in  the V-pipe; if mispredicted,  conditional jumps take 4 cycles in the 
U-pipe and 5 cycles in the V-pipe, and mispredicted calls and  unconditional  jumps 
take 3 cycles in either pipe.  Note  that RET can’t pair. 

Who‘s in First? 
One of the trickiest things about superscalar  optimization is that  a given instruction 
stream  can  execute at a  different  speed  depending  on  the  pipe  where  it starts execu- 
tion, because which instruction goes through  the U-pipe first determines which  of 
the following instructions will be  able  to pair. If we take the last example and  add 
one  more  instruction,  the  other instructions will go  through  different pipes  than 
previously, and cause the  loop as a whole to take 50 percent longer, even though we 
only added 25 percent  more cycles: 

LoopTop: 
i n c  edx ; & p i p e   c y c l e  1 
rnov [ e s i ] . e a x  ; V - p i p e   c y c l e  1 
add   es i   . 4  ; U - p i p e   c y c l e  2 
dec  ecx ; V - p i p e   c y c l e  2 
j n z  LoopTop ; U - p i p e   c y c l e  3 

; V - p i p e   i d l e   c y c l e  3 
; because JNZ c a n ’ t  
; p a i r   i n  t h e  U - p i p e  

It’s actually not  hard to figure out which instructions  go through which pipes; just 
back up until you find an instruction that can’t pair or can  only go through  the U-pipe, 
and work forward from  there, given the knowledge that  that  instruction  executes  in 
the U-pipe. The easiest thing  to look for is branches. All branch  target  instructions 
execute  in  the U-pipe, as do all instructions  after  conditional  branches  that fall 
through. Instructions with prefix bytes are generally good U-pipe  markers,  although 
they’re expensive instructions  that  should be avoided whenever possible, and have 
at least one  aberration with regard  to  pipe usage, as discussed below. Shifts, rotates, 
ADC, SBB, and all other instructions not listed in Table 20.1 in the last chapter  are 
likewise U-pipe markers. 

Unleashing the  Pentium‘s V-pipe 405 



Pentium Optimization Action 
Now, let’s  take a look at  one of the simplest, tightest pieces of code imaginable, and 
see what our new Pentium perspective reveals.  Listing 21.1 shows a loop  implement- 
ing the TCP/IP checksum, a 16-bit checksum  that wraps carries around to the low 
bit so that the result is endian-independent. This makes it easy to perform checksums 
on blocks  of data regardless of the  endian characteristics of the machines on which 
those blocks are  generated  and received. (Thanks to fellow performance  enthusiast 
Terje Mathisen for suggesting this checksum as fertile ground for  Pentium optimiza- 
tion,  in the ibm.pc/fast.code forum  on Bix.) The  loop in Listing 21.1 consists of 
exactly  five instructions; it’s hard to imagine that there’s a  lot of performance to be 
wrung  from this snippet,  right? 

LISTING 2 1.1 12 1 - 1 .ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t   E S I ,   o f   l e n g t h  E C X  words.  
: Returns  checksum i n  A X .  
: ECX and  ESI   dest royed.  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0 .  
: N o t e   t h a t   t i m i n g   i n d i c a t e s   t h a t   t h e   p i p e   s e q u e n c e   a n d  
: c y c l e   c o u n t s  shown  (based  on  documented  execut ion  ru les)  
: d i f f e r   f r o m   t h e   a c t u a l   e x e c u t i o n   s e q u e n c e   a n d   c y c l e   c o u n t s :  
: t h i s   l o o p   h a s   b e e n   m e a s u r e d   t o   e x e c u t e   i n  5 c y c l e s :   a p p a r e n t l y ,  
: t h e   1 s t   h a l f   o f  ADD somehow p a i r s   w i t h   t h e   p r e f i x   b y t e ,   o r   t h e  
: r e f i x   b y t e   g e t s   e x e c u t e d   a h e a d   o f   t i m e .  

s u b   a x . a x   : i n i t i a l i z e   t h e   c h e c k s u m  

c k l o o p :  
add  ax ,   [es i  1 : c y c l e  1 U - p i p e   p r e f i x   b y t e  

: c y c l e  1 V - p i p e   i d l e   ( n o   p a i r i n g   w / p r e f i x )  
: c y c l e  2 U - p i p e   1 s t   h a l f   o f  ADD 
: c y c l e  2 V - p i p e   i d l e   ( r e g i s t e r   c o n t e n t i o n )  
: c y c l e  3 U - p i p e   2 n d   h a l f   o f  ADD 
: c y c l e  3 V - p i p e   i d l e   ( r e g i s t e r   c o n t e n t i o n )  

: c y c l e  4 V - p i p e   i d l e   ( n o   p a i r i n g   w / p r e f i x )  
: c y c l e  5 U - p i p e  ADC AX.0 

adc   ax .0   ; cyc le  4 U - p i p e   p r e f i x   b y t e  

a d d   e s i  . 2  ; c y c l e  5 V - p i p e  
dec   ecx  ; c y c l e  6 U - p i p e  
j n z   c k l o o p  : c y c l e  6 V - p i p e  

Wrong, wrong, wrong! As detailed in Listing 21 . l ,  this loop  should take 6 cycles per 
checksummed  word in 32-bit protected  mode,  a ridiculously high number  for  the 
Pentium. (You’ll see why I say “should take,” not “takes,” shortly.) We should lose 2 
cycles in each  pipe to the two size prefixes (because the ADDS are 16-bit operations 
in  a 32-bit segment),  and  another 2 cycles because of register contention that arises 
when ADC A X , O  has to wait for the result of ADD AX,[ESI]. Then, too, even though 
DEC and JNZ can pair and  the  branch prediction  for JNZ is presumably correct 
virtually  all the time, they do take a full cycle, and maybe we can do  something  about 
that as  well. 

406 Chapter 21 



The first thing  to do is to time the  code  in Listing 21.1 to verify our analysis. When I 
unleashed  the Zen timer on Listing 21.1, I found, to my surprise, that  the  code actu- 
ally takes only five  cycles per  checksum word  processed,  not six. A little  more 
experimentation revealed that  adding a size prefix to the two-cycle ADD EAX,[ESI] 
instruction  doesn’t cost anything, certainly not  the  one full cycle in  each  pipe  that  a 
prefix is supposed  to take. More experimentation showed that  prefix bytes do cost 
the  documented  extra cycle  when used with one -cycle instructions such as MOV. At 
this point, my preliminary  conclusion is that prefixes can  pair with the first cycle  of 
at least some multiple-cycle instructions.  Determining exactly why this happens will 
take further research on my part,  but  the most important conclusion is that you must 
measure your code! 
The first, obvious thing we can do to Listing 21.1 is change ADC A X , O  to ADC E A X , O ,  
eliminating  a  prefix byte and saving a full cycle. Now we’re down from five to  four 
cycles.  What next? 
Listing 21.2 shows one  interesting alternative  that  doesn’t really  buy  us anything. 
Here, we’ve eliminated all  size prefixes by doing byte-sized MOVs and ADDS, but 
because the size prefix on ADD AX,[ESI], for whatever reason,  didn’t cost anything 
in Listing 21.1, our efforts are  to  no avail-Listing 21.2 still takes 4 cycles per 
checksummed word. What’s worth  noting  about Listing 21.2 is the  extent  to which 
the  code is broken  into simple instructions and  reordered so as to avoid  size pre- 
fixes, register contention, AGIs, and  data  bank conflicts (the  latter because both 
[ESI] and [ESI+l] are in the same cache  data  bank, as discussed in the last chapter). 

LISTING 2 1.2  12 1 -2.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t  E S I .  o f   l e n g t h  E C X  words.  
: Returns  checksum i n  A X .  
: H i g h   w o r d   o f  E A X .  O X ,  E C X  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0. 

sub eax,   eax : i n i t i a l i z e   t h e  checksum 
mov d x . [ e s i l  : f i r s t  word t o  checksum 
dec  ecx ; w e ’ l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
j z  s h o r t   c k l o o p e n d  : o n l y  1 checksum t o  do 
a d d   e s i . 2  : p o i n t   t o   t h e   n e x t   w o r d   t o   c h e c k s u m  

c k l o o p :  
add 
mov 
adc 
mov 
adc 
add 
dec 
j nz  

a1 . d l  
d l  , [ e s i  1 
ah.dh 
d h . [ e s i + l l  
eax.O 
e s i  ,2  
ecx  
Ckl  O O D  

: c y c l e  1 U - p i p e  
: c y c l e  1 V - p i p e  
: c y c l e  2 U - p i p e  
: c y c l e  2 V - p i p e  
: c y c l e  3 U - p i p e  
: c y c l e  3 V - p i p e  
: c y c l e  4 U - p i p e  
: c y c l e  4 V - p i p e  

ck loopend:  
add  ax.dx  :checksum  the l a s t  word 
adc  eax.O 

Unleashing  the Pentium’s V-pipe 407 



Listing 21.3 is a more sophisticated attempt to speed up  the checksum calculation. 
Here we see a hallmark of Pentium optimization: two operations (the checksumming 
of the  current  and  next pair of words) interleaved together to allow both pipes to 
run  at  near maximum capacity. Another hallmark that's apparent in Listing 21.3 is 
that Pentium-optimized code  tends to use more registers and require  more instruc- 
tions than 486-optimized code. Again, note  the careful mixing of  byte-sized reads to 
avoid  AGIs, register contention,  and  cache  bank collisions, in  particular the way in 
which the byte reads of memory are interspersed with the additions to  avoid register 
contention,  and  the  placement of ADD ESI,4 to  avoid an AGI. 

LISTING 2 1.3 12 1 -3.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t  E S I .  o f   l e n g t h  ECX words. 
; Returns  checksum i n  A X .  
: H i g h   w o r d   o f  EAX.  B X .   E D X .   E C X  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   l e n g t h  > 0 .  

sub 
sub 
s h r  
j n c  
mov 
j z  
add 

c k l o o p s e t u p :  
mov 
mov 
dec 
j z  

c k l o o p :  
mov 
add 
s h l  

o r  
mov 
add 
mov 
adc 
mov 
dec 
j n z  

ck loopend:  
mov 

eax,  eax : i n i t i a l i z e   t h e  checksum 
edx.  edx ; p r e p a r e   f o r   l a t e r  ORing 
ecx ,  1 ; w e l l  1 do   two   words   pe r   l oop  
s h o r t   c k l o o p s e t u p  ;even  number o f   w o r d s  
a x ,   [ e s i  1 :do  the  odd  word 
s h o r t   c k l o o p d o n e  :no more  words t o  checksum 
e s i  .2 : p o i n t   t o   t h e   n e x t   w o r d  

d x ,   [ e s i  1 : l o a d   m o s t   o f   1 s t   w o r d   t o  
b l   . [ e s i + 2 1  : checksum ( l a s t   b y t e   l o a d e d   i n   l o o p )  
ecx  :any  more  dwords t o  checksum? 

s h o r t   c k l o o p e n d  ;no 

bh . [es i+31  
e s i  ,4  
ebx.16 

ebx,  edx 
d l ,   [ e s i  1 
eax.ebx 
b l  , [es i+21  
eax.0 
d h . [ e s i + l l  
ecx 
c k l   o o p  

bh . [es i+31  
add ax.dx 
adc ax.bx 
adc ax.0 

mov edx.eax 
shr   edx .16  
add  ax.dx 
adc  eax.O 

ck loopdone:  

: c y c l e  1 U - p i p e  
; c y c l e  1 V - p i p e  
; c y c l e  2 U - p i p e  
: c y c l e  2 V - p i p e   i d l e  
: ( r e g i s t e r   c o n t e n t i o n )  
; c y c l e  3 U - p i p e  
; c y c l e  3 V -p ipe  
: c y c l e  4 U - p i p e  
: c y c l e  4 V - p i p e  
: c y c l e  5 U - p i p e  
; c y c l e  5 V -p ipe  
; c y c l e  6 U - p i p e  
: c y c l e  6 V - p i p e  

: c h e c k s u m   t h e   l a s t   d w o r d  

:compress   the   32-b i t   checksum 
: i n t o  a 1 6 - b i t  checksum 

408 Chapter 21 



The checksum loop in Listing 21.3 takes longer  than  the  loop  in Listing 21.2, at 6 
cycles  versus 4 cycles for Listing 21.2-but Listing 21.3 does two checksum opera- 
tions in  those 6 cycles, so we’ve cut  the time per checksum addition  from 4 to 3 
cycles. You might  think  that this small an  improvement  doesn’tjustify the  additional 
complexity of Listing 21.3, but it is a  one-third  speedup, well worth it if this is a 
critical loop-and, in general, if it isn’t critical, there’s no  point in  hand-tuning it. 
That’s why I haven’t bothered  to try to  optimize the non-inner-loop  code in Listing 
21.3; it’s only executed  once  per  checksum, so it’s unlikely that  a cycle or two saved 
there would  make any real-world difference. 
Listing 21.3 could be made  a bit faster yet  with some  loop  unrolling, but  that would 
make the  code  quite  a bit more complex  for relatively little return. Instead, why not 
make the  code  more  complex  and  get  a  bigreturn? Listing 21.4 does exactly that by 
loading  one dword at  a time to eliminate  both the word prefix of Listing 21.1 and 
the  multiple byte-sized accesses of Listing 21.3. An obvious drawback to this is the 
considerable complexity needed to ensure  that  the dword  accesses are dword-aligned 
(remember  that  unaligned dword  accesses cost three cycles each),  and to handle 
buffer  lengths  that  aren’t dword multiples. I’ve handled these problems by requiring 
that  the  buffer  be dword-aligned and a dword multiple  in  length, which  is  of course 
not always the case in the real world. However, the  point of these listings is to illus- 
trate  Pentium optimization-dword  issues, being  non-inner-loop stuff, are solvable 
details that  aren’t  germane to the main focus. In any case, the complexity and as- 
sumptions  are well justified by the  performance of this code: three cycles per  loop, 
or 1.5 cycles per checksummed word, more  than  three times the  speed of the origi- 
nal code. Again, note  that  the actual order in which the instructions are  arranged is 
dictated by the various optimization  hazards of the Pentium. 

LISTING 2 1.4 12 1 -4.ASM 
: C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
: s t a r t i n g   a t   E S I .   o f   l e n g t h  ECX words.  
: Returns  checksum i n  A X .  
; H i g h   w o r d   o f  E A X .  E C X .  E O X .  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
: Assumes b u f f e r   s t a r t s  on a dword  boundary,  i s  a d w o r d   m u l t i p l e  
: i n  l e n g t h .   a n d   l e n g t h  > 0.  

sub eax.eax ; i n i t i a l i z e   t h e  checksum 
s h r   e c x . 1  : w e ’ l l  do   two  words   per   loop  
mov edx,  Cesi  1 : p r e l o a d   t h e   f i r s t   d w o r d  
add   es i  .4  ; p o i n t   t o   t h e   n e x t   d w o r d  
dec   ecx  : w e ’ l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
j z  s h o r t   c k l o o p e n d  : o n l y  1 checksum t o  do 

c k l o o p :  
add  eax.edx : c y c l e  1 U - p i p e  
mov edx,  Cesi  1 ; c y c l e  1 V - p i p e  
adc  eax.O ; c y c l e  2 U - p i p e  
add   es i  ,4 : c y c l e  2 V - p i p e  
dec  ecx : c y c l e  3 U - p i p e  
j n z  c k l o o p  ; c y c l e  3 V - p i p e  

Unleashing the  Pentium‘s V-pipe 409 



ck loopend:  
add  eax.edx 
adc  eax.O 
mov edx,  eax 
shr   edx.16 
add  ax.dx 
adc  eax.0 

: c h e c k s u m   t h e   l a s t   d w o r d  

;compress   the   32-b i t   checksum 
: i n t o  a   1 6 - b i t   c h e c k s u m  

Listing 21.5 improves upon Listing 21.4 by processing 2 dwords per  loop,  thereby 
bringing  the time per  checksummed word down to exactly 1 cycle. Listing 21.5 basi- 
cally does nothing  but  unroll Listing 21.4's loop  one time,  demonstrating  that  the 
venerable  optimization  technique of loop  unrolling still has some life left  in it  on  the 
Pentium.  The cost for  this is,  as usual,  increased  code size and complexity, and  the 
use of more  registers. 

LISTING  21.5  121 -5.ASM 
; C a l c u l a t e s   T C P / I P   ( 1 6 - b i t   c a r r y - w r a p p i n g )   c h e c k s u m   f o r   b u f f e r  
; s t a r t i n g   a t  E S I .  o f   l e n g t h  E C X  words. 
: Returns  checksum i n  A X .  
: H i g h   w o r d   o f  EAX.  EBX. ECX.  E D X ,  and E S I  d e s t r o y e d .  
: All c y c l e   c o u n t s  assume 3 2 - b i t   p r o t e c t e d  mode. 
; Assumes b u f f e r   s t a r t s  on a  dword  boundary,  i s  a   d w o r d   m u l t i p l e  
; i n   l e n g t h ,   a n d   l e n g t h  > 0.  

sub 
s h r  
j n c  
mov 
j z  
add 

noodddword: 
mov 
mov 
dec 
j z  
add 

c k l o o p :  
add 
mov 
adc 
mov 
adc 
add 
dec 
j nz 

ck loopend :  
add 
adc 
adc 

ck loopdone:  
mov 
s h r  
add 
adc 

eax,  eax ; i n i t i a l i z e   t h e  checksum 
ecx ,2 : w e ' l l  do   two   dwords   pe r   l oop  
shor t   noodddword  ; i s   t h e r e  an odd  dword i n   b u f f e r ?  
eax.  [ e s i  1 ;checksum  the  odd  dword 
s h o r t   c k l o o p d o n e  ; n o .  done 
e s i  .4 ; p o i n t   t o   t h e   n e x t   d w o r d  

edx.  Cesi 1 ; p r e l o a d   t h e   f i r s t   d w o r d  
ebx . [es i+4 ]  : p re load   t he   second   dword  
ecx ; w e ' l l  do 1 c h e c k s u m   o u t s i d e   t h e   l o o p  
s h o r t   c k l o o p e n d  ; o n l y  1 checksum t o  do 
e s i  .8 ; p o i n t   t o   t h e   n e x t   d w o r d  

eax , edx 
e d x .   [ e s i  1 
eax.ebx 
ebx .   [es i+41 
eax,  0 
e s i  .8 
ecx 
c k l  oop 

; c y c l e  1 U - p i p e  
: c y c l e  1 V - p i p e  
: c y c l e  2 U - p i p e  
; c y c l e  2 V - p i p e  
; c y c l e   3   U - p i p e  
: c y c l e   3   V - p i p e  
; c y c l e   4   U - p i p e  
: c y c l e   4   V - p i p e  

eax ,   edx   ; checksum  the   l as t   two   dwords  
eax , ebx 
eax.O 

edx ,   eax   : compress   t he   32 -b i t   checksum 
edx,   16 ; i n t o  a   1 6 - b i t   c h e c k s u m  
ax  .dx 
eax,  0 

41 0 Chapter 21 



Listing 21.5 is undeniably  intricate  code, and  not  the  sort of thing  one would choose 
to write as a  matter of course. On  the  other  hand, it’s five times as fast  as the tight, 
seemingly-speedy loop in Listing 21.1 (and six times as  fast  as Listing 21.1  would 
have been if the prefix byte had behaved  as expected). That’s an awful lot of speed to 
wring out of a five-instruction loop,  and  the TCP/IP checksum is, in  fact,  used by 
network software, an area in which a five-times speedup might make a significant 
difference  in overall system performance. 
I don’t claim that Listing 21.5 is the fastest possible way to do a  TCP/IP checksum on 
a  Pentium; in fact, it isn’t. Unrolling the  loop  one  more time,  together with a trick of 
Terje’s that uses LEA to advance ESI (neither LEA nor DEC affects the carry flag, 
allowing  Terje to add  the carry from  the previous loop iteration into  the  next iteration’s 
checksum via ADC), produces  a version that’s  a full 33 percent faster. Nonetheless, 
Listings 21.1 through 21.5 illustrate many  of the  techniques  and considerations in 
Pentium  optimization.  Hand-optimization  for  the  Pentium isn’t simple, and requires 
careful measurement  to  check  the efficacy  of your optimizations, so reserve it  for 
when  you  really,  really need it-but when  you need it, you need it bud. 

A Quick Note on the 386 and 486 
I’ve mentioned  that Pentium-optimized code  does  fine on the 486, but  not always so 
well on the 386. On a 486, Listing 21.1 runs  at 9 cycles per checksummed  word, and 
Listing 21.5 runs  at 2.5  cycles per checksummed  word,  a  healthy 3.6-times speedup. 
On a 386, Listing 21.1 runs  at 22 cycles per word; Listing 21.5 runs  at 7 cycles per 
word,  a 3.1-times speedup. As is often the case, Pentium  optimization  helped the 
other processors, but  not as much as it helped  the  Pentium,  and less on  the 386 than 
on the 486. 

Unleashing  the Pentium’s V-pipe 41 1 


	next: 
	home: 
	previous: 


