
chapter 25

vga data machinery

Ch

k

hiker, Bit Mask, and
*&4‘#

Set/Reset
In the last chapter, amined a simplified model of data flow within the GC por-
tion of the VGA, .latches and ALUs. Now we’re ready to expand that
model to include ifter, bit mask, and the set/reset capabilities, leaving
only the write mo lored over the next few chapters.

tation
expanded model of GC data flow, featuring the barrel shifter

and bit mask circui Let’s look at the barrel shifter first. A barrel shifter is circuitry
capable of shifting-ok rotating, in the VGAs case-data an arbitrary number of bits
in a single operation, as opposed to being able to shift only one bit position at a time.
The barrel shifter in the VGA can rotate incoming CPU data up to seven bits to the
right (toward the least significant bit), with bit 0 wrapping back to bit 7, after which
the VGA continues processing the rotated byte just as it normally processes unrotated
CPU data. Thanks to the nature of barrel shifters, this rotation requires no extra
processing time over unrotated VGA operations. The number of bits by which CPU
data is shifted is controlled by bits 2-0 of GC register 3, the Data Rotate register,
which also contains the ALU function select bits (data unmodified, AND, OR, and
XOR) that we looked at in the last chapter.

463

The barrel shifter is powerful, but (as sometimes happens in this business) it sounds
more useful than it really is. This is because the GC can only rotate CPU data, a task
that the CPU itself is perfectly capable of performing. Two OUTs are needed to
select a given rotation: one to set the GC Index register, and one to set the Data
Rotate register. However, with careful programming it’s sometimes possible to leave
the GC Index always pointing to the Data Rotate register, so only one OUT is needed.
Even so, it’s often easier and/or faster to simply have the CPU rotate the data of
interest CL times than to set the Data Rotate register. (Bear in mind that a single
OUT takes from 11 to 31 cycles on a 486-and longer if the VGA is sluggish at re-
sponding to OUTS, as many VGAs are.) If only the VGA could rotate latched data,
then there would be all sorts of useful applications for rotation, but, sadly, only CPU
data can be rotated.
The drawing of bit-mapped text is one use for the barrel shifter, and I’ll demonstrate that
application below. In general, though, don’t knock yourself out trylng to figure out
how to work data rotation into your programs-itjust isn’t all that useful in most cases.

The Bit Mask
The VGA has bit mask circuitry for each of the four memory planes. The four bit masks
operate in parallel and are all driven by the same mask data for each operation, so

464 Chapter 25

Data flow through the Graphics Controller:
Figure 25.1

Data flow through the Graphics Controller:
Figure 25.1

they’re generally referred to in the singular, as “the bit mask.” Figure 25.2 illustrates
the operation of one bit of the bit mask for one plane. This circuitry occurs eight times in
the bit mask for a given plane, once for each bit of the byte written to display memory.
Briefly, the bit mask determines on a bit-by-bit basis whether the source for each byte
written to display memory is the ALU for that plane or the latch for that plane.
The bit mask is controlled by GC register 8, the Bit Mask register. If a given bit of the
Bit Mask register is 1, then the corresponding bit of data from the ALUs is written to
display memory for all four planes, while if that bit is 0, then the corresponding bit
of data from the latches for the four planes is written to display memory unchanged.
(In write mode 3, the actual bit mask that’s applied to data written to display memory
is the logical AND of the contents of the Bit Mask register and the data written by the
CPU, as we’ll see in Chapter 26.)
The most common use of the bit mask is to allow updating of selected bits within a
display memory byte. This works as follows: The display memory byte of interest is
latched; the bit mask is set to preserve all but the bit or bits to be changed; the CPU
writes to display memory, with the bit mask preserving the indicated latched bits and
allowing ALU data through to change the other bits. Remember, though, that it is
not possible to alter selected bits in a display memory byte directly; the byte must first
be latched by a CPU read, and then the bit mask can keep selected bits of the latched
byte unchanged.
Listing 25.1 shows a program that uses the bit mask data rotation capabilities of the
GC to draw bitmapped text at any screen location. The BIOS only draws characters

VGA Data Machinery 465

Bit mask operation.
Figure 25.2

on character boundaries; in 640x480 graphics mode the default font is drawn on
byte boundaries horizontally and every 16 scan lines vertically. However, with direct
bitmapped text drawing of the sort used in Listing 25.1, it's possible to draw any font
of any size anywhere on the screen (and a lot faster than via DOS or the BIOS, as well).

LISTING 25.1 125- 1 .ASM
: Program t o i l l u s t r a t e o p e r a t i o n o f d a t a r o t a t e a n d b i t mask
: f e a t u r e s o f G r a p h i c s C o n t r o l l e r . D r a w s 8 x 8 c h a r a c t e r a t
: s p e c i f i e d l o c a t i o n , u s i n g VGA's 8x8 ROM f o n t . D e s i g n e d
: f o r u s e w i t h modes OOh, OEh. OFh. 10h. and 1Zh.
: By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

VGACVIOEOCSEGMENT equ OaOOOh :VGA d i s p l a y memory segment
SCREEN-WIDTH-INCBYTES equ 044ah : o f f s e t o f BIOS v a r i a b l e
FONT-CHARACTER-SIZE equ 8 :# b y t e s i n e a c h f o n t c h a r

: VGA r e g i s t e r e q u a t e s .

GC-INDEX equ 3ceh ;GC i n d e x r e g i s t e r
GC-ROTATE equ 3 :GC d a t a r o t a t e / l o g i c a l f u n c t i o n

GC-BIT-MASK equ 8 ;GC b i t mask r e g i s t e r i n d e x

dseg segment para common 'DATA'
TEST-TEXT-ROW equ 69
TEST-TEXT-COL equ 1 7

: row t o d i s p l a y t e s t t e x t a t

TEST-TEXT-WIDTH equ 8
;co lumn t o d i s p l a y t e s t t e x t a t
: w i d t h o f a c h a r a c t e r i n p i x e l s

T e s t s t r i n g
db

l a b e l b y t e
' H e l l o , w o r l d ! ' . O : t e s t s t r i n g t o p r i n t .

F o n t P o i n t e r d d ? : f o n t o f f s e t
dseg ends

: r e g i s t e r i n d e x

: Macro t o s e t i n d e x e d r e g i s t e r INDEX o f GC c h i p t o SETTING.

SETGC macro I N D E X . SETTING
mov dx.GC-INDEX
mov ax,(SETTING SHL 8) OR INDEX
o u t d x . a x
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg, ds:dseg

mov ax ,dseg
mov ds ,ax

: S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax .012h
i n t 10h

: S e t d r i v e r t o u s e t h e 8 x 8 f o n t .

466 Chapter 25

mov a h . l l h
mov a1 .30h
mov b h , 3 : g e t 8 x 8 f o n t p o i n t e r
i n t 10h
c a l l S e l e c t F o n t

:VGA B I O S c h a r a c t e r g e n e r a t o r f u n c t i o n ,
: r e t u r n i n f o s u b f u n c t i o n

: P r i n t t h e t e s t s t r i n g .

mov s i . o f f s e t T e s t S t r i n g
mov bx.TEST_TEXT_ROW
mov cx.TEST_TEXT_COL

1 odsb
and a1 .a1

c a l l DrawChar
add cx.TEST_TEXT_WIDTH
j m p S t r i n g O u t L o o p

S t r i n g O u t L o o p :

j z S t r i ngOutDone

S t r i ngOutDone :

: R e s e t t h e d a t a r o t a t e a n d b i t mask r e g i s t e r s .

SETGC GC-ROTATE. 0
SETGC GC_EJT_MASK, O f f h

: W a i t f o r a k e y s t r o k e .

mov ah .1
i n t 21h

: R e t u r n t o t e x t mode

mov ax,03h
i n t 10h

: E x i t t o DOS.

mov ah.4ch
i n t 21h

S t a r t e n d p

: S u b r o u t i n e t o d r a w a t e x t c h a r a c t e r i n a l i n e a r g r a p h i c s mode
: (ODh, OEh. OFh. 010h. 012h) .
: F o n t u s e d s h o u l d b e p o i n t e d t o b y F o n t P o i n t e r .

: I n p u t :
: AL - c h a r a c t e r t o d r a w
: EX - row t o d r a w t e x t c h a r a c t e r a t
: C X - column t o d r a w t e x t c h a r a c t e r a t

: Forces ALU

DrawChar
push
push
push
push
push
push
push
push

f u n c t i o n t o "move".

p r o c n e a r

bx

dx

d i
s i

ds

ax

c x

bP

VGA Data Machinery 467

: S e t D S : S I t o p o i n t t o f o n t and ES t o p o i n t t o d i s p l a y memory.

I d s s i . [F o n t P o i n t e r] ; p o i n t t o f o n t
mov dx.VGA-VIDEO-SEGMENT
mov e s . d x : p o i n t t o d i s p l a y memory

: C a l c u l a t e s c r e e n a d d r e s s o f b y t e c h a r a c t e r s t a r t s i n .

push
sub
mov
xchg
mov

POP
mu1
push
mov
and
s h r
s h r

add
s h r

ds : p o i n t t o B I O S da ta segment
dx , dx
ds .dx
ax .bx
di.ds:[SCREEN-WIDTH-IN-BYTES] : r e t r i e v e B I O S

ds
d i
d i
d i . c x
c l . O l l l b
d i .1
d i .1
d i .1
d i , a x

: s c r e e n w i d t h

c a l c u l a t e o f f s e t o f s t a r t o f r o w
s e t a s i d e s c r e e n w i d t h
s e t a s i d e t h e c o l u m n
k e e p o n l y t h e c o l u m n i n - b y t e a d d r e s s

d i v i d e c o l u m n b y 8 t o make a b y t e a d d r e s s
and p o i n t t o b y t e

: C a l c u l a t e f o n t a d d r e s s o f c h a r a c t e r .

sub bh.bh
s h l b x . 1
s h l b x . 1

;assumes 8 b y t e s p e r c h a r a c t e r : u s e

s h l b x . 1
: a m u l t i p l y o t h e r w i s e
: o f f s e t i n f o n t o f c h a r a c t e r

add s i . b x : o f f s e t i n f o n t s e g m e n t o f c h a r a c t e r

: S e t u p t h e GC r o t a t i o n .

mov dx, GC-INDEX
mov a1 , GC-ROTATE
mov a h . c l
o u t d x . a x

: Set up BH as b i t mask f o r l e f t h a l f ,
: EL as r o t a t i o n f o r r i g h t h a l f .

mov b x . 0 f f f f h
s h r b h . c l
n e g c l
add c1.8
s h l b l , c l

: Draw t h e c h a r a c t e r , l e f t h a l f f i r s t , t h e n r i g h t h a l f i n t h e
; s u c c e e d i n g b y t e , u s i n g t h e d a t a r o t a t i o n t o p o s i t i o n t h e c h a r a c t e r
: a c r o s s t h e b y t e b o u n d a r y a n d t h e n u s i n g t h e b i t mask t o g e t t h e
: p r o p e r p o r t i o n o f t h e c h a r a c t e r i n t o e a c h b y t e .
; Does n o t c h e c k f o r c a s e w h e r e c h a r a c t e r i s b y t e - a l i g n e d a n d
: n o r o t a t i o n a n d o n l y o n e w r i t e i s r e q u i r e d .

mov bp.FONT-CHARACTER-SIZE
mov dx , GC-INDEX
POP c x ; g e t b a c k s c r e e n w i d t h
dec cx
dec cx ; - 2 because do t w o b y t e s f o r e a c h c h a r

468 Chapter 25

Charac te rLoop :

: S e t t h e b i t mask f o r t h e l e f t h a l f o f t h e c h a r a c t e r .

mov a1 .GC..BIT-MASK
mov ah.bh
o u t d x , a x

: G e t t h e n e x t c h a r a c t e r b y t e & w r i t e i t t o d i s p l a y memory.
; (L e f t h a l f o f c h a r a c t e r .)

mov a1 , [s i] ; g e t c h a r a c t e r b y t e
mov a h . e s : [d i l ; l o a d l a t c h e s
s t o s b ; w r i t e c h a r a c t e r b y t e

; S e t t h e b i t mask f o r t h e r i g h t h a l f o f t h e c h a r a c t e r .

mov a1 .GC~LBIT_MASK
mov ah .b l
o u t d x . a x

: G e t t h e c h a r a c t e r b y t e a g a i n
: (R i g h t h a l f o f c h a r a c t e r .)

1 odsb
mov a h . e s : [d i l
s t o s b

& w r i t e i t t o d i s p l a y memory.

; g e t c h a r a c t e r b y t e
: l o a d l a t c h e s
: w r i t e c h a r a c t e r b y t e

; P o i n t t o n e x t l i n e o f c h a r a c t e r i n d i s p l a y memory.

add d i . c x

dec bp
j n z C h a r a c t e r L o o p

POP ds
POP bp
pop d i
pop s i
POP dx
POP c x
POP b x
POP ax
r e t

DrawChar endp

: S e t t h e p o i n t e r t o t h e f o n t t o d r a w f r o m t o ES:BP.

S e l e c t F o n t p r o c n e a r
mov w o r d p t r [F o n t P o i n t e r] . b p : s a v e p o i n t e r
mov w o r d p t r [F o n t P o i n t e r + Z] . e s
r e t

S e l e c t F o n t e n d p

cseg ends
e n d s t a r t

The bit mask can be used for much more than bit-aligned fonts. For example, the bit
mask is useful for fast pixel drawing, such as that performed when drawing lines, as

VGA Data Machinery 469

we’ll see in Chapter 35. It’s also useful for drawing the edges of primitives, such as
filled polygons, that potentially involve modifylng some but not all of the pixels con-
trolled by a single byte of display memory.
Basically, the bit mask is handy whenever only some of the eight pixels in a byte of
display memory need to be changed, because it allows full use of the VGA’s four-way
parallel processing capabilities for the pixels that are to be drawn, without interfer-
ing with the pixels that are to be left unchanged. The alternative would be
plane-by-plane processing, which from a performance perspective would be undesir-
able indeed.
It’s worth pointing out again that the bit mask operates on the data in the latches,
not on the data in display memory. This makes the bit mask a flexible resource that
with a little imagination can be used for some interesting purposes. For example,
you could fill the latches with a solid background color (by writing the color some-
where in display memory, then reading that location to load the latches), and then
use the Bit Mask register (or write mode 3, as we’ll see later) as a mask through
which to draw a foreground color stencilled into the background color without read-
ing display memory first. This only works for writing whole bytes at a time (clipped
bytes require the use of the bit mask; unfortunately, we’re already using it for stencil-
ling in this case), but it completely eliminates reading display memory and does
foreground-plus-background drawing in one blurry-fast pass.

This last-described example is a good illustration of how I b! suggest you approach p the VGA: As a rich collection of hardware resources that can profitably be com-
bined in some non-obvious ways. Don ’t let yourself be limited by the obvious
applications for the latches, bit mask, write modes, read modes, map mask, ALUs,
and setheset circuitry Instead, try to imagine how they could work together to
perform whatever task you happen to need done at any given time. I ite made my
code as much as four times faster by doing this, as the discussion of Mode X in
Chapters 47-49 demonstrates.

The example code in Listing 25.1 is designed to illustrate the use of the Data Rotate
and Bit Mask registers, and is not as fast or as complete as it might be. The case
where text is byte-aligned could be detected and performed much faster, without the
use of the Bit Mask or Data Rotate registers and with only one display memory access
per font byte (to write the font byte), rather than four (to read display memory and
write the font byte to each of the two bytes the character spans). Likewise, non-
aligned text drawing could be streamlined to one display memory access per byte by
having the CPU rotate and combine the font data directly, rather than setting up the
VGA‘s hardware to do it. (Listing 25.1 was designed to illustrate VGA data rotation
and bit masking rather than the fastest way to draw text. We’ll see faster text-drawing
code soon.) One excellent rule of thumb is to minimize display memory accesses of
all types, especially reads, which tend to be considerably slower than writes. Also, in

470 Chapter 25

Listing 25.1 it would be faster to use a table lookup to calculate the bit masks for the
two halves of each character rather than the shifts used in the example.
For another (and more complex) example of drawing bit-mapped text on the VGA,
see John Cockerham’s article, “Pixel Alignment of EGA Fonts,” PC TechJournaZ, January,
198’7. Parenthetically, I’d like to pass along John’s comment about the VGA “When
programming the VGA, everything is complex.”
He’s got a point there.

The VGA’s Set/Reset Circuitry
At last we come to the final aspect of data flow through the GC on write mode 0 writes:
the set/reset circuitry. Figure 25.3 shows data flow on a write mode 0 write. The only
difference between this figure and Figure 25.1 is that on its way to each plane poten-
tially the rotated CPU data passes through the set/reset circuitry, which may or may
not replace the CPU data with set/reset data. Briefly put, the set/reset circuitry en-
ables the programmer to elect to independently replace the CPU data for each plane
with either 00 or OFFH.
What is the use of such a feature? Well, the standard way to control color is to set the
Map Mask register to enable writes to only those planes that need to be set to produce

VGA Data Machinery 471

Data flow during a write mode 0 write operation.
Figure 25.3

Dataflow during a write mode 0 write operation.
Figure 25.3

the desired color. For example, the Map Mask register would be set to 09H to draw in
high-intensity blue; here, bits 0 and 3 are set to 1, so only the blue plane (plane 0)
and the intensity plane (plane 3) are written to.
Remember, though, that planes that are disabled by the Map Mask register are not
written to or modified in any way. This means that the above approach works only if
the memory being written to is zeroed; if, however, the memory already contains
non-zero data, that data will remain in the planes disabled by the Map Mask, and the
end result will be that some planes contain the data just written and other planes
contain old data. In short, color control using the Map Mask does not force all planes
to contain the desired color. In particular, it is not possible to force some planes to
zero and other planes to one in a single write with the Map Mask register.
The program in Listing 25.2 illustrates this problem. A green pattern (plane 1 set to
1, planes 0, 2, and 3 set to 0) is first written to display memory. Display memory is then
filled with blue (only plane 0 set to 1) , with a Map Mask setting of 01H. Where the blue
crosses the green, cyan is produced, rather than blue, because the Map Mask register
setting of 01H that produces blue leaves the green plane (plane 1) unchanged. In
order to generate blue unconditionally, it would be necessary to set the Map Mask
register to OFH, clear memory, and then set the Map Mask register to 01H and fill
with blue.

LISTING 25.2 L25-2.ASM
; Program t o i l l u s t r a t e o p e r a t i o n o f Map Mask r e g i s t e r when d r a w i n g
; t o memory t h a t a l r e a d y c o n t a i n s d a t a .
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 d u p (?)

s t a c k e n d s

EGA-VIDEO-SEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX equ 3c4h ; S C i n d e x r e g i s t e r
SC-MAP-MASK equ 2 ; S C map mask r e g i s t e r

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov dx.SC-INDEX
mov a1 , I N D E X
o u t d x , a l
i n c d x
mov a1 ,SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '
assume cs:cseg

472 Chapter 25

s t a r t p r o c n e a r

: S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax .012h
i n t 10h

mov ax.EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o memory

: D r a w 2 4 1 0 - s c a n - l i n e h i g h h o r i z o n t a l b a r s i n g r e e n , 1 0 s c a n l i n e s a p a r t .

SETSC SC-MAP_MASK.OLh :map mask s e t t i n g e n a b l e s o n l y

s u b d i . d i : s t a r t a t b e g i n n i n g o f v i d e o memory
: p l a n e 1. t h e g r e e n p l a n e

mov a1 . O f f h
mov bp .24 :# b a r s t o d r a w

mov cx.80*10 ; I b y t e s p e r h o r i z o n t a l b a r
r e p s t o s b ; d r a w b a r
add d i .80*10 : p o i n t t o s t a r t o f n e x t b a r
dec bp
j n z H o r z B a r L o o p

HorzBarLoop:

: F i l l s c r e e n w i t h b l u e , u s i n g Map Mask r e g i s t e r t o e n a b l e w r i t e s
: t o b l u e p l a n e o n l y .

SETSC SC-MAP-MASK.Olh :map mask s e t t i n g e n a b l e s
: p l a n e 0. t h e b l u e p l a n e

s u b d i , d i
mov cx , 80*480 :# b y t e s p e r s c r e e n
mov a1 . O f f h
r e p s t o s b

: W a i t f o r a k e y s t r o k e .

mov
i n t

: R e s t o r e t e x t

mov
i n t

: E x i t t o 00s.

mov
i n t

s t a r t endp
cseg ends

end

ah .1
21h

mode.

ax .03h
10h

ah .4ch
21h

s t a r t

; p e r f o r m fill (a f f e c t s o n l y
: p l a n e 0. t h e b l u e p l a n e)

on1 y

Planes to a Single Color
The set/reset circuitry can be used to force some planes to 0-bits and others to 1-bits
during a single write, while letting CPU data go to still other planes, and so provides an
efficient way to set all planes to a desired color. The set/reset circuitry works as follows:

VGA Data Machinery 473

For each of the bits 0-3 in the Enable Set/Reset register (Graphics Controller regis-
ter 1) that is 1, the corresponding bit in the Set/Reset register (GC register 0) is
extended to a byte (0 or OFFH) and replaces the CPU data for the corresponding
plane. For each of the bits in the Enable Set/Reset register that is 0, the CPU data is
used unchanged for that plane (normal operation). For example, if the Enable Set/
Reset register is set to 01H and the Set/Reset register is set to 05H, then the CPU
data is replaced for plane 0 only (the blue plane), and the value it is replaced with is
OFFH (bit 0 of the Set/Reset register extended to a byte). Note that in this case, bits
1-3 of the Set/Reset register have no effect.
It is important to understand that the set/reset circuitry directly replaces CPU data
in Graphics Controller data flow. Refer back to Figure 25.3 to see that the output of
the set/reset circuitry passes through (and may be transformed by) the ALU and the bit
mask before being written to memory, and even then the Map Mask register must
enable the write. When using set/reset, it is generally desirable to set the Map Mask
register to enable all planes the set/reset circuitry is controlling, since those memory
planes which are disabled by the Map Mask register cannot be modified, and the
purpose of enabling set/reset for a plane is to force that plane to be set by the set/
reset circuitry.
Listing 25.3 illustrates the use of set/reset to force a specific color to be written. This
program is the same as that of Listing 25.2, except that set/reset rather than the Map
Mask register is used to control color. The preexisting pattern is completely ovenvrit-
ten this time, because the set/reset circuitry writes 0-bytes to planes that must be off
as well as OFFH-bytes to planes that must be on.

LISTING 25.3 125-3.ASM
; P r o g r a m t o i l l u s t r a t e o p e r a t i o n o f s e t / r e s e t c i r c u i t r y t o f o r c e
; s e t t i n g o f memory t h a t a l r e a d y c o n t a i n s d a t a .
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

EGA-VIDEORSEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX
SC-MAPLMASK equ 2

equ 3c4h ;SC i n d e x r e g i s t e r

GC-INDEX
; S C map mask r e g i s t e r

GC-SET-RESET equ 0
equ 3ceh ;GC i n d e x r e g i s t e r

GC-ENABLELSET-RESET equ 1
;GC s e t / r e s e t r e g i s t e r
;GC e n a b l e s e t / r e s e t r e g i s t e r

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov dx.SC-INDEX
mov a1 , I N D E X
o u t d x . a l

474 Chapter 25

i n c d x
mov a1 ,SETTING
o u t d x . a l
dec dx
endm

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f GC c h i p t o SETTING.

SETGC macro I N D E X . SETTING
mov dx,GC_.INOEX
mov a1 , I N D E X
o u t d x . a l
i n c d x
mov a1 .SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r
assume cs:cseg

; S e l e c t 6 4 0 x 4 8 0 g r a p h i c s mode.

mov ax.012h
i n t 10h

mov ax.EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o memory

; D r a w 2 4 1 0 - s c a n - l i n e h i g h h o r i z o n t a l b a r s i n g r e e n , 10 s c a n l i n e s a p a r t .

SETSC SC-MAP-MASK.02h ;map mask s e t t i n g e n a b l e s o n l y

s u b d i . d i ; s t a r t a t b e g i n n i n g o f v i d e o memory
mov a1 . O f f h
mov bp .24 ; I b a r s t o d r a w

mov cx .80*10 ;# b y t e s p e r h o r i z o n t a l b a r
r e p s t o s b ; d r a w b a r
add d i .80*10 ; p o i n t t o s t a r t o f n e x t b a r
dec bp
j n z H o r z B a r L o o p

; p l a n e 1. t h e g r e e n p l a n e

HorzBarLoop:

; Fill s c r e e n w i t h b l u e , u s i n g s e t / r e s e t t o f o r c e p l a n e 0 t o 1 ' s and a l l
: o t h e r p l a n e t o 0 ' s .

SETSC

SETGC

SETGC

sub
mov
mov

SC_MAPKMASK.Ofh ; m u s t s e t map mask t o e n a b l e a l l
; p l a n e s , s o s e t / r e s e t v a l u e s c a n
; b e w r i t t e n t o memory

; r e p l a c e d b y s e t / r e s e t v a l u e

; (t h e b l u e p l a n e) a n d 0 f o r o t h e r
; p l a n e s

GC-ENABLE-SET-RESET,Ofh ;CPU d a t a t o a l l p l a n e s will be

GC-SET-RESET.Olh ; s e t / r e s e t v a l u e i s O f f h f o r p l a n e 0

d i . d i
cx, 80*480 ;# b y t e s p e r s c r e e n
a1 . O f f h ; s i n c e s e t / r e s e t i s e n a b l e d f o r a l l

; p l a n e s , t h e CPU d a t a i s i g n o r e d -
; o n l y t h e a c t o f w r i t i n g i s
; i m p o r t a n t

VGA Data Machinery 475

r e p s t o s b

; T u r n o f f s e t / r e s e t .

; p e r f o r m fill (a f f e c t s a l l p l a n e s)

SETGC GC-ENABLELSET-RESET.0

; W a i t f o r a k e y s t r o k e .

mov a h , l
i n t 21h

; R e s t o r e t e x t mode.

mov ax ,03h
i n t 10h

; E x i t t o 00s.

mov ah .4ch
i n t 21h

s t a r t endp
cseg ends

end s t a r t

Manipulating Planes Individually
Listing 25.4 illustrates the use of set/reset to control only some, rather than all,
planes. Here, the set/reset circuitry forces plane 2 to 1 and planes 0 and 3 to 0. Because
bit 1 of the Enable Set/Reset register is 0, however, set/reset does not affect plane 1;
the CPU data goes unchanged to the plane 1 ALU. Consequently, the CPU data can
be used to control the value written to plane 1. Given the settings of the other three
planes, this means that each bit of CPU data that is 1 generates a brown pixel, and
each bit that is 0 generates a red pixel. Writing alternating bytes of 07H and OEOH,
then, creates a vertically striped pattern of brown and red.
In Listing 25.4, note that the vertical bars are 10 and 6 bytes wide, and do not start on
byte boundaries. Although set/reset replaces an entire byte of CPU data for a plane,
the combination of set/reset for some planes and CPU data for other planes, as in
the example above, can be used to control individual pixels.

LISTING 25.4 125-4.ASM
; Program t o i l l u s t r a t e o p e r a t i o n o f s e t / r e s e t c i r c u i t r y i n c o n j u n c t i o n
; w i t h CPU d a t a t o m o d i f y s e t t i n g o f memory t h a t a l r e a d y c o n t a i n s d a t a
; By M ichae l Ab rash .

s t a c k s e g m e n t p a r a s t a c k 'STACK'
db 512 dup(?)

s t a c k e n d s

EGA-VIDEOCSEGMENT equ OaOOOh ;EGA d i s p l a y memory segment

; EGA r e g i s t e r e q u a t e s .

SC-INDEX
SC-MAP-MASK equ 2

equ 3c4h ; S C i n d e x r e g i s t e r
; S C map mask r e g i s t e r

476 Chapter 25

GC-INDEX equ 3ceh :GC i n d e x r e g i s t e r
GC-SET-RESET equ 0 :GC s e t / r e s e t r e g i s t e r
GC-ENABLELSET-RESET equ 1 ;GC e n a b l e s e t / r e s e t r e g i s t e r

: Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f SC c h i p t o SETTING.

SETSC macro I N D E X , SETTING
mov d x , SC- INDEX
mov a1 , I N D E X
o u t d x , a l

mov a1 .SETTING
i n c dx

o u t d x . a l
dec dx
endm

; Macro t o s e t i n d e x e d r e g i s t e r I N D E X o f GC c h i p t o SETTING.

SETGC macro I N D E X , SETTING
mov dx.GC-INDEX
mov a1 , I N D E X
o u t d x . a l
i n c d x
mov a1 .SETTING
o u t d x . a l
dec dx
endm

c s e g s e g m e n t p a r a p u b l i c ' C O D E '

s t a r t p r o c n e a r

: S e l e c t 6 4 0 x 3 5 0 g r a p h i c s mode.

mov ax.010h
i n t 10h

mov ax,EGA-VIDEO-SEGMENT
mov e s . a x ; p o i n t t o v i d e o

: Draw 1 8 1 0 - s c a n - l i n e h i g h h o r i z o n t a l

SETSC SC-MAP_MASK,OEh

assume cs:cseg

p l a n e
s u b d i . d i
mov a1 . O f f h
mov bp .18

mov cx, 80*10

a d d d i . 8 0 * 1 0
r e p s t o s b

dec bp
j n z H o r z B a r L o o p

HorzBarLoop:

: F i l l s c r e e n w i t h a l t e r n a t i n g b a r s o f

memory

b a r s i n g r e e n , 1 0 s c a n l i n e s a p a r t .

:map mask s e t t i n g e n a b l e s o n l y
: p l a n e 1. t h e g r e e n

: s t a r t a t b e g i n n i n g o f v i d e o memory

;# b a r s t o d r a w

:# b y t e s p e r h o r i z o n t a l b a r

: p o i n t t o s t a r t o f n e x t b a r
: d r a w b a r

red and b rown , us ing CPU d a t a
: t o s e t p l a n e 1 a n d s e t / r e s e t t o s e t p l a n e s 0 . 2 & 3.

VGA Data Machinery 477

SETSC SCLMAPLMASK.Ofh : m u s t s e t map mask t o e n a b l e a l l
; p l a n e s , s o s e t / r e s e t v a l u e s c a n
; b e w r i t t e n t o p l a n e s 0. 2 & 3
; and CPU d a t a c a n b e w r i t t e n t o
: p l a n e 1 (t h e g r e e n p l a n e)

SETGC GCLENABLELSETLRESET.Odh ;CPU d a t a t o p l a n e s 0. 2 & 3 will be

SETGC GC-SET-RESET.04h : s e t / r e s e t v a l u e i s O f f h f o r p l a n e 2
; r e p l a c e d b y s e t / r e s e t v a l u e

; (t h e r e d p l a n e) a n d 0 f o r o t h e r
; p l a n e s

s u b d i . d i
mov cx .80*350/2 ; C w o r d s p e r s c r e e n
mov ax , 07eOh :CPU d a t a c o n t r o l s o n l y p l a n e 1;

r e p s t o s w ; p e r f o r m fill (a f f e c t s a l l p l a n e s)
: s e t / r e s e t c o n t r o l s o t h e r p l a n e s

; T u r n o f f s e t / r e s e t .

SETGC GC-ENABLE-SET-RESET.0

: W a i t f o r a k e y s t r o k e .

mov ah .1
i n t 21h

: R e s t o r e t e x t mode.

mov ax .03h
i n t 10h

: E x i t t o DOS.

mov ah .4ch
i n t 21h

s t a r t endp
cseg ends

e n d s t a r t

There is no clearly defined role for the set/reset circuitry, as there is for, say, the bit
mask. In many cases, set/reset is largely interchangeable with CPU data, particularly
with CPU data written in write mode 2 (write mode 2 operates similarly to the set/
reset circuitry, as we’ll see in Chapter 27). The most powerful use of set/reset, in my
experience, is in applications such as the example of Listing 25.4, where it is used to
force the value written to certain planes while the CPU data is written to other planes.
In general, though, think of set/reset as one more tool you have at your disposal in
getting the VGA to do what you need done, in this case a tool that lets you force all
bits in each plane to either zero or one, or pass CPU data through unchanged, on
each write to display memory. As tools go, set/reset is a handy one, and it’ll pop up
often in this book.

Notes on Set/Reset
The set/reset circuitry is not active in write modes 1 or 2. The Enable Set/Reset
register is inactive in write mode 3, but the Set/Reset register provides the primary
drawing color in write mode 3, as discussed in the next chapter.

478 Chapter 25

Be aware that because setheset directly replaces CPU data, it does not necessarily
have to force an entire display memory byte to 0 or OFFH, even when setlreset is
replacing CPU data for allplanes. For example, ifthe Bit Mask register is set to 80H,
the setheset circuitry can only modlfi bit 7 of the destination byte in each plane,
since the other seven bits will come from the latches for each plane. Similarly, the
setheset value for each plane can be modified by that plane b ALU Once again, this
illustrates that setheset merely replaces the CPU data for selectedplanes; the set/
reset value is then processed in exactly the same way that CPU data normally is.

A Brief Note on Word OUTs
In the early days of the EGA and VGA, there was considerable debate about whether
it was safe to do word OUTs (OUT D m) to set Index/Data register pairs in a
single instruction. Long ago, there were a few computers with buses that weren’t
quite PC- compatible, in that the two bytes in each word OUT went to the VGA in the
wrong order: Data register first, then Index register, with predictably disastrous re-
sults. Consequently, I generally wrote my code in those days to use two 8-bit OUTs to
set indexed registers. Later on, I made it a habit to use macros that could do either
one 16-bit OUT or two 8-bit OUTs, depending on how I chose to assemble the code,
and in fact you’ll find both ways of dealing with OUTs sprinkled through the code in
this part of the book. Using macros for word OUTs is still not a bad idea in that it
does no harm, but in my opinion it’s no longer necessary. Word OUTs are standard
now, and it’s been a long time since I’ve heard of them causing any problems.

VGA Data Machinery 479

	next:
	home:
	previous:

