

ode That Grows on You

Over the last three_x hapters, we've covered the VGA’s write path from stem to stern—
with one exceptioniThus far, we’ve only looked at how writes work in write mode 0,
the straightforward,
play memory fans out at
write mode 1, in whléh the latches are always copied unmodified, but since exactly

the same result can }x achieved by setting the Bit Mask register to 0 in write mode 0,

ry useful mode, but some of VGA’s most interesting capabilities
involve the two modes that we have yet to examine: write mode 1, and, espe-
cially, write mode 3.4We’ll get to write mode 1 in the next chapter, but right now I
want to focus on writé mode 3, which can be confusing at first, but turns out to be
quite a bit more powerful than one might initially think.

A Mode Born in Strangeness

Write mode 3 is strange indeed, and its use is not immediately obvious. The first time
I encountered write mode 3, I understood immediately how it functioned, but could
think of very few useful applications for it. As time passed, and as I came to under-
stand the atrocious performance characteristics of OUT instructions, and the
importance of text and pattern drawing as well, write mode 3 grew considerably in
my estimation. In fact, my esteem for this mode ultimately reached the point where

483

in the last major chunk of 16-color graphics code I wrote, write mode 3 was used
more than write mode 0 overall, excluding simple pixel copying. So write mode 3 is
well worth using, but to use it you must first understand it. Here’s how it works.

In write mode 3, set/reset is automatically enabled for all four planes (the Enable
Set/Reset register is ignored). The CPU data byte is rotated and then ANDed with
the contents of the Bit Mask register, and the result of this operation is used as the
contents of the Bit Mask register alone would normally be used. (If this is Greek to
you, have a look back at Chapters 23 through 25. There’s no way to understand write
mode 3 without understanding the rest of the VGA’s write data path first.)

That’s what write mode 3 does—but what is it for? It turns out that write mode 3 is
excellent for a surprisingly large number of purposes, because it makes it possible to
avoid the bane of VGA performance, OUTs. Some uses for write mode 3 include
lines, circles, and solid and two-color pattern fills. Most importantly, write mode 3 is
ideal for transparent text; that is, it makes it possible to draw text in 16-color graph-
ics mode quickly without wiping out the background in the process. (As we’ll see at
the end of this chapter, write mode 3 is potentially terrific for opaque text—text
drawn with the character box filled in with a solid color—as well.)

Listing 26.1 is a modification of code I presented in Chapter 25. That code used the
data rotate and bit mask features of the VGA to draw bit-mapped text in write mode
0. Listing 26.1 uses write mode 3 in place of the bit mask to draw bit-mapped text,
and in the process gains the useful ability to preserve the background into which the
text is being drawn. Where the original text-drawing code drew the entire character
box for each character, with 0 bits in the font pattern causing a black box to appear
around each character, the code in Listing 26.1 affects display memory only when 1
bits in the font pattern are drawn. As a result, the characters appear to be painted
into the background, rather than over it. Another advantage of the code in Listing
26.1 is that the characters can be drawn in any of the 16 available colors.

LISTING 26.1 L26-1.ASM

; Program to illustrate operation of write mode 3 of the VGA.

; Draws 8x8 characters at arbitrary locations without disturbing
; the background, using VGA's 8x8 ROM font. Designed

: for use with modes 0Dh, OEh, OFh, 10h, and 12h.

; Runs only on VGAs (in Models 50 & up and IBM Display Adapter

; and 100% compatibles).

; Assembled with MASM

s By Michael Abrash

stack segment para stack 'STACK'
db 512 dup(?)
stack ends

VGA_VIDEO_SEGMENT equ 0a000h ;VGA display memory segment
SCREEN_WIDTH_IN_BYTES equ 044ah ;offset of BIOS variable

FONT_CHARACTER_SIZE equ 8 ;# bytes in each font char

; VGA register equates.

484 Chapter 26

SC_INDEX equ 3c4h
SC_MAP_MASK equ 2
GC_INDEX equ 3ceh
GC_SET_RESET equ 0
GC_ENABLE_SET_RESET equ 1

;SC index register

;SC map mask register index

1GC index register

1GC set/reset register index

:GC enable set/reset register index

GC_ROTATE equ 3 ;GC data rotate/logical function
; register index

GC_MODE equ 5 ;GC Mode register

GC_BIT_MASK equ 8 ;GC bit mask register index

dseg segment para common 'DATA'

TEST_TEXT_ROW equ 69 irow to display test text at

TEST_TEXT_COL equ 17 ;column to display test text at

TEST_TEXT_WIDTH equ 8 ;width of a character in pixels

TestString label byte

db 'Hello, world!',0 ;test string to print.

FontPointer dd ?

dseg ends

;font offset

cseg segment para public "CODE’

assume

start proc near
mov ax,dseg
mov ds,ax

; Select 640x480 graphics mode.

mov ax,012h
int 10h

cs:cseg, ds:dseg

; Set the screen to all blue, using the readability of VGA registers

; to preserve reserved bits.

mov dx,GC_INDEX

mov al,GC_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,1 ;blue plane only set, others reset

out dx,al

dec dx

mov al,GC_ENABLE_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,0fh ;enable set/reset for all planes

out dx,al

mov dx,VGA_VIDEQ_SEGMENT

mov es,dx ;point to display memory

mov di,0

mov cx,8000h ;111 all 32k words

mov ax,0ffffh ;because of set/reset, the value
; written actually doesn't matter

rep Stosw ;fi11 with blue

; Set driver to use the 8x8 font.

mov ah,11h
mov al,30h

:VGA BIOS character generator function,
; return info subfunction

VGA Write Mode 3 485

mov bh,3 ;get 8x8 font pointer
int 10h
call Selectfont

; Print the test string, cycling through colors.

mov si,offset TestString

mov bx,TEST_TEXT_ROW

mov cx, TEST_TEXT_COL

mov ah,0 ;start with color 0
StringOutlLoop:

lodsb

and al,al

jz StringOutDone

push ax ;preserve color

call DrawChar

pop ax ;restore color

inc ah inext color

and ah,0fh ;colors range from 0 to 15

add cx, TEST_TEXT_WIDTH

Jjmp StringOutLloop

StringOutDone:

; Wait for a key., then set to text mode & end.

mov ah,1

int 21h ;wait for a key

mov ax,3

int 10h ;restore text mode
; Exit to DOS.

mov ah,4ch

int 21h

Start endp

; Subroutine to draw a text character in a linear graphics mode

; (0Dh, OEh, OFh, 010h, 012h). Background around the pixels that
; make up the character is preserved.

; Font used should be pointed to by FontPointer.

; Input:

; AL = character to draw

; AH = color to draw character in (0-15)
; BX = row to draw text character at

;o CX column to draw text character at

; Forces ALU function to "move".
; Forces write mode 3.

DrawChar proc near
push ax
push bx
push cX
push dx
push si
push di
push bp
push ds
push ax ;preserve character to draw in AL

486 Chapter 26

Set up set/reset to produce character color, using the readability

mov
mov
out
inc
in

and
and
or

out

; of VGA register to preserve the setting of reserved bits 7-4.

dx,GC_INDEX
al,GC_SET_RESET
dx,al

dx

al,dx

al,0foh

ah,0fh

al,ah

dx,al

Select write mode 3, using the readability of VGA registers

mov
mov
out
inc
in

or

out

Set DS:SI

1ds
mov
mov

pop

push
sub
mov
xchg
mov

pop
mul
push
mov
and
shr
shr
shr
add

; to leave bits other than the write mode bits unchanged.

dx,GC_INDEX
al,GC_MODE
dx,al

dx

al,dx

al,3

dx,al

to point to font and ES to point to display memory.

si,[FontPointer] ;point to font
dx,VGA_VIDEO_SEGMENT

es,dx ;point to display memory

; Calculate screen address of byte character starts in.

ax ;get back character to draw in AL
ds ;point to BIOS data segment

dx, dx

ds,dx

ax,bx

;retrieve BIOS
; screen width

di,ds:[SCREEN_WIDTH_IN_BYTES]

ds

di ;calculate offset of start of row

di ;set aside screen width

di,cx ;set aside the column

cl,0111b ;keep only the column in-byte address

di,1

di,1

di,1 ;divide column by 8 to make a byte address
di,ax ;and point to byte

Calculate font address of character.

sub
shl
shi
shl
add

bh,bh

bx,1 ;assumes 8 bytes per character; use
bx,1 ; a multiply otherwise

bx,1 ;offset in font of character

si,bx ;offset in font segment of character

Set up the GC rotation. In write mode 3, this is the rotation
of CPU data before it is ANDed with the Bit Mask register to

VGA Write Mode 3 487

488

; form the bit mask. Force the ALU function to "move"”. Uses the
; readability of VGA registers to leave reserved bits unchanged.

mov dx,GC_INDEX

mov al,GC_ROTATE
out dx,al

inc dx

in al,dx

and al,0e0h

or al,cl

out dx,al

; Set up BH as bit mask for left half, BL as rotation for right half.

mov bx,0ffffh
shr bh,cl

neg cl

add cl,8

shl bl,c?

Draw the character, left half first, then right half in the
succeeding byte, using the data rotation to position the character
across the byte boundary and then using write mode 3 to combine the
character data with the bit mask to allow the set/reset value (the
character color) through only for the proper portion (where the
font bits for the character are 1) of the character for each byte.
Wherever the font bits for the character are 0, the background

; color is preserved.

; Does not check for case where character is byte-aligned and

; no rotation and only one write is required.

mov bp,FONT_CHARACTER_SIZE
mov dx,GC_INDEX

pop (33 ;get back screen width
dec cx
dec CcX ; -2 because do two bytes for each char

CharacterLoop:

; Set the bit mask for the left half of the character.

mov al,GC_BIT_MASK
mov ah,bh
out dx,ax

; Get the next character byte & write it to display memory.
; (Left half of character.)

mov al,[si] ;get character byte
mov ah,es:[di] ;Toad latches
stosb ;Wwrite character byte

; Set the bit mask for the right half of the character.

mov al,GC_BIT_MASK
mov ah,bl
out dx,ax

; Get the character byte again & write it to display memory.
; (Right half of character.)

Chapter 26

Todsb ;get character byte
mov ah,es:[di] ;Toad latches
stosbh ;write character byte

; Point to next line of character in display memory.

add di,cx
dec bp
jnz CharacterLoop
pop ds
pop bp
pop di
pop si
pop dx
pop [
pop bx
pop ax
ret

DrawChar endp
; Set the pointer to the font to draw from to ES:BP.

SelectFont proc near

mov word ptr [FontPointerl.,bp ;save pointer
mov word ptr [FontPointer+2],es
ret
SelectFont endp
cseg ends
end start

The key to understanding Listing 26.1 is understanding the effect of ANDing the
rotated CPU data with the contents of the Bit Mask register. The CPU data is the
pattern for the character to be drawn, with bits equal to 1 indicating where character
pixels are to appear. The Data Rotate register is set to rotate the CPU data to pixel-
align it, since without rotation characters could only be drawn on byte boundaries.

p As I pointed out in Chapter 25, the CPU is perfectly capable of rotating the data itself,
and it’s often the case that that s more efficient. The problem with using the Data
Rotate register is that the OUT that sets that register is time-consuming, espe-
cially for proportional text, which requires a different rotation for each character.
Also, if the code performs full-byte accesses to display memory—that is, if it com-
bines pieces of two adjacent characters into one byte—whenever possible for
efficiency, the CPU generally has to do extra work to prepare the data so the VGA s
rotator can handle it.

At the same time that the Data Rotate register is set, the Bit Mask register is set to
allow the CPU to modify only that portion of the display memory byte accessed that
the pixel-aligned character falls in, so that other characters and/or graphics data won’t
be wiped out. The result of ANDing the rotated CPU data byte with the contents of
the Bit Mask register is a bit mask that allows only the bits equal to 1 in the original

VGA Write Mode 3 489

character pattern (rotated and masked to provide pixel alignment) to be modified
by the CPU; all other bits come straight from the latches. The latches should have
previously been loaded from the target address, so the effect of the ultimate synthe-
sized bit mask value is to allow the CPU to modify only those pixels in display memory
that correspond to the 1 bits in that part of the pixel-aligned character that falls in
the currently addressed byte. The color of the pixels set by the CPU is determined by
the contents of the Set/Reset register.

Whew. It sounds complex, but given an understanding of what the data rotator, set/
reset, and the bit mask do, it’s not that bad. One good way to make sense of it is to
refer to the original text-drawing program in Listing 25.1 back in Chapter 25, and
then see how Listing 26.1 differs from that program.

It’s worth noting that the results generated by Listing 26.1 could have been accomplished
without write mode 3. Write mode 0 could have been used instead, but at a significant
performance cost. Instead of letting write mode 3 rotate the CPU data and AND it with
the contents of the Bit Mask register, the CPU could simply have rotated the CPU data
directly and ANDed it with the value destined for the Bit Mask register and then set the
Bit Mask register to the resulting value. Additionally, enable set/reset could have been
forced on for all planes, emulating what write mode 3 does to provide pixel colors.

The write mode 3 approach used in Listing 26.1 can be efficiently extended to draw-
ing large blocks of text. For example, suppose that we were to draw a line of
8-pixel-wide bit-mapped text 40 characters long. We could then set up the bit mask
and data rotation as appropriate for the left portion of each bit-aligned character
(the portion of each character to the left of the byte boundary) and then draw the
left portions only of all 40 characters in write mode 3. Then the bit mask could be set
up for the right portion of each character, and the right portions of all 40 characters
could be drawn. The VGA's fast rotator would be used to do all rotation, and the only
OUTs required would be those required to set the bit mask and data rotation. This
technique could well outperform single-character bit-mapped text drivers such as
the one in Listing 26.1 by a significant margin. Listing 26.2 illustrates one implemen-
tation of such an approach. Incidentally, note the use of the 8x14 ROM font in Listing
26.2, rather than the 88 ROM font used in Listing 26.1. There is also an 8x16 font
stored in ROM, along with the tables used to alter the 8x14 and 8x16 ROM fonts into
9x14 and 9x16 fonts.

LISTING 26.2 L26-2.ASM

s Program to illustrate high-speed text-drawing operation of
write mode 3 of the VGA.
Draws a string of 8x14 characters at arbitrary locations
without disturbing the background, using VGA's 8x14 ROM font.

; Designed for use with modes 0Dh, OEh, OFh, 10h, and 12h.

; Runs only on VGAs (in Models 50 & up and IBM Display Adapter

; and 100% compatibles).

; Assembled with MASM

; By Michael Abrash

490 Chapter 26

stack segment para stack 'STACK'
db 512 dup(?)
stack ends

VGA_VIDEQ_SEGMENT equ 0a000h ;VGA display memory segment

SCREEN_WIDTH_IN_BYTES equ 044ah ;offset of BIOS variable

FONT_CHARACTER_SIZE equ 14 :# bytes in each font char

; VGA register equates.

SC_INDEX equ 3cdh ;SC index register

SC_MAP_MASK equ 2 ;SC map mask register index
GC_INDEX equ 3ceh ;GC index register
GC_SET_RESET equ 0 :GC set/reset register index
GC_ENABLE_SET_RESET equ 1 ;:GC enable set/reset register index
GC_ROTATE equ 3 ;GC data rotate/logical function
; register index

GC_MODE equ 5 ;GC Mode register
GC_BIT_MASK equ 8 ;GC bit mask register index
dseg segment para common 'DATA’
TEST_TEXT_ROW equ 69 ;row to display test text at
TEST_TEXT_COL equ 17 ;column to display test text at
TEST_TEXT_COLOR equ 0fh ;high intensity white
TestString Tabel byte

db ‘Hello, world!’',0 ;test string to print.
FontPointer dd ? ;font offset

dseg ends
cseg segment para public 'CODE’
assume cs:cseg, ds:dseg

start proc near
mov ax,dseg
mov ds,ax

; Select 640x480 graphics mode.

mov ax,012h
int 10h

: Set the screen to all blue, using the readability of VGA registers
; to preserve reserved bits.

mov dx,GC_INDEX

mov al,GC_SET_RESET

out dx,al

inc dx

in al,dx

and al,0f0h

or al,l1 :blue plane only set, others reset
out dx,al

dec dx

mov al,GC_ENABLE_SET_RESET

out dx,al

inc dx

in al,dx

and al,0foh

or al,0fh ;enable set/reset for all planes
out dx,al

mov dx,VGA_VIDEO_SEGMENT

VGA Write Mode 3 491

mov es,dx ;point to display memory

mov di,o0
mov cx,8000h ;111 all 32k words
mov ax,0ffffh ;because of set/reset, the value
; written actually doesn't matter
rep stosw ;fi11 with blue
; Set driver to use the 8x14 font.
mov ah,1llh ;VGA BIOS character generator function,
mov al,30h ; return info subfunction
mov bh,2 ;get 8x14 font pointer

int 10h
call SelectFont

; Print the test string.

mov si,offset TestString
mov bx, TEST_TEXT_ROW
mov cx, TEST_TEXT_COL
mov ah,TEST_TEXT_COLOR
call DrawString
; Wait for a key, then set to text mode & end.

mov ah,1

int 21h ;wait for a key

mov ax,3

int 10h ;restore text mode
; Exit to DOS.

mov ah,4ch

int 21h

Start endp

; Subroutine to draw a text string left-to-right in a linear
; graphics mode (ODh, OEh, OFh, 010h, 012h) with 8-dot-wide
; characters. Background around the pixels that make up the
; characters is preserved.

; Font used should be pointed to by FontPointer.

; Input:

s AH = color to draw string in

; BX = row to draw string on

; CX = column to start string at
; DS:SI = string to draw

; Forces ALU function to "move”.
; Forces write mode 3.

DrawString proc near
push ax
push bx
push cx
push dx
push si
push di
push bp
push ds

492 Chapter 26

; Set up set/reset to produce character color, using the readability
; of VGA register to preserve the setting of reserved bits 7-4.

mov dx,GC_INDEX

mov al,GC_SET RESET
out dx,al

inc dx

in al,dx

and al,0f0h

and ah,0fh

or al,ah

out dx,al

; Select write mode 3, using the readability of VGA registers
; to leave bits other than the write mode bits unchanged.

mov dx,GC_INDEX

mov al,GC_MODE

out dx,al

inc dx

in al,dx

or al,3

out dx,al

mov dx,VGA_VIDEO SEGMENT

mov es,dx ;point to display memory

; Calculate screen address of byte character starts in.

push ds ;point to BIOS data segment
sub dx,dx
mov ds,dx

mov di,ds:[SCREEN_WIDTH_IN_BYTES] ;retrieve BIOS
; screen width

pop ds

mov ax,bx iTow

mul di ;calculate offset of start of row

push di ;set aside screen width

mov di,cx ;set aside the column

and cl,0111b ;keep only the column in-byte address

shr di,1

shr di,1

shr di,1 idivide column by 8 to make a byte address
add di,ax ;and point to byte

; Set up the GC rotation. In write mode 3, this is the rotation
of CPU data before it is ANDed with the Bit Mask register to

; form the bit mask. Force the ALU function to "move”. Uses the
readability of VGA registers to leave reserved bits unchanged.

mov dx,GC_INDEX

mov al,GC_ROTATE
out dx,al

inc dx

in al,dx

and al,0e0h

or al,cl

out dx,al

; Set up BH as bit mask for left half, BL as rotation for right half.

VGA Write Mode 3 493

mov bx,0ffffh

shr bh,cl
neg cl

add cl,8
shl b1,c1

; Draw all characters, left portion first, then right portion in the
; succeeding byte, using the data rotation to position the character
; across the byte boundary and then using write mode 3 to combine the
; character data with the bit mask to allow the set/reset value (the
; character color) through only for the proper portion (where the

; font bits for the character are 1) of the character for each byte.
; Wherever the font bits for the character are 0, the background

; color is preserved.

; Does not check for case where character is byte-aligned and

; no rotation and only one write is required.

; Draw the left portion of each character in the string.

pop cx ;get back screen width
push si
push di
push bx

; Set the bit mask for the left half of the character.

mov dx,GC_INDEX
mov al,GC_BIT_MASK

mov ah,bh

out dx,ax
LeftHalfLoop:

Todsb

and al,al

jz LeftHalflLoopDone

call CharacterUp

inc di ;point to next character location

Jjmp LeftHalfLoop
LeftHalflLoopDone:

pop bx

pop di

pop si

; Draw the right portion of each character in the string.
inc di ;right portion of each character is across
; byte boundary

; Set the bit mask for the right half of the character.

mov dx,GC_INDEX

mov al,GC_BIT_MASK

mov ah,bl

out dx, ax
RightHalflLoop:

Todsb

and al,al

jz RightHalfLoopDone

call CharacterUp

inc di ;point to next character location

Jmp RightHalflLoop

494 Chapter 26

RightHalfLoopDone:

pop
pop
pop
pop
pop
pop
pop
pop
ret
DrawString

endp

; Draw a character.

; Input:

; AL = character
i CX = screen width
; ES:DI = address to draw character at

CharacterUp
push
push
push
push

proc near
cx
si
di
ds

; Set DS:SI to point to font and ES to point to dispiay memory.

1ds

si,[FontPointer] ;point to font

; Calculate font address of character.

mov
mul
add

mov
dec
Characterioop:
Todsb
mov
stosb

; Point to next
add

dec
jnz

pop
pop
pop
pop
ret
CharacterUp

b1,14 ;14 bytes per character
b1
si,ax ;offset in font segment of character

bp,FONT_CHARACTER_SIZE
cx ; -1 because one byte per char

;get character byte
ah,es:[di] ;1oad latches

;write character byte
line of character in display memory.

di,cx

bp
CharacterLoop

ds
di
si
CX

endp

; Set the pointer to the font to draw from to ES:BP.

SelectFont
mov

proc near
word ptr [FontPointer],bp ;save pointer

VGA Write Mode 3 495

mov word ptr [FontPointer+2],es
ret

SelectFont endp
cseqg ends
end start

In this chapter, I've tried to give you a feel for how write mode 3 works and what it
might be used for, rather than providing polished, optimized, plug-it-in-and-go code.
Like the rest of the VGA’s write path, write mode 3 is a resource that can be used in
aremarkable variety of ways, and I don’t want to lock you into thinking of it as useful
in just one context. Instead, you should take the time to thoroughly understand
what write mode 3 does, and then, when you do VGA programming, think about
how write mode 3 can best be applied to the task at hand. Because I focused on
illustrating the operation of write mode 3, neither listing in this chapter is the fastest
way to accomplish the desired result. For example, Listing 26.2 could be made nearly
twice as fast by simply having the CPU rotate, mask, and join the bytes from adjacent
characters, then draw the combined bytes to display memory in a single operation.

Similarly, Listing 26.1 is designed to illustrate write mode 3 and its interaction with
the rest of the VGA as a contrast to Listing 25.1 in Chapter 25, rather than for maxi-
mum speed, and it could be made considerably more efficient. If we were going for
performance, we’d have the CPU not only rotate the bytes into position, but also do
the masking by ANDing in software. Even more significantly, we would have the CPU
combine adjacent characters into complete, rotated bytes whenever possible, so that
only one drawing operation would be required per byte of display memory modi-
fied. By doing this, we would eliminate all per-character OUTs, and would minimize
display memory accesses, approximately doubling text-drawing speed.

As a final note, consider that non-transparent text could also be accelerated with write
mode 3. The latches could be filled with the background (text box) color, set/reset
could be set to the foreground (text) color, and write mode 3 could then be used to turn
monochrome text bytes written by the CPU into characters on the screen with just
one write per byte. There are complications, such as drawing partial bytes, and rotat-
ing the bytes to align the characters, which we’ll revisit later on in Chapter 55, while
we’re working through the details of the X-Sharp library. Nonetheless, the perfor-
mance benefit of this approach can be a speedup of as much as four times—all
thanks to the decidedly quirky but surprisingly powerful and flexible write mode 3.

A Note on Preserving Register Bits

If you take a quick look, you'll see that the code in Listing 26.1 uses the readable
register feature of the VGA to preserve reserved bits and bits other than those being
modified. Older adapters such as the CGA and EGA had few readable registers, so it
was necessary to set all bits in a register whenever that register was modified. Happily, all

496 Chapter 26

Previous Home Next

VGA registers are readable, which makes it possible to change only those bits of

immediate interest, and, in general, I highly recommend doing exactly that, since
IBM (or clone manufacturers) may well someday use some of those reserved bits or
change the meanings of some of the bits that are currently in use.

VGA Write Mode 3 497

	next:
	previous:
	home:

