
chapter 23

bones and sinew

q,Heart of Standard PC Graphics
The VGA is un ry of computer graphics, for it is by far the most

e closest we may ever come to a linguaj-anca of
computer graphics. standard has even come close to the 50,000,000
or so VGAs in use t Ily every PC compatible sold today has full VGA
compatibility built iq*. There are, of course, a variety of graphics accelerators that
outperform the sta6dard VGA, and indeed, it is becoming hard to find a plain va-

t there is no standard for accelerators, and every accelerator

t if you write your programs for the VGA, you’ll have the
for your software. In order for graphics-based software to
st perform well. Wringing the best performance from the

VGA is no simple task, and it’s impossible unless you really understand how the VGA
works-unless you have the internals down cold. This book is about PC graphics at
many levels, but high performance is the foundation for all that is to come, so it is
with the inner workings of the VGA that we will begin our exploration of PC graphics.
The first eight chapters of Part I1 is a guided tour of the heart of the VGA, after
you’ve absorbed what we’ll cover in this and the next seven chapters, you’ll have the
foundation for understanding just about everything the VGA can do, including the
fabled Mode X and more. As you read through these first chapters, please keep in
mind that the really exciting stuff-animation, 3-D, blurry-fast lines and circles and

VGA at its core.

425

polygons-has to wait until we have the fundamentals out of the way. So hold on and
follow along, and before you know it the fireworks will be well underway.
We’ll start our exploration with a quick overview of the VGA, and then we’ll dive
right in and get a taste of what the VGA can do.

The VGA
The VGA is the baseline adapter for modern IBM PC compatibles, present in virtu-
ally every PC sold today or in the last several years. (Note that the VGA is often
nothing more than a chip on a motherboard, with some memory, a DAC, and maybe
a couple of glue chips; nonetheless, I’ll refer to it as an adapter from now on for
simplicity.) It guarantees that every PC is capable of documented resolutions up to
640x480 (with 16 possible colors per pixel) and 320x200 (with 256 colors per pixel),
as well as undocumented-but nonetheless thoroughly standard-resolutions up to
360x480 in 256-color mode, as we’ll see in Chapters 31-34 and 4’7-49. In order for a
video adapter to claim VGA compatibility, it must support all the features and code
discussed in this book (with a very few minor exceptions that I’ll note)-and my
experience is that just about 100 percent of the video hardware currently shipping
or shipped since 1990 is in fact VGA compatible. Therefore, VGA code will run on
nearly all of the 50,000,000 or so PC compatibles out there, with the exceptions
being almost entirely obsolete machines from the 1980s. This makes good VGA code
and VGA programming expertise valuable commodities indeed.
Right off the bat, I’d like to make one thing perfectly clear: The VGA is hard-
sometimes very hard-to program for good performance. Hard, but not
impossible-and that’s why I like this odd board. It’s a throwback to an earlier gen-
eration of micros, when inventive coding and a solid understanding of the hardware
were the best tools for improving performance. Increasingly, faster processors and
powerful coprocessors are seen as the solution to the sluggish software produced by
high-level languages and layers of interface and driver code, and that’s surely a valid
approach. However, there are tens of millions of VGAs installed right now, in ma-
chines ranging from &MHz 286s to 90-MHz Pentiums. What’s more, because the
VGAs are generally 8- or at best 16-bit devices, and because of display memory wait
states, a faster processor isn’t as much of a help as you’d expect. The upshot is that
only a seasoned performance programmer who understands the VGA through and
through can drive the board to its fullest potential.
Throughout this book, I’ll explore the VGA by selecting a specific algorithm or fea-
ture and implementing code to support it on the VGA, examining aspects of the
VGA architecture as they become relevant. You’ll get to see VGA features in context,
where they are more comprehensible than in IBM’s somewhat arcane documenta-
tion, and you’ll get working code to use or to modify to meet your needs.
The prime directive of VGA programming is that there’s rarely just one way to pro-
gram the VGA for a given purpose. Once you understand the tools the VGA provides,

426 Chapter 23

you’ll be able to combine them to generate the particular synergy your application
needs. My VGA routines are not intended to be taken as gospel, or to show “best”
implementations, but rather to start you down the road to understanding the VGA.
Let’s begin.

An Introduction to VGA Programming
Most discussions of the VGA start out with a traditional “Here’s a block diagram of
the VGA” approach, with lists of registers and statistics. I’ll get to that eventually, but
you can find it in IBM’s VGA documentation and several other books. Besides, it’s
numbing to read specifications and explanations, and the VGA is an exciting adapter,
the kind that makes you want to get your hands dirty probing under the hood, to
write some nifty code just to see what the board can do. What’s more, the best way to
understand the VGA is to see it work, so let’s jump right into a sample of the VGA in
action, getting a feel for the VGA’s architecture in the process,
Listing 23.1 is a sample VGA program that pans around an animated 16-color me-
dium-resolution (640x350) playfield. There’s a lot packed into this code; I’m going
to focus on the VGA-specific aspects so we don’t get sidetracked. I’m not going to
explain how the ball is animated, for example; we’ll get to animation starting in
Chapter 42. What I will do is cover each of the VGA features used in this program-
the virtual screen, vertical and horizontal panning, color plane manipulation,
multi-plane block copying, and page flipping-at a conceptual level, letting the code
itself demonstrate the implementation details. We’ll return to many of these con-
cepts in more depth later in this book.

At the Core
A little background is necessary before we’re ready to examine Listing 23.1. The VGA is
built around four functional blocks, named the CRT Controller (CRTC) , the Sequence
Controller (SC), the Attribute Controller (AC) , and the Graphics Controller (GC).
The single-chip VGA could have been designed to treat the registers for all the blocks
as one large set, addressed at one pair of 1/0 ports, but in the EGA, each of these blocks
was a separate chip, and the legacy of EGA compatibility is why each of these blocks
has a separate set of registers and is addressed at different I/O ports in the VGA.
Each of these blocks has a sizable complement of registers. It is not particularly impor-
tant that you understand why a given block has a given register; all the registers together
make up the programming interface, and it is the entire interface that is of interest
to the VGA programmer. However, the means by which most VGA registers are ad-
dressed makes it necessary for you to remember which registers are in which blocks.
Most VGA registers are addressed as internally indexed registers. The internal address
of the register is written to a given block’s Index register, and then the data for that
register is written to the block’s Data register. For example, GC register 8, the Bit

Bones and Sinew 427

Mask register, is set to OFFH by writing 8 to port SCEH, the GC lndex register, and
then writing OFFH to port SCFH, the GC Data register. Internal indexing makes it
possible to address the 9 GC registers through only two ports, and allows the entire
VGA programming interface to be squeezed into fewer than a dozen ports. The
downside is that two 1 / 0 operations are required to access most VGA registers.
The ports used to control the VGA are shown in Table 23.1. The CRTC, SC, and GC
Data registers are located at the addresses of their respective Index registers plus
one. However, the AC Index and Data registers are located at the same address,
3COH. The function of this port toggles on every OUT to 3COH, and resets to Index
mode (in which the Index register is programmed by the next OUT to 3COH) on
every read from the Input Status 1 register (3DAH when the VGA is in a color mode,

428 Chapter 23

3BAH in monochrome modes). Note that all CRTC registers are addressed at either
3DXH or 3BXH, the former in color modes and the latter in monochrome modes.
This provides compatibility with the register addressing of the now-vanished Color/
Graphics Adapter and Monochrome Display Adapter.
The method used in the VGA BIOS to set registers is to point DX to the desired
Index register, load AL with the index, perform a byte OUT, increment DX to point
to the Data register (except in the case of the AC, where DX remains the same), load
AL with the desired data, and perform a byte OUT. A handy shortcut is to point DX
to the desired Index register, load AL with the index, load AH with the data, and
perform a word OUT. Since the high byte of the OUT value goes to port DX+1 , this is
equivalent to the first method but is faster. However, this technique does not work for
programming the AC Index and Data registers; both AC registers are addressed at
3COH, so two separate byte OUTs must be used to program the AC. (Actually, word
OUTs to the AC do work in the EGA, but not in the VGA, so they shouldn’t be used.)
As mentioned above, you must be sure which mode-Index or Data-the AC is in
before you do an OUT to 3COH; you can read the Input Status 1 register at any time
to force the AC to Index mode.
How safe is the word-OUT method of addressing VGA registers? I have, in the past,
run into adapter/computer combinations that had trouble with word OUTs; how-
ever, all such problems I am aware of have been fixed. Moreover, a great deal of
graphics software now uses word OUTs, so any computer or VGA that doesn’t prop-
erly support word OUTs could scarcely be considered a clone at all.

P A speed tip: The setting of each chip S Index register remains the same until it is
reprogrammed. This means that in cases where you are setting the same internal
register repeatedly, you can set the Index register to point to that internal register
once, then write to the Data register multiple times. For example, the Bit Mask
register (GC register 8) is often set repeatedly inside a loop when drawing lines.
The standard code for this is:

M O V DX.03CEH ; p o i n t t o GC I n d e x r e g i s t e r
M O V AL.8
OUT

; i n t e r n a l i n d e x o f B i t Mask r e g i s t e r
DX ,AX ;AH c o n t a i n s B i t Mask r e g i s t e r s e t t i n g

Alternatively, the GC Index register could initially be set to point to the Bit Mask
register with

M O V DX.03CEH : p o i n t t o G C I n d e x r e g i s t e r
M O V AL.8 ; i n t e r n a l i n d e x o f B i t Mask r e g i s t e r
OUT DX.AL ; s e t GC I n d e x r e g i s t e r
I N C D X : p o i n t t o GC D a t a r e g i s t e r

and then the Bit Mask register could be set repeatedly with the byte-size OUT
instruction

OUT DX.AL :AL c o n t a i n s B i t Mask r e g i s t e r s e t t i n g

Bones and Sinew 429

which is generally faster (and never slower) than a word-sized OUT, and which
does not require AH to be set, freeing up a register. Of course, this method only
works ifthe GC Index register remains unchanged throughout the loop.

Linear Planes and True VGA Modes
The VGA's memory is organized as four 64K planes. Each of these planes is a linear
bitmap; that is, each byte from a given plane controls eight adjacent pixels on the
screen, the next byte controls the next eight pixels, and so on to the end of the scan
line. The next byte then controls the first eight pixels of the next scan line, and so on
to the end of the screen.
The VGA adds a powerful twist to linear addressing; the logical width of the screen
in VGA memory need not be the same as the physical width of the display. The
programmer is free to define all or part of the VGA's large memory map as a logical
screen of up to 4,080 pixels in width, and then use the physical screen as a window
onto any part of the logical screen. What's more, a virtual screen can have any logical
height up to the capacity of VGA memory. Such a virtual screen could be used to
store a spreadsheet or a CAD/CAM drawing, for instance. As we will see shortly, the
VGA provides excellent hardware for moving around the virtual screen; taken to-
gether, the virtual screen and the VGA's smooth panning capabilities can generate
very impressive effects.
All four linear planes are addressed in the same 64K memory space starting at
A000:OOOO. Consequently, there are four bytes at any given address in VGA memory.
The VGA provides special hardware to assist the CPU in manipulating all four planes,
in parallel, with a single memory access, so that the programmer doesn't have to
spend a great deal of time switching between planes. Astute use of this VGA hard-
ware allows VGA software to as much as quadruple performance by processing the
data for all the planes in parallel.
Each memory plane provides one bit of data for each pixel. The bits for a given pixel
from each of the four planes are combined into a nibble that serves as an address
into the VGA's palette R A M , which maps the one of 16 colors selected by display
memory into any one of 64 colors, as shown in Figure 23.1. All sixty-four mappings
for all 16 colors are independently programmable. (We'll discuss the VGA's color
capabilities in detail starting in Chapter 33.)
The VGA BIOS supports several graphics modes (modes 4, 5, and 6) in which VGA
memory appears not to be organized as four linear planes. These modes exist for
CGA compatibility only, and are not true VGA graphics modes; use them when you
need CGA-type operation and ignore them the rest of the time. The VGA's special
features are most powerful in true VGA modes, and it is on the 16-color true-VGA
modes (modes ODH (320~200), OEH (640~200), 10H (640~350), and 12H (640x480))
that I will concentrate in this part of the book. There is also a 256-color mode, mode
13H, that appears to be a single linear plane, but, as we will see in Chapters 31-34

430 Chapter 23

Byte from
Plane 0

Byte from
Plane 1 0 n u

Byte from
Plane 2

Byte from
Plane 3

-
0 -

"+

2 -

bit first addressed 3 -
8 bits from plane 2 (red) from memory) 4
plane byte, shifted out 1
per dot clock, most-
significant bit first 5 -

Palette RAM
(1 6 6-Bit-wide
storage

1 locations

with four bits -
8 bits from plane 3
(intensity plane) b te,
shifted out 1 per Jot clock,
most-significant bit first

-

One pixel
per dot
clock to
digital-to-
analog
converter
(DAC)

+

Video data from memory to pixel.
Figure 23.1

and 47-49 of this book, that's a polite fiction-and discarding that fiction gives us an
opportunity to unleash the power of the VGAs hardware for vastly better perfor-
mance. VGA text modes, which feature soft fonts, are another matter entirely, upon
which we'll touch from time to time.
With that background out of the way, we can get on to the sample VGA program
shown in Listing 23.1. I suggest you run the program before continuing, since the
explanations will mean far more to you if you've seen the features in action.

LISTING 23.1 123- 1 .ASM
: Sample V G A p rog ram.
: A n i m a t e s f o u r b a l l s b o u n c i n g a r o u n d a p l a y f i e l d b y u s i n g
: p a g e f l i p p i n g . P l a y f i e l d i s p a n n e d s m o o t h l y b o t h h o r i z o n t a l l y
: and v e r t i c a l l y .
: By M i c h a e l A b r a s h .

s tack segment para s tack 'STACK'
db 512 dup(?)

s t a c k e n d s

MEORES"/IOEO~MOOE equ 0 : d e f i n e f o r 6 4 0 x 3 5 0 v i d e o mode
: comment o u t f o r 640x200 mode

VIOEO_.SEGMENT equ OaOOOh : d i s p l a y memory segment f o r
: t r u e VGA g r a p h i c s modes

LOGICAL-SCREENKWIOTH equ 6 7 2 / 8 : w i d t h i n b y t e s a n d h e i g h t i n s c a n

Bones and Sinew 431

LOGICALLSCREEN-HEIGHT

PAGE0
P A G E l
PAGEOKOFFSET equ

equ

PAGElLOFFSET equ

w

BALLLWIOTH equ
BALLLHEIGHT equ
BLANK-OFFSET equ

BALL-OFFSET equ

NUM-BALLS equ

equ 384 : l i n e s o f t h e v i r t u a l s c r e e n

0 ; f l a g f o r p a g e 0 when page f l i p p i n g
1 ; f l a g f o r p a g e 1 when page f l i p p i n g
0 ; s t a r t o f f s e t o f p a g e 0 i n VGA memory

; w e ' l l w o r k w i t h

LOGICALLSCREEN-WIDTH * LOGICALLSCREENKHEIGHT
; s t a r t o f f s e t o f p a g e 1 (b o t h p a g e s
; a r e 6 7 2 x 3 8 4 v i r t u a l s c r e e n s)

2 4 1 8 ; w i d t h o f b a l l i n d i s p l a y memory b y t e s
2 4 ; h e i g h t o f b a l l i n s c a n l i n e s
PAGE1-OFFSET * 2 ; s t a r t o f b l a n k i m a g e

BLANK-OFFSET + (BALLLWIDTH * BALLLHEIGHT)

4
: s t a r t o f f s e t o f b a l l i m a g e i n VGA memory
;number o f b a l l s t o a n i m a t e

; i n VGA memory

; VGA r e g i s t e r e q u a t e s .

SC-INDEX
MAP-MASK

equ 3c4h ; S C i n d e x r e g i s t e r
equ 2 ; S C map mask r e g i s t e r

GC- INDEX equ 3ceh ;GC i n d e x r e g i s t e r
GC-MODE
CRTC-INDEX

equ 5 :GC mode r e g i s t e r
equ 03d4h ;CRTC i n d e x r e g i s t e r

STARTLADDRESS-HIGH equ Och :CRTC s t a r t a d d r e s s h i g h b y t e
START-ADDRESS-LOW equ Odh ;CRTC s t a r t a d d r e s s l o w b y t e
CRTC-OFFSET equ 13h :CRTC o f f s e t r e g i s t e r
INPUT-STATUS-1 equ 03dah ;VGA s t a t u s r e g i s t e r
VSYNC-MASK
DE-MASK

e q u 0 8 h : v e r t i c a l s y n c b i t i n s t a t u s r e g i s t e r 1

AC- INDEX
e q u O l h ; d i s p l a y e n a b l e b i t i n s t a t u s r e g i s t e r 1

HPELPAN
equ 03cOh :AC i n d e x r e g i s t e r
equ 20h OR 13h : A C h o r i z o n t a l p e l p a n n i n g r e g i s t e r

: (b i t 7 i s h i g h t o k e e p p a l e t t e RAM
; a d d r e s s i n g o n)

dseg segment para common 'DATA'
Cur ren tpage db P A G E l ;page t o draw t o
C u r r e n t P a g e O f f s e t dw PAGEl-OFFSET

: F o u r p l a n e ' s w o r t h o f m u l t i c o l o r e d b a l l i m a g e .

B a l l P1 aneOImage 1 abel byte
db 000h. 03ch. 000h. 001h. Of fh . 080h
db 007h . O f fh . DeOh. OOfh . Of fh . OfOh
db 4 * 3 dup(000h)
d b 0 7 f h . O f f h . O f e h . O f f h . O f f h . O f f h
d b O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
db 4 * 3 dup(000h)
d b 0 7 f h . O f f h . O f e h . 0 3 f h . O f f h . O f c h
db 03 fh . O f fh . O fch . O l fh . O f fh . O fBh
db 4 * 3 dup(000h)

db 4 * 3 dup(000h)
d b O l f h . O f f h , O f 8 h . 0 3 f h . O f f h . O f c h
d b 0 3 f h . O f f h . O f c h . 0 7 f h . O f f h . O f e h
d b 0 7 f h . O f f h . O f e h . O f f h . O f f h . O f f h
d b O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
db 8 * 3 dup(000h)
db OOfh. Of fh . OfOh. 007h. Of fh . OeOh
db 001h. Of fh . 080h. 000h. 03ch. OOOh

db 12 * 3 dup(000h)

: b l u e p l a n e i m a g e

B a l l P1 a n e l I m a g e 1 a b e l b y t e :g reen p lane image

B a l l P1 ane2 Image 1 abe l by te ; red p lane image

432 Chapter 23

db
db

O f f h , O f f h . O f f h . O f f h . O f f h . O f f h
O f f h . O f f h . O f f h . 0 7 f h . O f f h , O f e h

d b 0 7 f h . O f f h . O f e h . 0 3 f h . O f f h . O f c h
db
db

03 fh . O f f h . O fch . O l f h . O f f h . Of8h
OOfh, O f f h . OfOh. 007h. O f f h . OeOh

db 001h. O f f h . 080h. 000h. 03ch. OOOh
B a l l P l a n e 3 I m a g e 1 a b e l b y t e : i n t e n s i t y on f o r a l l p l a n e s ,

: t o p r o d u c e h i g h - i n t e n s i t y c o l o r s
db
db
db
db
d b
db
db
db
db
db
db
db

B a l l X
B a l l Y
Las tBa l 1 X
L a s t B a l l Y
B a l l X I n c
B a l l Y I n c
B a l l Rep

B a l l C o n t r o l

000h. 03ch. 000h. 001h. O f f h . 0 8 0 h
007h. O f f h . OeOh. OOfh. O f f h . OfOh
O l f h . O f f h . O f8h . 0 3 f h . O f f h . O f c h
03 fh . O f f h . Ofch . 0 7 f h . O f f h . O f e h
07 fh . O f f h . Ofeh , O f f h . O f f h . O f f h
O f f h . O f f h . O f f h . O f f h . O f f h . O f f h
O f f h . O f f h , O f f h . O f f h . O f f h . O f f h
O f fh . O f f h . O f f h . 0 7 f h . O f f h . O f e h
0 7 f h . O f f h . Ofeh . 0 3 f h . O f f h . O f c h
03 fh . O f f h . O fch , O l f h . O f f h . O f 8 h
OOfh. O f f h . OfOh. 007h. O f f h . OeOh
001h. O f f h . 080h, 000h. 03ch. OOOh

dw 15. 50 , 4 0 . 7 0 ; a r r a y o f b a l l x coords
dw 40, 200. 110. 300 : a r r a y o f b a l l y coo rds
dw 15. 50. 40. 70
dw 40. 100. 160. 30

; p r e v i o u s b a l l x coords
: p r e v i o u s b a l l y coo rds

dw 1. 1. 1. 1
dw

: x move f a c t o r s f o r b a l l
8. 8, 8. 8 ;y move f a c t o r s f o r b a l l

dw 1. 1. 1. 1 :B t i m e s t o k e e p m o v i n g
: b a l l a c c o r d i n g t o c u r r e n t
: i n c r e m e n t s

dw B a l l O C o n t r o l , B a l l l C o n t r o l : p o i n t e r s t o c u r r e n t
dw B a l l 2 C o n t r o l . B a l l 3 C o n t r o l ; l o c a t i o n s i n b a l l

; c o n t r o l s t r i n g s
B a l l C o n t r o l S t r i n g dw B a l l O C o n t r o l , B a l l l C o n t r o l : p o i n t e r s t o

dw B a l l 2 C o n t r o 1 , B a l l 3 C o n t r o l : s t a r t o f b a l l
: c o n t r o l s t r i n g s

: B a l l c o n t r o l s t r i n g s .

B a l l O C o n t r o l l a b e l w o r d

B a l l l C o n t r o l 1 abe l word

B a l 1 2 C o n t r o l 1 abe l word

B a l l 3 C o n t r o l l a b e l w o r d

dw 10. 1. 4 , 1 0 . -1. 4 , 1 0 . -1. - 4 . 1 0 , 1. - 4 . 0

dw 12. -1. 1. 28. -1. -1. 1 2 . 1. -1. 28. 1. 1. 0

dw 20, 0. -1. 40. 0 . 1. 2 0 , 0 . -1. 0

dw 8. 1. 0. 5 2 . -1. 0. 44. 1. 0. 0

: P a n n i n g c o n t r o l s t r i n g .

i f d e f MEDRESpVIOEO_MODE
P a n n i n g C o n t r o l S t r i n g dw 32. 1. 0 . 34. 0 . 1. 32. -1, 0. 34 . 0 . -1. 0
e l s e
P a n n i n g C o n t r o l S t r i n g dw 32. 1. 0. 184, 0, 1. 32. -1. 0. 184. 0. -1. 0
e n d i f
Pann ingCon t ro l dw P a n n i n g C o n t r o l S t r i n g : p o i n t e r t o c u r r e n t l o c a t i o n

PanningRep dw 1 ;# t i m e s t o p a n a c c o r d i n g t o c u r r e n t

Pann ingXInc dw 1 ; x p a n n i n g f a c t o r
Pann ingYInc dw 0 ;y p a n n i n g f a c t o r

; i n p a n n i n g c o n t r o l s t r i n g

: p a n n i n g i n c r e m e n t s

Bones and Sinew 433

HPan db 0 ; h o r i z o n t a l p e l p a n n i n g s e t t i n g
P a n n i n g S t a r t O f f s e t dw 0 ; s t a r t o f f s e t a d j u s t m e n t t o p r o d u c e v e r t i c a l

dseg ends
; p a n n i n g & c o a r s e h o r i z o n t a l p a n n i n g

: Macro t o s e t i n d e x e d r e g i s t e r P2 o f c h i p w i t h i n d e x r e g i s t e r
; a t P 1 t o AL.

SETREG macro P 1 . P2
mov dx ,P1
mov ah .a l
mov a1 .P2
o u t d x . a x
endm

c s e g s e g m e n t p a r a p u b l i c 'CODE'

s t a r t p r o c n e a r
assume cs:cseg, ds:dseg

mov ax .dseg
mov ds .ax

: S e l e c t g r a p h i c s mode.

i f d e f MEDRES-VIDEO-MODE
mov ax.010h

e l s e
mov ax.0eh

e n d i f
i n t 10h

: ES a l w a y s p o i n t s t o VGA memory.

mov ax.VIDE0-SEGMENT
mov es ,ax

: Draw b o r d e r a r o u n d p l a y f i e l d i n b o t h p a g e s .

mov d i , PAGEO-OFFSET
c a l l D r a w B o r d e r ; p a g e 0 b o r d e r
mov d i .PAGEl-OFFSET
c a l l D r a w B o r d e r ; p a g e 1 b o r d e r

: Draw a l l f o u r p l a n e ' s w o r t h o f t h e b a l l t o u n d i s p l a y e d VGA memory.

mov a1 ,O lh
SETREG S C - I N D E X . MAP-MASK
mov s i . o f f s e t B a l l P l a n e O I m a g e
mov d i .BALL-OFFSET
mov cx.BALL-WIDTH * BALLLHEIGHT
r e p movsb
mov a1 .02h : enab le p lane 1
SETREG S C - I N D E X . MAP-MASK
mov s i , o f f s e t B a l l P l a n e l I m a g e
mov di.BALL-OFFSET
mov cx.BALL-WIDTH * BALLLHEIGHT
r e p movsb
mov a1 .04h
SETREG S C - I N D E X . MAP-MASK
mov s i . o f f s e t B a l l P l a n e 2 I m a g e
mov d i .BALLLOFFSET

; e n a b l e p l a n e 0

: e n a b l e p l a n e 2

434 Chapter 23

mov cx.BALLLWIDTH * BALLLHEIGHT
rep movsb
mov a l . 0 8 h : e n a b l e p l a n e 3
SETREG SC-INDEX. MAP-MASK
mov s i . o f f s e t B a l l P l a n e 3 I m a g e
mov d i .BALL-OFFSET
mov cx,BALL-WIDTH * BALL-HEIGHT
rep movsb

: Draw a b l a n k

mov
SETREG
mov
mov
sub

i m a g e t h e s i z e o f t h e b a l l t o u n d i s p l a y e d VGA memory.

a1 . O f h ; e n a b l e a l l memory p l a n e s , s i n c e t h e
S C - I N D E X , MAP-MASK ; b l a n k h a s t o e r a s e a l l p l a n e s
d i .BLANK-OFFSET
cx.BALLLWIDTH * BALLLHEIGHT
a1 .a1

r e p s t o s b

; Se t VGA t o w r i t e mode 1. f o r b l o c k c o p y i n g b a l l a n d b l a n k i m a g e s

mov dx.GCLINDEX
mov a1 .GCLMODE
o u t d x . a l ; p o i n t GC I n d e x t o GC Mode r e g i s t e r
i n c d x ; p o i n t t o GC D a t a r e g i s t e r
jmp $+2 ; d e l a y t o l e t b u s s e t t l e
i n a1 , d x : g e t c u r r e n t s t a t e o f GC Mode
and a1 . n o t 3 : c l e a r t h e w r i t e mode b i t s
o r a1 .1 : s e t t h e w r i t e mode f i e l d t o 1
jmp $+2 : d e l a y t o l e t b u s s e t t l e
o u t d x . a l

: Se t VGA o f f s e t r e g i s t e r i n w o r d s t o d e f i n e l o g i c a l s c r e e n w i d t h .

mov a1 .LOGICALLSCREENLWIDTH / 2
SETREG CRTC-INDEX. CRTC-OFFSET

: Move t h e b a l l s b y e r a s i n g e a c h b a l l , m o v i n g i t , and
: r e d r a w i n g it, t h e n s w i t c h i n g p a g e s when t h e y ' r e a l l moved.

B a l l A n i m a t i o n L o o p :

EachBal l Loop:

; E r a s e o l d i m a g e o f b a l l i n t h i s page (a t l o c a t i o n f r o m o n e m o r e e a r l i e r) .

mov b x . (NUM-BALLS * 2) - 2

mov si.BLANKLOFFSET : p o i n t t o b l a n k i m a g e
mov c x , [L a s t B a l l X + b x l
mov d x . [L a s t B a l l Y + b x l
c a l l DrawBal 1

: Se t new l a s t b a l l l o c a t i o n .

mov a x . [B a l l X + b x l
mov [L a s t b a l l X + b x l . a x
mov a x . [B a l l Y + b x l
mov [L a s t b a l l Y + b x l . a x

; Change t h e b a l l movement values i f i t ' s t i m e t o do so .

d e c [B a l l R e p + b x] ; h a s c u r r e n t r e p e a t f a c t o r r u n o u t ?
j n z M o v e B a l l
mov s i , [B a l l C o n t r o l + b x l ; i t ' s t i m e t o c h a n g e movement values

Bones and Sinew 435

1 odsw ;ge t new r e p e a t f a c t o r f r o m

a n d a x . a x ; a t e n d o f c o n t r o l s t r i n g ?
j n z SetNewMove
mov si,[BallControlString+bxl ; r e s e t c o n t r o l s t r i n g
1 odsw ;ge t new r e p e a t f a c t o r

mov [B a l l R e p + b x l . a x ; s e t new movement r e p e a t f a c t o r
1 odsw ; s e t new x movement increment
mov [B a l l X I n c + b x l , a x
1 odsw ; s e t new y movement increment
mov [B a l l Y I n c + b x l . a x
mov [B a l l C o n t r o l + b x l , s i : s a v e new c o n t r o l s t r i n g p o i n t e r

; c o n t r o l s t r i n g

SetNewMove:

; Move t h e b a l l .

MoveBal l

; Draw b

mov a x , [B a l l X I n c + b x l
add [Ba l l X+bx l ,ax ;move i n x d i r e c t i o n
mov a x , [B a l l Y I n c + b x l
a d d [B a l l Y + b x l . a x :move i n y d i r e c t i o n

a l l a t new l o c a t i o n .

mov si.BALL-OFFSET ; p o i n t t o b a l l ' s i m a g e
mov c x . [B a l l X + b x l
mov dx .CBa l lY+bx l
c a l l D r a w B a l l

dec bx
dec bx
j n s E a c h B a l l L o o p

; S e t u p t h e n e x t p a n n i n g s t a t e (b u t d o n ' t p r o g r a m i t i n t o t h e
; VGA y e t) .

c a l l A d j u s t p a n n i n g

; W a i t f o r d i s p l a y e n a b l e (p i x e l d a t a b e i n g d i s p l a y e d) s o we know
; w e ' r e n o w h e r e n e a r v e r t i c a l s y n c . w h e r e t h e s t a r t a d d r e s s g e t s
; la tched and used .

c a l l Wai t D i s p l a y E n a b l e

; F l i p t o t h e new p a g e b y c h a n g i n g t h e s t a r t a d d r e s s .

mov
add
push
SETREG
mov
POP
mov
SETREG

a x . [C u r r e n t P a g e O f f s e t l
a x . C P a n n i n g S t a r t O f f s e t 1
ax
CRTC-INDEX. START-ADDRESS-LOW
a 1 , b y t e p t r [C u r r e n t P a g e O f f s e t + l l
ax
a1 ,ah
CRTC-INDEX. START-ADDRESS-HIGH

; W a i t f o r v e r t i c a l s y n c s o t h e new s t a r t a d d r e s s h a s a chance
; t o t a k e e f f e c t .

436 Chapter 23

c a l l Wai tVSync

; S e t h o r i z o n t a l p a n n i n g now, j u s t as new s t a r t a d d r e s s t a k e s e f f e c t .

mov a1 , [HPanl
mov dx.INPUT-STATUS-1
i n a1 , d x ; r e s e t AC a d d r e s s i n g t o i n d e x r e g
mov dx.AC-INDEX
mov a1 .HPELPAN
o u t d x . a l ; s e t AC i n d e x t o p e l p a n r e g

o u t d x . a l ; s e t new p e l p a n n i n g
mov a 1 . [H P a n l

; F l i p t h e p a g e t o d r a w t o t o t h e u n d i s p l a y e d p a g e .

x o r C C u r r e n t P a g e l . 1
j n z I s P a g e l
mov [CurrentPageOffset].PAGEO-OFFSET
j m p s h o r t E n d F l i p P a g e

mov [CurrentPageOffsetl.PAGEl-OFFSET
I s P a g e l :

EndFl ipPage:

; E x i t i f a k e y ' s b e e n h i t .

mov ah.1
i n t 16h
j n z Done
j m p B a l l A n i m a t i o n L o o p

; F i n i s h e d , c l e a r k e y , r e s e t s c r e e n mode and e x i t .

Done:
mov ah .0 ;c lear key
i n t 16h

mov a x . 3 ; r e s e t t o t e x t mode
i n t 10h

mov a h . 4 c h ; e x i t t o DDS
i n t 21h

s t a r t endp

; R o u t i n e t o d r a w a b a l l - s i z e d i m a g e t o all p l a n e s . c o p y i n g f r o m
: o f f s e t S I i n VGA memory t o o f f s e t C X . D X (x . y) i n VGA memory i n
; t h e c u r r e n t p a g e .

DrawBal l
mov
mu1
add
add
mov
mov
push
push
POP

D r a w B a l l Loop:

p r o c n e a r
ax.LOGICAL-SCREEN-WIDTH
d x ; o f f s e t o f s t a r t o f t o p i m a g e s c a n l i n e
a x . c x ; o f f s e t o f u p p e r l e f t o f i m a g e
a x . [C u r r e n t P a g e O f f s e t] : o f f s e t o f s t a r t o f p a g e
d i , a x
bp,BALL-HEIGHT
dS
es
dS ;move f r o m VGA memory t o VGA memory

Bones and Sinew 437

p u s h d i
mov cx.BALL-WIDTH
r e p movsb ;draw a s c a n l i n e o f i m a g e
POP
add
dec
j nz
POP
r e t

DrawBal l

; W a i t f o r t h e

Wai tVSync
mov

d i
di.LOGICAL-SCREEN-WIDTH ; p o i n t t o n e x t d e s t i n a t i o n s c a n l i n e

DrawBal l Loop
ds

bp

endp

l e a d i n g e d g e o f v e r t i c a l s y n c p u l s e .

p r o c n e a r
dx.INPUT-STATUS-1

Wai tNotVSyncLoop:
i n
and a1 .VSYNC-MASK

a1 .dx

j n z Wai tNotVSyncLoop

i n
and a1 .VSYNC-MASK

a1 ,dx

Jz WaitVSyncLoop
r e t

WaitVSync endp

WaitVSyncLoop:

; W a i t f o r d i s p l a y e n a b l e t o h a p p e n (p i x e l s t o b e s c a n n e d t o
; t h e s c r e e n , i n d i c a t i n g w e ' r e i n t h e m i d d l e o f d i s p l a y i n g a f r a m e) .

W a i t D i s p l a y E n a b l e p r o c n e a r

WaitDELoop:
mov dx.INPUT-STATUS-1

i n a1 , d x
and a1 .DE-MASK
j nz Wa i tDELoop
r e t

Wa i tD isp layEnab le endp

; P e r f o r m h o r i z o n t a l / v e r t i c a l

A d j u s t p a n n i n g p r o c n e a r
dec [Pann ingRep l
i n z DoPan

p a n n i n g .

; t i m e t o g e t new p a n n i n g v a l u e s ?

mov s i . C P a n n i n g C o n t r o l 1 ; p o i n t t o c u r r e n t l o c a t i o n i n

1 odsw ; g e t p a n n i n g r e p e a t f a c t o r
a n d a x . a x ; a t e n d o f p a n n i n g c o n t r o l s t r i n g ?
jnz SetnewPanVal ues
mov s i . o f f s e t P a n n i n g C o n t r o l S t r i n g ; r e s e t t o s t a r t o f s t r i n g
1 odsw ; g e t p a n n i n g r e p e a t f a c t o r

mov C P a n n i n g R e p 1 . a ~ ; s e t new p a n n i n g r e p e a t v a l u e
1 odsw
mov C P a n n i n g X I n c 1 . a ~ ; h o r i z o n t a l p a n n i n g v a l u e
1 odsw
mov C P a n n i n g Y I n c 1 . a ~ ; v e r t i c a l p a n n i n g v a l u e
mov [P a n n i n g C o n t r o l] , s i ; s a v e c u r r e n t l o c a t i o n i n p a n n i n g

: p a n n i n g c o n t r o l s t r i n g

SetNewPanValues:

438 Chapter 23

: c o n t r o l s t r i n g

; Pan a c c o r d i n g

OoPan:
mov
and
j s
j z
mov
i n c
CmP
j b
sub
i nc
j mp

mov
dec
j n s
mov
dec

mov

PanLe f t :

SetHPan:

t o p a n n i n g v a l u e s .

a x , [P a n n i n g X I n c l
ax , ax
P a n L e f t
C h e c k V e r t i c a l P a n
a1 , [HPanl
a1
a l . 8
SetHPan
a1 .a1
[P a n n i n g S t a r t O f f s e t l
s h o r t SetHPan

a1 .[HPan]
a1
SetHPan
a l . 7
[P a n n i n g S t a r t O f f s e t l

[HPanl .a1
C h e c k v e r t i c a l P a n :

mov ax , [Pann ingYInc l
and ax.ax
j s PanUp
j z EndPan

: h o r i z o n t a l p a n n i n g

: n e g a t i v e means pan l e f t

:pan r i g h t : i f p e l p a n r e a c h e s
: 8. i t ' s t i m e t o move t o t h e
; n e x t b y t e w i t h a p e l p a n o f 0
: and a s t a r t o f f s e t t h a t ' s o n e
: h i g h e r

:pan l e f t : i f p e l p a n r e a c h e s -1,
: i t ' s t i m e t o move t o t h e n e x t
: b y t e w i t h a p e l p a n o f 7 and a
: s t a r t o f f s e t t h a t ' s o n e l o w e r

;save new p e l p a n v a l u e

: v e r t i c a l p a n n i n g

: n e g a t i v e means pan up

add [PanningStartOffset l ,LOGICAL_SCREEN_WIDTH
; p a n d o w n b y a d v a n c i n g t h e s t a r t
; address by a s c a n l i n e

j m p s h o r t EndPan

sub [PanningStartOffset l .LOGICAL_SCREEN_WIDTH
PanUp:

; p a n u p b y r e t a r d i n g t h e s t a r t
: address by a s c a n l i n e

EndPan:
r e t

: Draw t e x t u r e d b o r d e r a r o u n d p l a y f i e l d t h a t s t a r t s a t D I .

D rawBorde r p roc nea r

: Draw t h e l e f t b o r d e r .

p u s h d i
rnov cx.LOGICAL-SCREEN-HEIGHT / 16

mov a1 .Och : s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
a d d d i .LOGICAL-SCREEN-WIDTH * 8
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
l o o p D r a w L e f t B o r d e r L o o p
pop d i

D rawLe f tBo rde rLoop :

: Draw t h e r i g h t b o r d e r .

p u s h d i

Bones and Sinew 439

add di.LOGICAL-SCREEN-WIDTH - 1
mov cx.LOGICAL-SCREEN-HEIGHT / 16

mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
mov a1 .Och : s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
add di.LOGICAL-SCREEN-WIDTH * 8
l o o p D r a w R i g h t B o r d e r L o o p
p o p d i

D rawRigh tBorde rLoop :

; Draw t h e t o p b o r d e r .

p u s h d i
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2

DrawTopBorderLoop:
i n c d i
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
i n c d i
mov a1 .Och ; s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
loop DrawTopBorderLoop
p o p d i

; Draw t h e b o t t o m b o r d e r .

add di.(LOGICAL-SCREEN-HEIGHT - 8) * LOGICAL-SCREEN-WIDTH
mov cx.(LOGICAL-SCREEN-WIDTH - 2) / 2

i n c d i
mov a1 .Och ; s e l e c t r e d c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
i n c d l
mov a1 .Oeh ; s e l e c t y e l l o w c o l o r f o r b l o c k
c a l l D r a w B o r d e r B l o c k
l oop D rawBot tomBorderLoop
r e t

DrawBorder endp

; Draws an 8x8 border b lock i n c o l o r i n AL a t l o c a t i o n 01.
; D I p r e s e r v e d .

D r a w B o r d e r B l o c k p r o c n e a r

DrawBot tomBorderLoop:

p u s h d i
SETREG SC-INDEX. MAP-MASK
mov a1 . O f f h
r e p t 8
s t o s b
add di.LOGICAL-SCREEN-WIDTH - 1
endm
POP d i
r e t

DrawBorderBl ock endp
A d j u s t p a n n i n g e n d p
cseg ends

e n d s t a r t

440 Chapter 23

Smooth Panning
The first thing you’ll notice upon running the sample program is the remarkable
smoothness with which the display pans from side-to-side and up-and-down. That
the display can pan at all is made possible by two VGA features: 256K of display
memory and the virtual screen capability. Even the most memory-hungry of the VGA
modes, mode 12H (64Ox480), uses only 37.5K per plane, for a total of 150K out of
the total 256K of VGA memory. The medium-resolution mode, mode 10H (640~350),
requires only 28K per plane, for a total of 112K. Consequently, there is room in VGA
memory to store more than two full screens of video data in mode 1OH (which the
sample program uses), and there is room in all modes to store a larger virtual screen
than is actually displayed. In the sample program, memory is organized as two virtual
screens, each with a resolution of 672x384, as shown in Figure 23.2. The area of the
virtual screen actually displayed at any given time is selected by setting the display
memory address at which to begin fetching video data; this is set by way of the start
address registers (Start Address High, CRTC register OCH, and Start Address Low,
CRTC register ODH) . Together these registers make up a 16-bit display memory ad-
dress at which the CRTC begins fetching data at the beginning of each video frame.
Increasing the start address causes higher-memory areas of the virtual screen to be

A000 : 0000

A000 : 7 EO0

A000 : FCOO

video memory organization for Listing 23. I .
Figure 23.2

Bones and Sinew 441

displayed. For example, the Start Address High register could be set to SOH and the
Start Address Low register could be set to OOH in order to cause the display screen to
reflect memory starting at offset 8000H in each plane, rather than at the default
offset of 0.
The logical height of the virtual screen is defined by the amount of VGA memory
available. As the VGA scans display memory for video data, it progresses from the
start address toward higher memory one scan line at a time, until the frame is com-
pleted. Consequently, if the start address is increased, lines farther toward the bottom
of the virtual screen are displayed; in effect, the virtual screen appears to scroll up on
the physical screen.
The logical width of the virtual screen is defined by the Offset register (CRTC regis-
ter 13H), which allows redefinition of the number of words of display memory
considered to make up one scan line. Normally, 40 words of display memory constitute a
scan line; after the CRTC scans these 40 words for 640 pixels worth of data, it advances 40
words from the start of that scan line to find the start of the next scan line in memory.
This means that displayed scan lines are contiguous in memory. However, the Offset
register can be set so that scan lines are logically wider (or narrower, for that matter)
than their displayed width. The sample program sets the Offset register to 2 A H , making
the logical width of the virtual screen 42 words, or 42 * 2 * 8 = 672 pixels, as contrasted
with the actual width of the mode 10h screen, 40 words or 640 pixels. The logical
height of the virtual screen in the sample program is 384; this is accomplished simply by
reserving 84 * 384 contiguous bytes of VGA memory for the virtual screen, where 84
is the virtual screen width in bytes and 384 is the virtual screen height in scan lines.
The start address is the key to panning around the virtual screen. The start address
registers select the row of the virtual screen that maps to the top of the display;
panning down a scan line requires only that the start address be increased by the
logical scan line width in bytes, which is equal to the Offset register times two. The start
address registers select the column that maps to the left edge of the display as well,
allowing horizontal panning, although in this case only relatively coarse byte-sized
adjustments-panning by eight pixels at a time-are supported.
Smooth horizontal panning is provided by the Horizontal Pel Panning register, AC
register 13H, working in conjunction with the start address. Up to 7 pixels worth of
single pixel panning of the displayed image to the left is performed by increasing
the Horizontal Pel Panning register from 0 to 7. This exhausts the range of motion
possible via the Horizontal Pel Panning register; the next pixel’s worth of smooth
panning is accomplished by incrementing the start address by one and resetting the
Horizontal Pel Panning register to 0. Smooth horizontal panning should be viewed as a
series of fine adjustments in the 8-pixel range between coarse byte-sized adjustments.
A horizontal panning oddity: Alone among VGA modes, text mode (in most cases)
has 9 dots per character clock. Smooth panning in this mode requires cycling the

442 Chapter 23

Horizontal Pel Panning register through the values 8,0, 1,2,3,4,5,6, and 7 . 8 is the
“no panning” setting.
There is one annoying quirk about programming the AC. When the AC Index regis-
ter is set, only the lower five bits are used as the internal index. The next most
significant bit, bit 5, controls the source of the video data sent to the monitor by the
VGA. When bit 5 is set to 1, the output of the palette RAM, derived from display
memory, controls the displayed pixels; this is normal operation. When bit 5 is 0,
video data does not come from the palette R A M , and the screen becomes a solid
color. The only time bit 5 of the AC Index register should be 0 is during the setting
of a palette RAM register, since the CPU is only able to write to palette RAM when bit
5 is 0. (Some VGAs do not enforce this, but you should always set bit 5 to 0 before
writing to the palette RAM just to be safe.) Immediately after setting palette RAM,
however, 20h (or any other value with bit 5 set to 1) should be written to the AC
Index register to restore normal video, and at all other times bit 5 should be set to 1.

By the way, palette RAM can be set via the BIOS video interrupt (interrupt I OH), P function I OH. Whenever an VGA function can be performed reasonably well through
a BIOS function, as it can in the case of setting palette RAM, it should be, both
because there is no point in reinventing the wheel and because the BIOS may well
mask incompatibilities between the IBM VG-4 and VGA clones.

Color Plane Manipulation
The VGA provides a considerable amount of hardware assistance for manipulating
the four display memory planes. Two features illustrated by the sample program are the
ability to control which planes are written to by a CPU write and the ability to copy
four bytes-one from each plane-with a single CPU read and a single CPU write.
The Map Mask register (SC register 2) selects which planes are written to by CPU
writes. If bit 0 of the Map Mask register is 1, then each byte written by the CPU will be
written to VGA memory plane 0, the plane that provides the video data for the least
significant bit of the palette RAM address. If bit 0 of the Map Mask register is 0, then CPU
writes will not affect. plane 0. Bits 1, 2, and 3 of the Map Mask register similarly control
CPU access to planes 1 , 2 , and 3, respectively. Any of the 16 possible combinations of
enabled and disabled planes can be selected. Beware, however, of writing to an area
of memory that is not zeroed. Planes that are disabled by the Map Mask register are
not altered by CPU writes, so old and new images can mix on the screen, producing
unwanted color effects as, say, three planes from the old image mix with one plane
from the new image. The sample program solves this by ensuring that the memory
written to is zeroed. A better way to set all planes at once is provided by the set/reset
capabilities of the VGA, which 1’11 cover in Chapter 25.
The sample program writes the image of the colored ball to VGA memory by en-
abling one plane at a time and writing the image of the ball for that plane. Each

Bones and Sinew 443

image is written to the same VGA addresses; only the destination plane, selected by
the Map Mask register, is different. You might think of the ball’s image as consisting
of four colored overlays, which together make up a multicolored image. The sample
program writes a blank image to VGA memory by enabling all planes and writing a
block of zero bytes; the zero bytes are written to all four VGA planes simultaneously.
The images are written to a nondisplayed portion of VGA memory in order to take
advantage of a useful VGA hardware feature, the ability to copy all four planes at
once. As shown by the image-loading code discussed above, four different sets of
reads and writes-and several OUTs as well-are required to copy a multicolored
image into VGA memory as would be needed to draw the same image into a non-
planar pixel buffer. This causes unacceptably slow performance, all the more so
because the wait states that occur on accesses to VGA memory make it very desirable
to minimize display memory accesses, and because OUTs tend to be very slow.
The solution is to take advantage of the VGAs write mode 1, which is selected via bits
0 and 1 of the GC Mode register (GC register 5) . (Be careful to preserve bits 2-7
when setting bits 0 and 1, as is done in Listing 23.1.) In write mode 1, a single CPU
read loads the addressed byte from all four planes into the VGA’s four internal latches,
and a single CPU write writes the contents of the latches to the four planes. During
the write, the byte written by the CPU is irrelevant.
The sample program uses write mode 1 to copy the images that were previously
drawn to the high end of VGA memory into a desired area of display memory, all in
a single block copy operation. This is an excellent way to keep the number of reads,
writes, and OUTs required to manipulate the VGA’s display memory low enough to
allow real-time drawing.
The Map Mask register can still mask out planes in write mode 1. All four planes are
copied in the sample program because the Map Mask register is still OFh from when
the blank image was created.
The animated images appear to move a bitjerkily because they are byte-aligned and
so must move a minimum of 8 pixels horizontally. This is easily solved by storing
rotated versions of all images in VGA memory, and then in each instance drawing
the correct rotation for the pixel alignment at which the image is to be drawn; we’ll
see this technique in action in Chapter 49.
Don’t worry if you’re not catching everything in this chapter on the first pass; the
VGA is a complicated beast, and learning about it is an iterative process. We’ll be
going over these features again, in different contexts, over the course of the rest of
this book.

Page Flipping
When animated graphics are drawn directly on the screen, with no intermediate
frame-composition stage, the image typically flickers and/or ripples, an unavoidable

444 Chapter 23

result of modifying display memory at the same time that it is being scanned for
video data. The display memory of the VGA makes it possible to perform page flipping,
which eliminates such problems. The basic premise of page flipping is that one area
of display memory is displayed while another is being modified. The modifications never
affect an area of memory as it is providing video data, so no undesirable side effects
occur. Once the modification is complete, the modified buffer is selected for display,
causing the screen to change to the new image in a single frame’s time, typically 1/60th
or 1/70th of a second. The other buffer is then available for modification.
As described above, the VGA has 64K per plane, enough to hold two pages and more
in 640x350 mode 10H, but not enough for two pages in 640x480 mode 12H. For
page flipping, two non-overlapping areas of display memory are needed. The sample
program uses two 672x384 virtual pages, each 32,256 bytes long, one starting at
A000:OOOO and the other starting at A000:7E00. Flipping between the pages is as
simple as setting the start address registers to point to one display area or the other-
but, as it turns out, that’s not as simple as it sounds.
The timing of the switch between pages is critical to achieving flicker-free animation.
It is essential that the program never be modifying an area of display memory as that
memory is providing video data. Achieving this is surprisingly complicated on the
VGA, however.
The problem is as follows. The start address is latched by the VGA’s internal circuitry
exactly once per frame, typically (but not always on all clones) at the start of the
vertical sync pulse. The vertical sync status is, in fact, available as bit 3 of the Input
Status 0 register, addressable at 3BAH (in monochrome modes) or 3DAH (color).
Unfortunately, by the time the vertical sync status is observed by a program, the start
address for the next frame has already been latched, having happened the instant
the vertical sync pulse began. That means that it’s no good to wait for vertical sync to
begin, then set the new start address; if we did that, we’d have to wait until the next
vertical sync pulse to start drawing, because the page wouldn’t flip until then.
Clearly, what we want is to set the new start address, then wait for the start of the
vertical sync pulse, at which point we can be sure the page has flipped. However, we
can’t just set the start address and wait, because we might have the extreme misfor-
tune to set one of the start address registers before the start of vertical sync and the
other after, resulting in mismatched halves of the start address and a nasty jump of
the displayed image for one frame.
One possible solution to this problem is to pick a second page start address that has
a 0 value for the lower byte, so only the Start Address High register ever needs to be
set, but in the sample program in Listing 23.1 I’ve gone for generality and always set
both bytes. To avoid mismatched start address bytes, the sample program waits for
pixel data to be displayed, as indicated by the Display Enable status; this tells us we’re
somewhere in the displayed portion of the frame, far enough away from vertical sync
so we can be sure the new start address will get used at the next vertical sync. Once

Bones and Sinew 445

the Display Enable status is observed, the program sets the new start address, waits
for vertical sync to happen, sets the new pel panning state, and then continues draw-
ing. Don't worry about the details right now; page flipping will come up again, at
considerably greater length, in later chapters.

As an interesting side note, be aware that if you run DOS software under a P multitasking environment such as Windows NT timeslicing delays can make mis-
matched start address bytes or mismatched start address and pel panning settings
much more likely, for the graphics code can be interrupted at any time. This is also
possible, although much less likely, under non-multitasking environments such as
DOS, because strategically placed interrupts can cause the same sorts of prob-
lems there. For maximum safety, you should disable interrupts around the key
portions ofyour page-flipping code, although here we run into the problem that if
interrupts are disabled from the time we start looking for Display Enable until we
set the Pel Panning register, they will be offfor far too long, and keyboard, mouse,
and network events will potentially be lost. Also, disabling interrupts won 't help in
true multitasking environments, which never let a program hog the entire CPL!
This is one reason thatpelpanning, although indubitablyflashy, isn 't widely used
and should be reserved for only those cases where it j . absolutely necessary.

Waiting for the sync pulse has the side effect of causing program execution to syn-
chronize to the VGA's frame rate of 60 or 70 frames per second, depending on the
display mode. This synchronization has the useful consequence of causing the pro-
gram to execute at the same speed on any CPU that can draw fast enough to complete
the drawing in a single frame; the program just idles for the rest of each frame that it
finishes before the VGA is finished displaying the previous frame.
An important point illustrated by the sample program is that while the VGA's display
memory is far larger and more versatile than is the case with earlier adapters, it is
nonetheless a limited resource and must be used judiciously. The sample program
uses VGA memory to store two 672x384 virtual pages, leaving only 1024 bytes free to
store images. In this case, the only images needed are a colored ball and a blank block
with which to erase it, so there is no problem, but many applications require dozens
or hundreds of images. The tradeoffs between virtual page size, page flipping, and
image storage must always be kept in mind when designing programs for the VGA.
To see the program run in 640x200 16-color mode, comment out the EQU line for
MEDRES-VIDEO-MODE.

The Hazards of VGA Clones
Earlier, I said that any VGA that doesn't support the features and functionality cov-
ered in this book can't properly be called VGA compatible. I also noted that there
are some exceptions, however, and we've just come to the most prominent one. You
see, all VGAs really arecompatible with the IBM VGA's functionality when it comes to

drawing pixels into display memory; all the write modes and read modes and set/
reset capabilities and everything else involved with manipulating display memory
really does work in the same way on all VGAs and VGA clones. That compatibility
isn’t as airtight when it comes to scanning pixels out of display memory and onto the
screen in certain infrequently-used ways, however.
The areas of incompatibility of which I’m aware are illustrated by the sample pro-
gram, and may in fact have caused you to see some glitches when you ran Listing
23.1. The problem, which arises only on certain VGAs, is that some settings of the
Row Offset register cause some pixels to be dropped or displaced to the wrong place
on the screen; often, this happens only in conjunction with certain start address
settings. (In my experience, only VRAM (Video RAM)-based VGAs exhibit this prob-
lem, no doubt due to the way that pixel data is fetched from VRAM in large blocks.)
Panning and large virtual bitmaps can be made to work reliably, by careful selection
of virtual bitmap sizes and start addresses, but it’s difficult; that’s one of the reasons that
most commercial software does not use these features, although a number of games do.
The upshot is that if you’re going to use oversized virtual bitmaps and pan around
them, you should take great care to test your software on a wide variety of VRA”
and DRAM-based VGAs.

Just the Beginning
That pretty well covers the important points of the sample VGA program in Listing 23.1.
There are many VGA features we didn’t even touch on, but the object was to give you
a feel for the variety of features available on the VGA, to convey the flexibility and
complexity of the VGA’s resources, and in general to give you an initial sense of what
VGA programming is like. Starting with the next chapter, we’ll begin to explore the
VGA systematically, on a more detailed basis.

The Macro Assembler
The code in this book is written in both C and assembly. I think C is a good develop-
ment environment, but I believe that often the best code (although not necessarily
the easiest to write or the most reliable) is written in assembly. This is especially true
of graphics code for the x86 family, given segments, the string instructions, and the
asymmetric and limited register set, and for real-time programming of a complex
board like the VGA, there’s really no other choice for the lowest-level code.
Before I’m deluged with protests from C devotees, let me add that the majority of my
productive work is done in C; no programmer is immune to the laws of time, and C
is simply a more time-efficient environment in which to develop, particularly when
working in a programming team. In this book, however, we’re after the sine qua non
of PC graphics-performance-and we can’t get there from here without a fair
amount of assembly language.

Bones and Sinew 447

Now that we know what the VGA looks like in broad strokes and have a sense of what
VGA programming is like, we can start looking at specific areas in depth. In the next
chapter, we’ll take a look at the hardware assistance the VGA provides the CPU dur-
ing display memory access. There are four latches and four ALUs in those chips,
along with some useful masks and comparators, and it’s that hardware that’s the
difference between sluggish performance and making the VGA get up and dance.

	next:
	home:
	previous:

