Saving Screens
and Other
VGA Mysteries

seful Ny

There are a num

gets from the VGA Zen File

r of VGA graphics topics that aren’t quite involved enough to

headscratching—ancf
place, and during the & 5t this chapter we’ll touch on saving and restoring 16-
color EGA and VGA §creens, the 16-out-of-64 colors issue, and techniques involved

Saving an

The memory architektures of EGAs and VGAs are similar enough to treat both to-
gether in this regard. The basic principle for saving EGA and VGA 16-color graphics
screens is astonishingly simple: Write each plane to disk separately. Let’s take a look
at how this works in the EGA’s hi-res mode 10H, which provides 16 colors at 640x350.

All we need do is enable reads from plane 0 and write the 28,000 bytes of plane 0 that
are displayed in mode 10H to disk, then enable reads from plane 1 and write the
displayed portion of that plane to disk, and so on for planes 2 and 3. The resultis a
file that’s 112,000 (28,000 * 4) bytes long, with the planes stored as four distinct
28,000-byte blocks, as shown in Figure 29.1.

The program shown later on in Listing 29.1 does just what I've described here, put-
ting the screen into mode 10H, putting up some bit- mapped text so there is something

541

EGA/VGA Display Memory File SNAPSHOT.SCR

Displayed portion of plane O, l_::: >l 28,000 bytes
starting at A000:0000 when from plan):O
the Read Map register = 0

Displayed portion of plane 1, l:_l" >H 28,000 bytes
starting at A000:0000 when from plcn):l
the Read Map register = 1

Displayed portion of plane 2, l:j‘)l 28,000 bytes
starting at A000:0000 when from plane 2
the Read Map register = 2

Displayed portion of plane 3, ':—l_l >l 28,000 bytes
starting at A000:0000 when from p|unf3
the Read Map register = 3

Saving EGA/VGA display memory.
Figure 29.1

to save, and creating the 112K file SNAPSHOT.SCR, which contains the visible por-
tion of the mode 10H frame buffer.

The only part of Listing 29.1 that’s even remotely tricky is the use of the Read Map
register (Graphics Controller register 4) to make each of the four planes of display
memory readable in turn. The same code is used to write 28,000 bytes of display
memory to disk four times, and 28,000 bytes of memory starting at A000:0000 are
written to disk each time; however, a different plane is read each time, thanks to the
changing setting of the Read Map register. (If this is unclear, refer back to Figure
29.1; you may also want to reread Chapter 28 to brush up on the operation of the
Read Map register in particular and reading EGA and VGA memory in general.)

Of course, we’ll want the ability to restore what we’ve saved, and Listing 29.2 does
this. Listing 29.2 reverses the action of Listing 29.1, selecting mode 10H and then
loading 28,000 bytes from SNAPSHOT.SCR into each plane of display memory. The
Map Mask register (Sequence Controller register 2) is used to select the plane to be
written to. If your computer is slow enough, you can see the colors of the text change

542 Chapter 29

as each plane is loaded when Listing 29.2 runs. Note that Listing 29.2 does not itself
draw any text, but rather simply loads the bit map saved by Listing 29.1 back into the
mode 10H frame buffer.

LISTING 29.1 L29-1.ASM

; Program to put up a mode 10h EGA graphics screen, then save it
; to the file SNAPSHOT.SCR.

VGA_SEGMENT equ 0a000h

GC_INDEX equ 3ceh ;Graphics Controller Index register
READ_MAP equ 4 ;Read Map register index in GC
DISPLAYED_SCREEN_SIZE equ (640/8)*350 ;# of displayed bytes per plane in a
; hi-res graphics screen
stack segment para stack 'STACK'
db 512 dup (?)
stack ends
Data segment word 'DATA’
SampleText db 'This is bit-mapped text, drawn in hi-res '
db 'EGA graphics mode 10h.', 0dh, Oah, 0ah
db 'Saving the screen (including this text)...'
db 0dh, 0Oah, '$'
Filename db 'SNAPSHOT.SCR',0 ;name of file we're saving to
ErrMsgl db ***%% Couldn''t open SNAPSHOT.SCR **=*' QOdh,0ah,'$"’
ErrMsg2 db "***% Error writing to SNAPSHOT.SCR ***' 0dh,0ah,'$’
WaitKeyMsg db 0dh, Oah, 'Done. Press any key to end...’',0dh,Qah,'$’
Handle dw ? ;handle of file we're saving to
Plane db ? ;:plane being read
Data ends
Code segment
assume cs:Code, ds:Data
Start proc near
mov ax,Data
mov ds,ax

; Go to hi-res graphics mode.

mov ax,10h ;AH = 0 means mode set, AL = 10h selects
; hi-res graphics mode
int 10h ;BI0S video interrupt

; Put up some text, so the screen isn't empty.

mov ah,9 ;DOS print string function
mov dx,offset SampleText
int 21h

; Delete SNAPSHOT.SCR if it exists.

mov ah,4lh ;DOS unlink file function
mov dx,offset Filename
int 21h

; Create the file SNAPSHOT.SCR.

mov ah,3ch ;D0S create file function

Saving Screens and Other VGA Mysteries

543

mov
sub
int
mov
jnc
mov
mov
int
Jmp

dx,offset Filename

CX,CX :make it a normal file

21h

[Handle],ax ;save the handle

SaveTheScreen ;we're ready to save if no error

ah,9 ;DOS print string function
dx,offset ErrMsgl

21h ;notify of the error

short Done ;and done

; Loop through the 4 planes, making each readable in turn and
; writing it to disk. Note that all 4 planes are readable at
; A000:0000; the Read Map register selects which plane is readable

; at any one time.

H

SaveTheScreen:
mov

Saveloop:
mov
mov
out
inc
mov

out
mov
mov
mov
sub
push
mov
mov
int
pop
cmp
jz
mov
mov
int
jmp
SaveLoopBottom:
mov
inc
mov
cmp
jbe
; Close SNAPSHOT.SCR.
DoClose:
mov
mov
int
; Wait for a keypress.
mov
mov
int
mov

544 Chapter 29

[P1ane],0 ;start with plane 0

dx,GC_INDEX
al,READ_MAP ;set GC Index to Read Map register
dx,al

dx
al,[Plane] ;get the # of the plane we want
; to save
dx,al ;set to read from the desired plane
ah,40h ;DOS write to file function
bx,[Handle]
cx,DISPLAYED_SCREEN_SIZE ;i# of bytes to save
dx,dx ;write all displayed bytes at A000:0000
ds
si,VGA_SEGMENT
ds,si
21h ;write the displayed portion of this plane
ds
ax,DISPLAYED_SCREEN_SIZE ;did all bytes get written?
SavelLoopBottom
ah,9 ;D0S print string function
dx,offset ErrMsg2
21h ;notify about the error
short DoClose ;and done
al,[Plane]
ax ;point to the next plane
[Planel,al
al,3 ;have we done all planes?
Saveloop ;no, so do the next plane
ah,3eh ;D0S close file function
bx,[Handle]
21h
ah,9 ;DOS print string function
dx,offset WaitKeyMsg
21h ;prompt
ah,8 ;D0S input without echo function

int 21h
; Restore text mode.

i

mov ax,3
int 10h
; Done.
Done:
mov ah,4ch ;DOS terminate function
int 21h
Start endp
Code ends
end Start

LISTING 29.2 129-2.ASM

; Program to restore a mode 10h EGA graphics screen from
; the file SNAPSHOT.SCR.

VGA_SEGMENT equ 0a000h
SC_INDEX equ 3cé4h ;Sequence Controller Index register
MAP_MASK equ 2 ;Map Mask register index in SC
DISPLAYED_SCREEN_SIZE equ (640/8)*350 ;# of displayed bytes per plane in a
; hi-res graphics screen
stack segment para stack 'STACK'
db 512 dup (?)

stack ends
Data segment word 'DATA’
Filename db *SNAPSHOT.SCR',0 ;name of file we're restoring from
ErrMsgl db t***% Couldn''t open SNAPSHOT.SCR ***' (odh,0ah,'$'
ErrMsg2 db '*** Error reading from SNAPSHOT.SCR ***' 0dh,0ah,'$’
WaitKeyMsg db 0dh, Oah, 'Done. Press any key to end...',0dh,0ah,'$"
Handle dw ? ;handle of file we're restoring from
Plane db ? ;plane being written
Data ends
Code segment

assume cs:Code, ds:Data
Start proc near

mov ax,Data

mov ds,ax

; Go to hi-res graphics mode.

H

mov ax,10h ;AH = 0 means mode set, AL = 10h selects
; hi-res graphics mode
int 10h ;BIOS video interrupt

; Open SNAPSHOT.SCR.

mov ah,3dh ;DOS open file function

mov dx,offset Filename

sub al,al ;open for reading

int 21h

mov [Handle].ax ;save the handle

jnc RestoreTheScreen ;we're ready to restore if no error
mov ah,9 ;:DOS print string function

Saving Screens and Other VGA Mysteries 545

mov dx,offset ErrMsgl
int 21h ;notify of the error
Jjmp short Done ;and done

; Loop through the 4 planes, making each writable in turn and

; reading it from disk. Note that all 4 planes are writabie at

; AD00:0000; the Map Mask register selects which planes are readable
; at any one time. We only make one plane readable at a time.

RestoreTheScreen:

mov [Plane],0 ;start with plane 0
Restoreloop:
mov dx,SC_INDEX
mov al,MAP_MASK ;set SC Index to Map Mask register
out dx,al
inc dx
mov cl,[Plane] ;get the # of the plane we want
i to restore
mov al,1
shl al,cl ;set the bit enabling writes to
; only the one desired plane
out dx,al ;set to read from desired plane
mov ah,3fh :D0S read from file function
mov bx,[Handle]
mov cx,DISPLAYED_SCREEN_SIZE ;# of bytes to read
sub dx,dx ;start loading bytes at A000:0000
push ds
mov si,VGA_SEGMENT
mov ds,si
int 21h ;read the displayed portion of this plane
pop ds
jc ReadError
cmp ax,DISPLAYED_SCREEN_SIZE ;did all bytes get read?
jz RestorelLoopBottom
ReadError:
mov ah,9 ;D0S print string function
mov dx,offset ErrMsg2
int 21h ;notify about the error
jmp short DoClose ;and done
RestoreloopBottom:
mov al,[Planel
inc ax ;point to the next plane
mov [Plane],al
cmp al,3 ;have we done all planes?
jbe RestorelLoop ;no, so do the next plane
; Close SNAPSHOT.SCR.
DoClose:
mov ah,3eh ;D0S close file function
mov bx,[Handle]
int 21h
; Wait for a keypress.
mov ah,8 ;D0S input without echo function

int 21h

; Restore text mode.

546 Chapter 29

mov ax,3

int 1ch
; Done.
Done:
mov ah,4ch ;D0S terminate function
int 21h
Start endp
Code ends
end Start

If you compare Listings 29.1 and 29.2, you will see that the Map Mask register setting
used to load a given plane does not match the Read Map register setting used to read
that plane. This is so because while only one plane can ever be read at a time, any-
where from zero to four planes can be written to at once; consequently, Read Map
register settings are plane selections from 0 to 3, while Map Mask register settings
are plane masks from 0 to 15, where a bit 0 setting of 1 enables writes to plane 0, a bit
1 setting of 1 enables writes to plane 1, and so on. Again, Chapter 28 provides a
detailed explanation of the differences between the Read Map and Map Mask regis-
ters.

Screen saving and restoring is pretty simple, eh? There are a few caveats, of course,
but nothing serious. First, the adapter’s registers must be programmed properly in
order for screen saving and restoring to work. For screen saving, you must be in read
mode 0; if you’re in color compare mode, there’s no telling what bit pattern you’ll
save, but it certainly won’t be the desired screen image. For screen restoring, you
must be in write mode 0, with the Bit Mask register set to OFFH and Data Rotate
register set to 0 (no data rotation and the logical function set to pass the data through
unchanged).

p While these requirements are no problem if you re simply calling a subroutine in
order to save an image from your program, they pose a considerable problem if
you re designing a hot-key operated TSR that can capture a screen image at any
time. With the EGA specifically, there’s never any way to tell what state the regis-
ters are currently in, since the registers aren 't readable. (More on this issue later
in this chapter) As a result, any TSR that sets the Bit Mask to OFFH, the Data
Rotate register to 0, and so on runs the risk of interfering with the drawing code of
the program that s already running.

What’s the solution? Frankly, the solution is to get VGA-specific. A TSR designed for
the VGA can simply read out and save the state of the registers of interest, program
those registers as needed, save the screen image, and restore the original settings.
From a programmer’s perspective, readable registers are certainly near the top of
the list of things to like about the VGA! The remaining installed base of EGAs is
steadily dwindling, and you may be able to ignore it as a market today, as you couldn’t
even a year or two ago.

Saving Screens and Other VGA Mysteries 547

If you are going to write a hi-res VGA version of the screen capture program, be sure
to account for the increased size of the VGA’s mode 12H bit map. The mode 12H
(640%x480) screen uses 37.5K per plane of display memory, so for mode 12H the
displayed screen size equate in Listings 29.1 and 29.2 should be changed to:

DISPLAYED_SCREEN_SIZE equ (640/8)*480

Similarly, if you’re capturing a graphics screen that starts at an offset other than 0 in
the segment at AOOOH, you must change the memory offset used by the disk func-
tions to match. You can, if you so desire, read the start offset of the display memory
providing the information shown on the screen from the Start Address registers (CRT
Controller registers 0CH and 0DH); these registers are readable even on an EGA.

Finally, be aware that the screen capture and restore programs in Listings 29.1 and 29.2
are only appropriate for EGA/VGA modes 0DH, OEH, 0FH, 010H, and 012H, since they
assume a four- plane configuration of EGA/VGA memory. In all text modes and in CGA
graphics modes, and in VGA modes 11H and 13H as well, display memory can simply be
written to disk and read back as a linear block of memory, just like a normal array.

While Listings 29.1 and 29.2 are written in assembly, the principles they illustrate apply
equally well to high-level languages. In fact, there’s no need for any assembly at all when
saving an EGA/VGA screen, as long as the high-level language you’re using can perform
direct port I/O to set up the adapter and can read and write display memory directly.

EGA, though: After you ve completed the save or restore operation, be sure to put
any registers that you ve changed back to their default settings. Some high-level
languages (and the BIOS as well) assume that various registers are left in a cer-
tain state, so on the EGA it’s safest to leave the registers in their most likely state.
On the VGA, of course, you can just read the registers out before you change them,
then put them back the way you found them when you 're done.

16 Colors out of 64

How does one produce the 64 colors from which the 16 colors displayed by the EGA
can be chosen? The answer is simple enough: There’s a BIOS function that lets you
select the mapping of the 16 possible pixel values to the 64 possible colors. Let’s lay
out a bit of background before proceeding, however.

*’p One tip if you re saving and restoring the screen from a high-level language on an

The EGA sends pixel information to the monitor on 6 pins. This means that there are 2
to the 6th, or 64 possible colors that an EGA can generate. However, for compatibil-
ity with pre-EGA monitors, in 200-scan-line modes Enhanced Color Display-compatible
monitors ignore two of the signals. As a result, in CGA-compatible modes (modes 4,
5, 6, and the 200-scan-line versions of modes 0, 1, 2, and 3) you can select from only
16 colors (although the colors can still be remapped, as described below). If you're
not hooked up to a monitor capable of displaying 350 scan lines (such as the old

548 Chapter 29

IBM Color Display), you can never select from more than 16 colors, since those
monitors only accept four input signals. For now, we’ll assume we’re in one of the
350-scan line color modes, a group which includes mode 10H and the 350-scan-line
versions of modes 0, 1, 2, and 3.

Each pixel comes out of memory (or, in text mode, out of the attribute-handling
portion of the EGA) as a 4-bit value, denoting 1 of 16 possible colors. In graphics
modes, the 4-bit pixel value is made up of one bit from each plane, with 8 pixels’
worth of data stored at any given byte address in display memory. Normally, we think
of the 4-bit value of a pixel as being that pixel’s color, so a pixel value of 0 is black, a
pixel value of 1 is blue, and so on, as if that’s a built-in feature of the EGA.

Actually, though, the correspondence of pixel values to color is absolutely arbitrary,
depending solely on how the color-mapping portion of the EGA containing the pal-
ette registers is programmed. If you cared to have color 0 be bright red and color 1
be black, that could easily be arranged, as could a mapping in which all 16 colors
were yellow. What’s more, these mappings affect text-mode characters as readily as
they do graphics-mode pixels, so you could map text attribute 0 to white and text
attribute 15 to black to produce a black on white display, if you wished.

Each of the 16 palette registers stores the mapping of one of the 16 possible 4-bit pixel
values from memory to one of 64 possible 6-bit pixel values to be sent to the monitor
as video data, as shown in Figure 29.2. A 4-bit pixel value of 0 causes the 6-bit value

Palette Registers -
6-bit color
6-bit color
6-bit color 6 bits per pixel
6-bit color 3y fo the display,
6-bit color from the palette
6-bit color register selected
6-bit color by the 4-bit
6-bit color pixel value
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color
6-bit color

4 bits per pixel

from display .
memory or from

a text attribute,

used to look up a
palette register

TMUO®PP>POONGCLEWN —~O

Color translation via the palette registers.
Figure 29.2

Saving Screens and Other VGA Mysteries 549

stored in palette register O to be sent to the display as the color of that pixel, a pixel
value of 1 causes the contents of palette register 1 to be sent to the display, and so on.
Since there are only four input bits, it stands to reason that only 16 colors are avail-
able at any one time; since there are six output bits, however, those 16 colors can be
mapped to any of 64 colors. The mapping for each of the 16 pixel values is controlled by
the lower six bits of the corresponding palette register, as shown in Figure 29.3.
Secondary red, green, and blue are less-intense versions of red, green, and blue,
although their exact effects vary from monitor to monitor. The best way to figure out
what the 64 colors look like on your monitor is to see them, and that’s just what the
program in Listing 29.3, which we’ll discuss shortly, lets you do.

How does one go about setting the palette registers? Well, it’s certainly possible to set
the palette registers directly by addressing them at registers 0 through OFH of the
Attribute Controller. However, setting the palette registers is a bit tricky—bit 5 of the
Attribute Controller Index register must be 0 while the palette registers are written
to, and glitches can occur if the updating doesn’t take place during the blanking
interval—and besides, it turns out that there’s no need at all to go straight to the
hardware on this one. Conveniently, the EGA BIOS provides us with video function
10H, which supports setting either any one palette register or all 16 palette registers
(and the overscan register as well) with a single video interrupt.

Video function 10H is invoked by performing an INT 10H with AH set to 10H. If AL
is 0 (subfunction 0), then BL contains the number of the palette register to set, and
BH contains the value to set that register to. If AL is 1 (subfunction 1), then BH
contains the value to set the overscan (border) color to. Finally, if AL is 2 (subfunction
2), then ES:DX points to a 17-byte array containing the values to set palette registers
0-15 and the overscan register to. (For completeness, although it’s unrelated to the
palette registers, there is one more subfunction of video function 10H. If AL = 3

Palette . . \
=2 DENIE

Bt 7 6 5 4 3 2 1 0

R' = secondary red
G' = secondary green
B' = secondary blue
R =re

G =green
B= lﬂue

Bit organization within a palette register.
Figure 29.3

550 Chapter 29

(subfunction 3), bit 0 of BL is set to 1 to cause bit 7 of text attributes to select blink-
ing, or set to 0 to cause bit 7 of text attributes to select high-intensity reverse video.)

Listing 29.3 uses video function 10H, subfunction 2 to step through all 64 possible
colors. This is accomplished by putting up 16 color bars, one for each of the 16
possible 4-bit pixel values, then changing the mapping provided by the palette registers
to select a different group of 16 colors from the set of 64 each time a key is pressed.
Initially, colors 0-15 are displayed, then 1-16, then 2-17, and so on up to color 3FH
wrapping around to colors 0-14, and finally back to colors 0-15. (By the way, at mode
set time the 16 palette registers are not set to colors 0-15, but rather to O0H, 1H, 2H,
3H, 4H, 5H, 14H, 7H, 38H, 39H, 3AH, 3BH, 3CH, 3DH, 3EH, and 3FH, respectively. Bits
6, 5, and 4—secondary red, green, and blue—are all set to 1 in palette registers 815 in
order to produce high-intensity colors. Palette register 6 is set to 14H to produce
brown, rather than the yellow that the expected value of 6H would produce.)

When you run Listing 29.3, you’ll see that the whole screen changes color as each
new color set is selected. This occurs because most of the pixels on the screen have a
value of 0, selecting the background color stored in palette register 0, and we’re
reprogramming palette register 0 right along with the other 15 palette registers.

It’s important to understand that in Listing 29.3 the contents of display memory are
never changed after initialization. The only change is the mapping from the 4-bit
pixel data coming out of display memory to the 6-bit data going to the monitor. For
this reason, it’s technically inaccurate to speak of bits in display memory as repre-
senting colors; more accurately, they represent attributes in the range 0-15, which
are mapped to colors 0-3FH by the palette registers.

LISTING 29.3 129-3.ASM

; Program to illustrate the color mapping capabilities of the
; EGA's palette registers.

VGA_SEGMENT equ 0a000h

SC_INDEX equ 3céh ;Sequence Controller Index register
MAP_MASK equ 2 ;Map Mask register index in SC
BAR_HEIGHT equ 14 ;height of each bar
TOP_BAR equ BAR _HEIGHT*6 ;start the bars down a bit to
; leave room for text
stack segment para stack 'STACK®
db 512 dup (?)

stack ends
Data segment word 'DATA’
KeyMsg db 'Press any key to see the next color set. '

db 'There are 64 color sets in all.’'

db 0dh, 0Oah, Oah, Oah, Oah

db 13 dup (' '), 'Attribute’

db 38 dup (' '), 'Colors$’

; Used to Tabel the attributes of the color bars.

Saving Screens and Other VGA Mysteries 551

552

AttributeNumbers

X= 0
rept
if x 1t 10
db
else
db
endif
Xx= x+1
endm
db

1abel byte
16
'0', x+'0', 'h', Oah, 8, 8, 8

'0', x+'A'-10, 'h", Oah, 8, 8, 8

Yy

; Used to label the colors of the color bars. (Color values are
; filled in on the fly.)

ColorNumbers
rept
db
endm
COLOR_ENTRY_LENGTH
db

CurrentColor db

; Space for the array

Tabel byte
16
'000h', Oah, 8, 8, 8, 8

equ ($-ColorNumbers)/16
Y

?

of 16 colors we’'ll pass to the BIOS, plus

; an overscan setting of black.

ColorTable db
Data ends

Code segment
assume
Start proc

cld
mov
mov

16 dup (2), 0

cs:Code, ds:Data
near

ax,Data
ds,ax

; Go to hi-res graphics mode.

mov

int

; Put up relevant text.

mov
moyv
int

ax,10h ;AH = 0 means mode set, AL = 10h selects
; hi-res graphics mode

10h ;BIOS video interrupt

ah,9 ;D0S print string function

dx,offset KeyMsg

21h

; Put up the color bars, one in each of the 16 possible pixel values
; (which we'11 call attributes).

mov
sub

BarLoop:
push
push
call
pop
pop

Chapter 29

cx,16 ;we'll put up 16 color bars
al,al ;start with attribute 0

ax
cX
BarUp
cX
ax

inc
Toop

; Put up the attribute
mov
sub
mov

mov
int
mov
mov
int

ax ;select the next attribute

BarLoop

labels.

ah,2 ;video interrupt set cursor position function

bh,bh ;page 0

dh,TOP_BAR/14 ;counting in character rows, match to
; top of first bar, counting in
; scan lines

d1,16 ;just to left of bars

10h

ah,9 ;DOS print string function

dx,offset AttributeNumbers

21h

; Loop through the color set, one new setting per keypress.

mov
ColorLoop:

[CurrentColor],0 ;start with color zero

; Set the palette registers to the current color set, consisting

; of the current color

mapped to attribute 0, current color + 1

; mapped to attribute 1, and so on.

mov
mov
mov

PaletteSetLoop:
and
mov
inc
inc
Toop
mov
mov

mov
push
pop
int

al,[CurrentColor]
bx,offset ColorTable

cx,16 ;we have 16 colors to set

al,3fh ;1imit to 6-bit color values

[bx],al ;build the 16-color table used for setting
bx ; the palette registers

ax

PaletteSetlLoop

ah,10h ;video interrupt palette function

al,2 ;subfunction to set all 16 palette registers

; and overscan at once
dx,offset ColorTable

ds
es ;ES:DX points to the color table
10h ;invoke the video interrupt to set the palette

; Put up the color numbers, so we can see how attributes map

; to color values, and

so we can see how each color # looks

; (at least on this particular screen).

call
; Wait for a keypress,

WaitKey:
mov
int

i

ColorNumbersUp

so they can see this color set.

ah,8 ;D0S input without echo function
21h

; Advance to the next color set.

mov
inc
mov
cmp
jbe

al,[CurrentColor]
ax
[CurrentColorl,al
al,64

ColorLoop

Saving Screens and Other VGA Mysteries

553

; Restore text mode.

; Done.

Done:

mov
int

mov
int

ax,3
10h

ah,4ch
21h

;D0S terminate function

; Puts up a bar consisting of the specified attribute (pixel value),
; at a vertical position corresponding to the attribute.

H

; Input: AL = attribute

BarUp

BarLinelLoop:

BarUp

; Converts AL to a hex

BinToHexDigit

IsHex:

BinToHexDigit

554 Chapter 29

proc
mov
mov
mov
out
inc
mov
out

mov
mul
add

mov
mul

add
mov
mov
mov

mov
mov

mov
rep
add

dec
jnz
ret
endp

proc
cmp
ja
add
ret

add
ret
endp

near
dx,SC_INDEX
ah,al
al,MAP_MASK
dx,al

dx

al,ah

dx,al

ah,BAR_HEIGHT
ah
ax,TOP_BAR

dx,80
dx

ax,20
di,ax
ax,VGA_SEGMENT
es,ax

dx,BAR_HEIGHT
al,0ffh

cx,40
stosb
di,40

dx
BarLinelLoop

;set the Map Mask register to produce
; the desired color

;row of top of bar

;start a few lines down to leave room for

; text

srows are 80 bytes long

;offset in bytes of start of scan line bar

; starts on

;offset in bytes of upper left corner of bar

;ES:DI points to offset of upper left
; corner of bar

;make the bars 40 wide

;do one scan line of the bar

;point to the start of the next scan Tline
; of the bar

digit in the range 0-F.

near
al,9

IsHex
al,'o’
al,'A'-10

; Displays the color values generated by the color bars given the
; current palette register settings off to the right of the color

; bars.

ColorNumbersUpproc
mov
sub
mov

mov
int
mov
mov

mov

ColorNumberLoop:
push
and
shr
shr
shr
shr
call
mov
pop
push
and
call

mov
add
pop
inc
Toop
mov
mov
int
ret
ColorNumbersUp endp

Start endp

Code ends
end

Overscan

near
ah,2

bh,bh
dh,TOP_BAR/14

d1,20+40+1
10h

;video interrupt set cursor position function
;page 0

;counting in character rows, match to

; top of first bar, counting in

; scan lines

;just to right of bars

al,[CurrentColor];start with the current color
bx,offset ColorNumbers+l

cx,16

ax
al,3fh

atl,1

al,1

al,1

al,1l
BinToHexDigit
[bx],al

ax

ax

al,0fh
BinToHexDigit

[bx+1],al

bx,COLOR_ENTRY_LENGTH

ax
ax

ColorNumberLoop

ah,9

;build color number text string on the fly
;we've got 16 colors to do

;save the color #
;1imit to 6-bit color values

;isotate the high nibble of the color #
;convert the high color # nibble
; and put it into the text

;get back the color #

;save the color #

;isolate the Tow color # nibble
;convert the Tow nibble of the

; color # to ASCII

; and put it into the text

;point to the next entry
;get back the color #

;next color #

;:D0S print string function

dx,offset ColorNumbers

21h

Start

;put up the attribute numbers

While we’re at it, I'm going to touch on overscan. Overscan is the color of the border
of the display, the rectangular area around the edge of the monitor that’s outside
the region displaying active video data but inside the blanking area. The overscan
(or border) color can be programmed to any of the 64 possible colors by either
setting Attribute Controller register 11H directly or calling video function 10H,

subfunction 1.

Saving Screens and Other VGA Mysteries 555

On ECD-compatible monitors, however, there’s too little scan time to display a
proper border when the EGA is in 350-scan-line mode, so overscan should always
be 0 (black) unless you re in 200-scan-line mode. Note, though, that a VGA can
easily display a border on a VGA-compatible monitor, and VGAs are in fact pro-
grammed at mode set for an 8-pixel-wide border in all modes; all you need do is
set the overscan color on any VGA to see the border.

A Bonus Blanker

An interesting bonus: The Attribute Controller provides a very convenient way to
blank the screen, in the form of the aforementioned bit 5 of the Attribute Controller
Index register (at address 3COH after the Input Status 1 register—3DAH in color, 3BAH
in monochrome—has been read and on every other write to 3COH thereafter). When-
ever bit 5 of the AC Index register is 0, video data is cut off, effectively blanking the
screen. Setting bit 5 of the AC Index back to 1 restores video data immediately.
Listing 29.4 illustrates this simple but effective form of screen blanking.

LISTING 29.4 129-4.ASM

; Program to demonstrate screen blanking via bit 5 of the
; Attribute Controller Index register.

AC_INDEX equ 3cOh ;Attribute Controller Index register
INPUT_STATUS_1 equ 3dah ;color-mode address of the Input
; Status 1 register

; Macro to wait for and clear the next keypress.

WAIT_KEY macro

mov ah,8 ;D0S input without echo function
int 21h
endm
stack segment para stack 'STACK'
db 512 dup (?)
stack ends
Data segment word 'DATA"
SampleText db 'This is bit-mapped text, drawn in hi-res '
db 'EGA graphics mode 10h.', 0dh, Oah, Oah
db 'Press any key to blank the screen, then '
db ‘any key to unblank it,', 0dh, Oah
db 'then any key to end.$'
Data ends
Code segment
assume cs:Code, ds:Data
Start proc near
mov ax,Data
mov ds,ax

; Go to hi-res graphics mode.

mov ax,10h :AH = 0 means mode set, AL = 10h selects
; hi-res graphics mode
int 10h ;:BIOS video interrupt

556 Chapter 29

; Put up some text, so the screen isn't empty.

mov ah,9 ;DOS print string function
mov dx,offset SampleText

int 21h

WATIT_KEY

; Blank the screen.

mov dx, INPUT_STATUS_1
in al,dx ;reset port 3cOh to index (rather than data)
; mode
mov dx,AC_INDEX
sub al,al ;make bit 5 zero...
out dx,al ;...which blanks the screen
WAIT_KEY
; Unblank the screen.
mov dx, INPUT_STATUS 1
in al,dx ;reset port 3cOh to Index (rather than data)
; mode
mov dx,AC_INDEX
mov al,20h ;make bit 5 one...
out dx,al ;...which unblanks the screen
WAIT_KEY
; Restore text mode.
mov ax,2
int 10h
; Done.
Done:
mov ah,4ch ;D0S terminate function
int 21h
Start endp
Code ends
end Start

Does that do it for color selection? Yes and no. For the EGA, we’ve covered the whole
of color selection—but not so for the VGA. The VGA can emulate everything we’ve
discussed, but actually performs one 4-bit to 8-bit translation (except in 256-color
modes, where all 256 colors are simultaneously available), followed by yet another
translation, this one 8-bit to 18-bit. What’s more, the VGA has the ability to flip in-
stantly through as many as 16 16-color sets. The VGA’s color selection capabilities,
which are supported by another set of BIOS functions, can be used to produce stun-
ning color effects, as we’ll see when we cover them starting in Chapter 33.

Saving Screens and Other VGA Mysteries

557

Modifying VGA Registers

EGA registers are not readable. VGA registers are readable. This revelation will not come
as news to most of you, but many programmers still insist on setting entire VGA registers
even when they’re modifying only selected bits, as if they were programming the
EGA. This comes to mind because I recently received a query inquiring why write
mode 1 (in which the contents of the latches are copied directly to display memory)
didn’t work in Mode X. (I’ll go into Mode X in detail later in this book.) Actually,
write mode 1 does work in Mode X it didn’t work when this particular correspon-
dent enabled it because he did so by writing the value 01H to the Graphics Mode
register. As it happens, the write mode field is only one of several fields in that regis-
ter, as shown in Figure 29.4. In 256-color modes, one of the other fields—bit 6, which
enables 256-color pixel formatting—is not 0, and setting it to 0 messes up the screen
quite thoroughly.

The correct way to set a field within a VGA register is, of course, to read the register,

mask off the desired field, insert the desired setting, and write the result back to the
register. In the case of setting the VGA to write mode 1, do this:

mov dx,3ceh ;Graphics controller index
mov al,5 ;Graphics mode reg index
out dx,al ;point GC index to G_MODE
inc dx ;Graphics controller data
in al,dx ;get current mode setting
and al,not 3 ;mask off write mode field
or al,1 ;set write mode field to 1
out dx,al ;set write mode 1

This approach is more of a nuisance than simply setting the whole register, but it’s
safer. It’s also slower; for cases where you must set a field repeatedly, it might be
worthwhile to read and mask the register once at the start, and save it in a variable, so
that the value is readily available in memory and need not be repeatedly read from
the port. This approach is especially attractive because INs are much slower than
memory accesses on 386 and 486 machines.

Astute readers may wonder why I didn’t put a delay sequence, such as JMP $+2,
between the IN and OUT involving the same register. There are, after all, guidelines
from IBM, specifying that a certain period should be allowed to elapse before a
second access to an 1/O port is attempted, because not all devices can respond as
rapidly as a 286 or faster CPU can access a port. My answer is that while I can’t
guarantee that a delay isn’t needed, I've never found a VGA that required one; I
suspect that the delay specification has more to do with motherboard chips such as
the timer, the interrupt controller, and the like, and I sure hate to waste the delay
time if it’s not necessary. However, I've never been able to find anyone with the
definitive word on whether delays might ever be needed when accessing VGAs, so if

558 Chapter 29

Previous Home Next

Graphics Mode Register
(Graphics controller register #5)

0] 1 0100} O 01

Bit 7 Bit O
|— Write mode 1

Reserved
Read mode O

Odd/even
addressing off

CGA pixel

formatting off

256-color pixel

formatting on

Reserved

Graphics mode register fields.
Figure 29.4

you know the gospel truth, or if you know of a VGA/processor combo that does
require delays, please let me know by contacting me through the publisher. You’d be
doing a favor for a whole generation of graphics programmers who aren’t sure whether
they’re skating on thin ice without those legendary delays.

Saving Screens and Other VGA Mysteries 559

	next:
	home:
	previous:

