Video Est

Omnis Divisa

n feature can be used for popups (including popups that
slide smoothly onto ghe screen), or simply to display two separate portions of display

By contrast, the basig operation of the split screen is fairly simple, once you grasp the
various coding tricks required to pull it off, and understand the limitations and pit-
falls—Ilike the fact that the EGA’s split screen implementation is a little buggy.
Furthermore, panning with the split screen enabled is not as simple as it might seem.
All in all, we do have some ground to cover.

Let’s start with the basic operation of the split screen.

How the Split Screen Works

The operation of the split screen is simplicity itself. A split screen start scan line value
is programmed into two EGA registers or three VGA registers. (More on exactly
which registers in a moment.) At the beginning of each frame, the video circuitry

563

begins to scan display memory for video data starting at the address specified by the
start address registers, just as it normally would. When the video circuitry encounters
the specified split screen start scan line in the course of scanning video data onto the
screen, it completes that scan line normally, then resets the internal pointer which
addresses the next byte of display memory to be read for video data to zero. Display
memory from address zero onward is then scanned for video data in the usual way,
progressing toward the high end of memory. At the end of the frame, the pointer to
the next byte of display memory to scan is reloaded from the start address registers,
and the whole process starts over.

The net effect: The contents of display memory starting at offset zero are displayed
starting at the scan line following the specified split screen start scan line, as shown
in Figure 30.1. It’s important to understand that the scan line that matches the split
screen scan line is not part of the split screen; the split screen starts on the following
scan line. So, for example, if the split screen scan line is set to zero, the split screen
actually starts at scan line 1, the second scan line from the top of the screen.

If both the start address and the split screen start scan line are set to 0, the data at
offset zero in display memory is displayed as both the first scan line on the screen
and the second scan line. There is no way to make the split screen cover the entire
screen—it always comes up at least one scan line short.

Offset 0_, Display Memory

(start . This text will appear in the split
of Sp|lf' screen, while diagonal lines will
screen appear in the normal screen, which Screen
area of displays the contents of display
display memory starfing at the start
memory) address. The split screen always
displays the contents of display
memory at offset 0.
Start

The text will appear in the split
address / screen, while diagonal lines will
(start of appear in the normal screen, which
normal- displays the contents of display
screen
area of
display Split-screen
memory) / start scan line

The Split Screen

Display memory and the split screen.
Figure 30.1

564 Chapter 30

So, where is the split screen start scan line stored? The answer varies a bit, depending
on whether you’re talking about the EGA or the VGA. On the EGA, the split screen start
scan line is a 9-bit value, with bits 7-0 stored in the Line Compare register (CRTC register
18H) and bit 8 stored in bit 4 of the Overflow register (CRTC register 7). Other bits
in the Overflow register serve as the high bits of other values, such as the vertical
total and the vertical blanking start. Since EGA registers are—alas!-—not readable,
you must know the correct settings for the other bits in the Overflow registers to use
the split screen on an EGA. Fortunately, there are only two standard Overflow register
settings on the EGA: 11H for 200-scan-line modes and 1FH for 350-scan-line modes.

The VGA, of course, presents no such problem in setting the split screen start scan
line, for it has readable registers. However, the VGA supports a 10-bit split screen
start scan line value, with bits 8-0 stored just as with the EGA, and bit 9 stored in bit 6
of the Maximum Scan Line register (CRTC register 9).

Turning the split screen on involves nothing more than setting all bits of the split
screen start scan line to the scan line after which you want the split screen to start
appearing. (Of course, you’ll probably want to change the start address before using
the split screen; otherwise, you’ll just end up displaying the memory at offset zero
twice: once in the normal screen and once in the split screen.) Turning off the split
screen is a simple matter of setting the split screen start scan line to a value equal to
or greater than the last scan line displayed; the safest such approach is to set all bits
of the split screen start scan line to 1. (That is, in fact, the split screen start scan line
value programmed by the BIOS during a mode set.)

The Split Screen in Action

All of these points are illustrated by Listing 30.1. Listing 30.1 fills display memory
starting at offset zero (the split screen area of memory) with text identifying the split
screen, fills display memory starting at offset 8000H with a graphics pattern, and sets
the start address to 8000H. At this point, the normal screen is being displayed (the
split screen start scan line is still set to the BIOS default setting, with all bits equal to
1, so the split screen is off), with the pixels based on the contents of display memory
at offset 8000H. The contents of display memory between offset 0 and offset 7FFFH are
not visible at all.

Listing 30.1 then slides the split screen up from the bottom of the screen, one scan
line at a time. The split screen slides halfway up the screen, bounces down a quarter
of the screen, advances another half-screen, drops another quarter-screen, and fi-
nally slides all the way up to the top. If you’ve never seen the split screen in action,
you should run Listing 30.1; the smooth overlapping of the split screen on top of the
normal display is a striking effect.

Listing 30.1 isn’t done just yet, however. After a keypress, Listing 30.1 demonstrates
how to turn the split screen off (by setting all bits of the split screen start scan line to
1). After another keypress, Listing 30.1 shows that the split screen can never cover

Video Est Omnis Divisa 565

the whole screen, by setting the start address to 0 and then flipping back and forth
between the normal screen and the split screen with a split screen start scan line
setting of zero. Both the normal screen and the split screen display the same text,
but the split screen displays it one scan line lower, because the split screen doesn’t
start until after the first scan line, and that produces a jittering effect as the program
switches the split screen on and off. (On the EGA, the split screen may display two
scan lines lower, for reasons I'll discuss shortly.)

Finally, after another keypress, Listing 30.1 halts.
LISTING 30.1 L30-1.ASM
; Demonstrates the VGA/EGA split screen in action.

H
;***

IS_VGA equ 1 ;set to 0 to assemble for EGA

VGA_SEGMENT equ 0a000h

SCREEN_WIDTH equ 640

SCREEN_HEIGHT equ 350

CRTC_INDEX equ 3d4h ;CRT Controller Index register

OVERFLOW equ 7 ;index of Overflow reg in CRTC

MAXIMUM_SCAN_LINEequ 9 ;index of Maximum Scan Line register
; in CRTC

START_ADDRESS_HIGH equ Och ;index of Start Address High register
; in CRTC

START_ADDRESS_ _LOWequ 0dh ;index of Start Address Low register
; in CRTC

LINE_COMPARE equ 18h ;index of Line Compare reg (bits 7-0
; of split screen start scan line)
; in CRTC

INPUT_STATUS_O equ 3dah ;Input Status 0 register

WORD_OUTS_OK equ 1 ;set to 0 to assemble for

; computers that can’'t handle
; word outs to indexed VGA registers
;***

; Macro to output a word vaiue to a port.

OUT_WORD macro
if WORD_OUTS_OK
out dx,ax

else
out dx,al
inc dx
xchg ah,al
out dx,al
dec dx
xchg ah,al
endif
endm

%k e sk ek e e e ke ke ok e ok Sk gk e sk e vk ke ok vk ok ke sk e sk ok ke e ok e dke ke ok ke ke e ke e gk e ok e ok e ok ke ke e ok e ok ok ok e gk ke ok ok ok ke ok e ok ke ke ke ok
’

MyStack segment para stack 'STACK'
db 512 dup (0)
MyStack ends
;***
Data segment
SplitScreenLine dw ? ;1ine the split screen currently
; starts after

566 Chapter 30

StartAddress dw ? ;display memory offset at which
; scanning for video data starts
; Message displayed in split screen.
SplitScreenMsg db 'Split screen text row #’
Digitlnsert dw ?
db .

Data ends
: AR A A TR KAKEAEAAAEIR AR AR AK KA KA A A h A I ARk Ak hkhhkd Ak dhkhkkhhhkhkrrhkkkhkkhkkdk
Code segment

assume cs:Code, ds:Data
H Tkkhkhkhhkhkkkhhkhkkrkhhkkhhkrkkhhhkhkdhhhhhhkhkhhkdhhkhkhhhkhhhhhhkhhkkhkkhkkkkhhkhkhkhhkkrk
Start proc near

mov ax,Data

mov ds,ax

; Select mode 10h, 640x350 16-color graphics mode.

mov ax,0010h ;AH=0 is select mode function
;AL=10h is mode to select,
; 640x350 16-color graphics mode
int 10h

; Put text into display memory starting at offset 0, with each row
; labelled as to number. This is the part of memory that will be
; displayed in the split screen portion of the display.

mov ¢x,25 1# of lines of text we’'ll draw into
; the split screen part of memory
Fi11SplitScreenlLoop:

mov ah,2 ;set cursor location function #
sub bh,bh ;set cursor in page 0
mov dh,25
sub dh,cl ;calculate row to draw in
sub d1,d1 ;start in column 0
int 10h 1set the cursor location
mov al,25
sub al,cl ;calculate row to draw in again
sub ah,ah ;make the value a word for division
mov dh,10
div dh ;split the row # into two digits
add ax, 00’ ;convert the digits to ASCII
mov [DigitInsert],ax ;put the digits into the text
; to be displayed
mov ah,9
mov dx,offset SplitScreenMsg
int 21h ;print the text

Toop Fil11SplitScreenLoop

; Fi11 display memory starting at 8000h with a diagonally striped
; pattern.

mov ax,VGA_SEGMENT
mov es,ax
mov di,8000h

mov dx,SCREEN_HEIGHT ;fi11 all lines
mov ax,8888h ;starting fill pattern
cld
RowLoop:
mov c¢x,SCREEN_WIDTH/8/2 ;f117 1 scan line a word at a time
rep stosw ;fi11 the scan line

Video Est Omnis Divisa

567

ror ax,l ;shift pattern word
dec dx
jnz RowLoop

; Set the start address to 8000h and display that part of memory.

mov [StartAddress],8000h
call SetStartAddress

; Slide the split screen half way up the screen and then back down
; a quarter of the screen.

mov [SplitScreenLine],SCREEN_HEIGHT-1
;set the initial line just off
; the bottom of the screen

mov ¢x,SCREEN_HEIGHT/2

call SplitScreenUp

mov ¢x,SCREEN_HEIGHT/4

call SplitScreenDown

; Now move up another half a screen and then back down a quarter.
mov ¢x,SCREEN_HEIGHT/2
call SplitScreenUp
mov ¢x,SCREEN_HEIGHT/4
call SplitScreenDown

Finally move up to the top of the screen.

mov cx,SCREEN_HEIGHT/2-2
call SplitScreenUp

; Wait for a key press (don't echo character).

mov ah,8 ;D0OS console input without echo function
int 21h

; Turn the split screen off.

mov [SplitScreenLine]l,0f fffh
call SetSplitScreenScanLine

; Wait for a key press (don't echo character).

mov ah,8 ;D0S console input without echo function
int 21h

; Display the memory at 0 (the same memory the split screen displays).

mov [StartAddress],0
call SetStartAddress

F1ip between the split screen and the normal screen every 10th
; frame until a key is pressed.

FlipLoop:
xor [SplitScreenlLine],0ffffh
call SetSplitScreenScanLine
mov cx,10

568 Chapter 30

CountVerticalSyncslLoop:
call WaitForVerticalSyncEnd
lToop CountVerticalSyncsloop

mov ah,0bh ;DOS character available status

int 21h

and al,al ;character available?

jz FlipLoop ;no, toggle split screen on/off status
mov ah,1

int 21h ;clear the character

; Return to text mode and DOS.

mov ax,0003h ;AH=0 is select mode function
;AL=3 is mode to select, text mode
int 10h sreturn to text mode
mov ah,4ch
int 21h ;return to DOS
Start endp

B dekdkhkhkhkhkkhkkkkhrhkhhhkhkhhhkkhkhkhhkhkhkhkkrrkrkkkkkhkdhkhhkkkhhkhkhkhrkhkhkhhkrhkd

; Waits for the leading edge of the vertical sync pulse.

; Input: none

; Output: none

; Registers altered: AL, DX

WaitForVerticalSyncStart proc near

mov dx,INPUT_STATUS_O
WaitNotVerticalSync:

in al,dx

test al,08h

jnz WaitNotVerticalSync
WaitVerticalSync:

in al,dx

test al,08h

jz WaitVerticalSync

ret
WaitForVerticalSyncStart endp

ekkE kA IAAKA KAk A Ak Ak IR Ik I Ak Ik kkkhkhk Ak kkhhhhkhhkkkhkhkrkkkhkhkkhkdkhdhhhdkkhhkdkikh
H

; Waits for the trailing edge of the vertical sync pulse.

; Input: none

; Output: none

; Registers altered: AL, DX

WaitForVerticalSyncEnd proc near
mov dx,INPUT_STATUS_O

WaitVerticalSync2:

in al,dx

test al,08h

jz WaitVerticalSync2
WaitNotVerticalSync2:

in al,dx

test al,08h

jnz WaitNotVerticalSync2

ret

WaitForVerticalSyncEnd endp

Video Est Omnis Divisa 569

shkkkkkhkhkhhkhkkhhkhhkhkhhkhkhkkrhkkkhkkhkkhkxkhhkrkhkhkhkhkhkhkhhhkkkhkkhkhkhkrhkkhkkhhkhkkhkkx
’

Sets the start address to the value specifed by StartAddress.

Wait for the trailing edge of vertical sync before setting so that
one half of the address isn't loaded before the start of the frame
and the other half after, resulting in flicker as one frame is
displayed with mismatched halves. The new start address won't be

; loaded until the start of the next frame; that is, one full frame
will be displayed before the new start address takes effect.

; Input: none
; Output: none

; Registers altered: AX, DX

SetStartAddress proc near
call WaitForVerticalSyncEnd
mov dx,CRTC_INDEX
mov al,START_ADDRESS_HIGH
mov ah,byte ptr [StartAddress+1]
cli ;make sure both registers get set at once
OUT_WORD
mov al,START_ADDRESS_LOW
mov ah,byte ptr [StartAddress]
QUT_WORD
sti
ret
SetStartAddress endp
;***
; Sets the scan Tine the split screen starts after to the scan line
; specified by SplitScreenlLine.

; Input: none

; Output: none

; A11 registers preserved

SetSplitScreenScanLine proc near
push ax
push c¢x
push dx

Wait for the Teading edge of the vertical sync pulse. This ensures
that we don't get mismatched portions of the split screen setting
while setting the two or three split screen registers (register 18h
; set but register 7 not yet set when a match occurs, for example),
which could produce brief flickering.

call WaitForVerticalSyncStart
; Set the split screen scan line.
mov dx,CRTC_INDEX

mov ah,byte ptr [SplitScreenlLine]
mov al,LINE_COMPARE

cli ;make sure all the registers get set at once
OUT_WORD ;set bits 7-0 of the split screen scan line
mov ah,byte ptr [SplitScreentine+l1]

and ah,l

570 Chapter 30

mov cl,4
shl ah,cl ;move bit 8 of the split split screen scan
; line into position for the Overflow reg

mov al,OVERFLOW

if IS_VGA

; The Split Screen, Overflow, and Line Compare registers all contain

; part of the split screen start scan line on the VGA. We'l11 take

; advantage of the readable registers of the VGA to leave other bits

; in the registers we access undisturbed.

out dx,al ;set CRTC Index reg to point to Overflow
inc dx ;point to CRTC Data reg
in al,dx ;get the current Overflow reg setting
and al,not 10h ;turn off split screen bit 8
or al,ah ;insert the new split screen bit 8
; (works in any mode)
out dx,al ;set the new split screen bit 8
dec dx ;point to CRTC Index reg
mov ah,byte ptr [SplitScreenLine+l]
and ah,2
mov ¢1,3
ror ah,cl ;move bit 9 of the split split screen scan

; 1ine into position for the Maximum Scan
; Line register
mov al,MAXIMUM_SCAN_LINE

out dx,al ;set CRTC Index reg to point to Maximum
; Scan Line
inc dx ;point to CRTC Data reg
in al,dx ;get the current Maximum Scan Line setting
and al,not 40h ;turn off split screen bit 9
or al,ah ;insert the new split screen bit 9
: (works in any mode)
out dx,al ;set the new split screen bit 9

else

; Only the Split Screen and Overflow registers contain part of the
; Split Screen start scan line and need to be set on the EGA.

; EGA registers are not readable, so we have to set the non-split
; screen bits of the Overflow register to a preset value, in this
; case the value for 350-scan-line modes.

or ah,0fh ;insert the new split screen bit 8
; (only works in 350-scan-1ine EGA modes)
OQUT_WORD ;set the new split screen bit 8
endif
sti
pop dx
pop cx
pop ax
ret

SetSplitScreenScanlLine endp
:***

; Moves the split screen up the specified number of scan lines.
: Input: CX = # of scan lines to move the split screen up by

; Output: none

; Registers altered: CX

Video Est Omnis Divisa

571

SplitScreenUp proc near
SplitScreenUpLoop:
dec [SplitScreenLine]
call SetSplitScreenScanLine
loop SplitScreenUpLoop
ret
SplitScreenUp endp

:***

; Moves the split screen down the specified number of scan lines.

; Input: CX = # of scan lines to move the split screen down by
; Output: none

; Registers altered: CX
SplitScreenDown proc near
SplitScreenDownLoop:
inc [SplitScreenLine]
call SetSplitScreenScanLine
loop SplitScreenDownLoop
ret

SplitScreenDown endp
;***

Code ends
end Start

VGA and EGA Split-Screen Operation Don’t Mix

You must set the IS_VGA equate at the start of Listing 30.1 correctly for the adapter
the code will run on in order for the program to perform properly. This equate
determines how the upper bits of the split screen start scan line are set by
SetSplitScreenRow. If IS_VGA is 0 (specifying an EGA target), then bit 8 of the split
screen start scan line is set by programming the entire Overflow register to 1FH; this
is hard-wired for the 350-scan-line modes of the EGA. If IS_VGA is 1 (specifying a
VGA target), then bits 8 and 9 of the split screen start scan line are set by reading the
registers they reside in, changing only the split-screen-related bits, and writing the
modified settings back to their respective registers.

The VGA version of Listing 30.1 won’t work on an EGA, because EGA registers aren’t
readable. The EGA version of Listing 30.1 won’t work on a VGA, both because VGA
monitors require different vertical settings than EGA monitors and because the EGA
version doesn’t set bit 9 of the split screen start scan line. In short, there is no way
that I know of to support both VGA and EGA split screens with common code; sepa-
rate drivers are required. This is one of the reasons that split screens are so rarely
used in PC programming.

By the way, Listing 30.1 operates in mode 10H because that’s the highest-resolution
mode the VGA and EGA share. That’s not the only mode the split screen works in,
however. In fact, it works in @/l modes, as we’ll see later.

572 Chapter 30

Setting the Split-Screen-Related Registers

Setting the split-screen-related registers is not as simple a matter as merely output-
ting the right values to the right registers; timing is also important. The split screen
start scan line value is checked against the number of each scan line as that scan line
is displayed, which means that the split screen start scan line potentially takes effect
the moment it is set. In other words, if the screen is displaying scan line 15 and you
set the split screen start to 16, that change will be picked up immediately and the
split screen will start after the next scan line. This is markedly different from changes
to the start address, which take effect only at the start of the next frame.

The instantly-effective nature of the split screen is a bit of a problem, not because the
changed screen appears as soon as the new split screen start scan line is set—that
seems to me to be an advantage—but because the changed screen can appear before
the new split screen start scan line is set.

p Remember, the split screen start scan line is spread out over two or three registers.
What if the incompletely-changed value matches the current scan line affer you ve set
one register but before you ve set the rest? For one frame, you'll see the split screen

in a wrong place—possibly a very wrong place—rvesulting in jumping and flicker.

The solution is simple: Set the split screen start scan line at a time when it can’t
possibly match the currently displayed scan line. The easy way to do that is to set it
when there isn’t any currently displayed scan line—during vertical non-display time.
One safe time that’s easy to find is the start of the vertical sync pulse, which is typi-
cally pretty near the middle of vertical non-display time, and that’s the approach I've
followed in Listing 30.1. I've also disabled interrupts during the period when the
split screen registers are being set. This isn’t absolutely necessary, but if it’s not done,
there’s the possibility that an interrupt will occur between register sets and delay the
later register sets until display time, again causing flicker.

One interesting effect of setting the split screen registers at the start of vertical sync
is that it has the effect of synchronizing the program to the display adapter’s frame
rate. No matter how fast the computer running Listing 30.1 may be, the split screen
will move at 2 maximum rate of once per frame. This is handy for regulating execution
speed over a wide variety of hardware performance ranges; however, be aware that
the VGA supports 70 Hz frame rates in all non-480-scan-line modes, while the VGA
in 480-scan-line-modes and the EGA in all color modes support 60 Hz frame rates.

The Problem with the EGA Split Screen

I mentioned earlier that the EGA’s split screen is a little buggy. How? you may well
ask, particularly given that Listing 30.1 illustrates that the EGA split screen seems
pretty functional.

Video Est Omnis Divisa 573

The bug is this: The first scan line of the EGA split screen—the scan line starting at
offset zero in display memory—is displayed not once but twice. In other words, the
first line of split screen display memory, and only the first line, is replicated one
unnecessary time, pushing all the other lines down by one.

That’s not a fatal bug, of course. In fact, if the first few scan lines are identical, it’s not
even noticeable. The EGA’s splitscreen bug can produce visible distortion given
certain patterns, however, so you should try to make the top few lines identical (if
possible) when designing splitscreen images that might be displayed on EGAs, and
you should in any case check how your split-screens look on both VGAs and EGAs.

is, don t rely on the first scan line being doubled when you design your split screens.
IBM designed and made the original EGA, but a lot of companies cloned it, and
there s no guarantee that all EGA clones copy the bug. It is a certainty, at least,
that the VGA didn’t copy it.

*p I have an important caution here: Don't count on the EGA's split-screen bug; that

There’s another respect in which the EGA is inferior to the VGA when it comes to
the split screen, and that’s in the area of panning when the split screen is on. This
isn’t a bug—it’s just one of the many areas in which the VGA’s designers learned
from the shortcomings of the EGA and went the EGA one better.

Split Screen and Panning

Back in Chapter 23, I presented a program that performed smooth horizontal pan-
ning. Smooth horizontal panning consists of two parts: byte-by-byte (8-pixel) panning
by changing the start address and pixel-by-pixel intrabyte panning by setting the Pel
Panning register (AC register 13H) to adjust alignment by 0 to 7 pixels. (IBM prefers its
own jargon and uses the word “pel” instead of “pixel” in much of their documenta-
tion, hence “pel panning.” Then there’s DASD, a.k.a. Direct Access Storage
Device—IBM-speak for hard disk.)

Horizontal smooth panning works just fine, although I've always harbored some
doubts that any one horizontal-smooth-panning approach works properly on all dis-
play board clones. (More on this later.) There’s a catch when using horizontal smooth
panning with the split screen up, though, and it’s a serious catch: You can’t byte-pan
the split screen (which always starts at offset zero, no matter what the setting of the
start address registers)—but you can pel-pan the split screen.

Put another way, when the normal portion of the screen is horizontally smooth-
panned, the split screen portion moves a pixel at a time until it’s time to move to the
next byte, then jumps back to the start of the current byte. As the top part of the
screen moves smoothly about, the split screen will move and jump, move and jump, over
and over. Believe me, it’s not a pretty sight.

574 Chapter 30

What s to be done? On the EGA, nothing. Unless you re willing to have your users’
eyes doing the jitterbug, don 't use horizontal smooth scrolling while the split screen
is up. Byte panning is fine—just don’t change the Pel Panning register from its
default setting.

On the VGA, there is recourse. A VGA-only bit, bit 5 of the AC Mode Control register
(AC register 10H), turns off pel panning in the split screen. In other words, when
this bit is set to 1, pel panning is reset to zero before the first line of the split screen,
and remains zero until the end of the frame. This doesn’t allow you to pan the split
screen horizontally, mind you—there’s no way to do that—but it does let you pan the
normal screen while the split screen stays rock-solid. This can be used to produce an
attractive “streaming tape” effect in the normal screen while the split screen is used
to display non-moving information.

The Split Screen and Horizontal Panning: An Example

Listing 30.2 illustrates the interaction of horizontal smooth panning with the split
screen, as well as the suppression of pel panning in the split screen. Listing 30.2
creates a virtual screen 1024 pixels across by setting the Offset register (CRTC regis-
ter 13H) to 64, sets the normal screen to scan video data beginning far enough up in
display memory to leave room for the split screen starting at offset zero, turns on the
split screen, and fills in the normal screen and split screen with distinctive patterns.
Next, Listing 30.2 pans the normal screen horizontally without setting bit 5 of the
AC Mode Control register to 1. As you’d expect, the split screen jerks about quite
horribly. After a key press, Listing 30.2 sets bit 5 of the Mode Control register and
pans the normal screen again. This time, the split screen doesn’t budge an inch—if
the code is running on a VGA.

By the way, if IS_VGA is set to 0 in Listing 30.2, the program will assemble in a form
that will run on the EGA and only the EGA. Pel panning suppression in the split
screen won’t work in this version, however, because the EGA lacks the capability to
support that feature. When the EGA version runs, the split screen simply jerks back
and forth during both panning sessions.

LISTING 30.2 L30-2.ASM

Demonstrates the interaction of the split screen and
; horizontal pel panning. On a VGA, first pans right in the top
; half while the split screen jerks around, because split screen
; pel panning suppression is disabled, then enables spiit screen
; pel panning suppression and pans right in the top half while the
; split screen remains stable. On an EGA, the split screen jerks
around in both cases, because the EGA doesn't support split
screen pel panning suppression.

The jerking in the split screen occurs because the split screen
; i1s being pel panned (panned by single pixels--intrabyte panning),
; but is not and cannot be byte panned (panned by single bytes--

Video Est Omnis Divisa 575

; "extrabyte” panning) because the start address of the split screen

; is forever fixed at 0.
H AEAKA KA KA AL KA AAAA AT AR A A AR AT AT AR A A AT AT Ak h Ak kkhhhkhkkkkhhkrhkrhkhkhkkkk

IS_VGA

VGA_SEGMENT
LOGICAL_SCREEN_WIDTH

SCREEN_HEIGHT
SPLIT_SCREEN_START
SPLIT_SCREEN_HEIGHT
CRTC_INDEX

AC_INDEX

OVERFLOW
MAXIMUM_SCAN_LINE

START_ADDRESS_HIGH
START_ADDRESS_ _LOWequ
HOFFSET

LINE_COMPARE
AC_MODE_CONTROL
PEL_PANNING

INPUT_STATUS_O
WORD_OUTS_OK

equ

equ
equ

equ
equ
equ
equ
equ
equ
equ

equ

0dh

equ

equ

equ

equ

equ
equ

1 ;set to 0 to assemble for EGA

0a000h

1024 +#F of pixels across virtual
; screen that we'll pan across

350

200 ;start scan line for split screen

SCREEN_HEIGHT-SPLIT_SCREEN_START-1

3d4h ;CRT Controller Index register

3c0h ;Attribute Controller Index reg

7 ;index of Overflow reg in CRTC

9 ;index of Maximum Scan Line register
; in CRTC

Och ;index of Start Address High register
; in CRTC
;index of Start Address Low register
; in CRTC

13h ;index of Horizontal Offset register
; in CRTC

18h ;index of Line Compare reg (bits 7-0
; of split screen start scan line)
; in CRTC

10h ;index of Mode Control reg in AC

13h sindex of Pel Panning reg in AC

3dah ;Input Status 0 register

1 ;set to 0 to assemble for

; computers that can't handle
; word outs to indexed VGA registers

;*******‘k***********‘k**********’k*’k************************************

: Macro to output a word value to a port.

OUT_WORD macro
if WORD_OUTS_OK
out dx,ax

else
out dx,al
inc dx
xchg ah,al
out dx,al
dec dx
xchg ah,a?
endif
endm

AR RK A I AT AAAR KA RI A A A A A I AKRARARAARARAAAAR KRR T F AR A AR AR Rk T h kA Ak h ok hkdk
H

MyStack segment para stack 'STACK'

db 512 dup (0)

MyStack ends

chEARIIAK Ak hkAT IR KA I A A AT T A A KA kR A AR R AR Ak kkk kA hhhhkhkhkkkhkrrhhhhkkrk
H

Data segment
SplitScreenLine

StartAddress
PelPan

Data ends

576 Chapter 30

dw

dw

db

? ;1ine the split screen currently
; starts after
? ;display memory offset at which
: scanning for video data starts
? ;current intrabyte horizontal pel

; panning setting

H KAIAAAIIRKRI A KT A RRR KA R I AR R A AR TR AR TR AR AR Ik kkkhdkhkkdkdkhkkdkhkrdk

Code segment

assume cs:Code, ds:Data
:***
Start proc near

mov ax,Data

mov ds,ax

Select mode 10h, 640x350 16-color graphics mode.

mov ax,0010h ;AH=0 is select mode function
;AL=10h is mode to select,
; 640x350 16-color graphics mode
int 10h

; Set the Offset register to make the offset from the start of one
; scan line to the start of the next the desired number of pixels.
; This gives us a virtual screen wider than the actual screen to

; pan across.

; Note that the Offset register is programmed with the logical

; screen width in words, not bytes, hence the final division by 2.

mov dx,CRTC_INDEX
mov ax,{LOGICAL_SCREEN_WIDTH/8/2 shl 8) or HOFFSET
OUT_WORD

; Set the start address to display the memory just past the split
; screen memory.

mov [StartAddress],SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)
call SetStartAddress

; Set the split screen start scan line.

mov [SplitScreenLine],SPLIT_SCREEN_START
call SetSplitScreenScanLine

; Fi11 the split screen portion of display memory (starting at
; offset 0) with a choppy diagonal pattern sloping left.

mov ax,VGA_SEGMENT
mov es,ax
sub di.di
mov dx,SPLIT_SCREEN_HEIGHT
;£i11 all lines in the split screen
mov ax,0FFOh ;starting fill pattern
cld
RowlLoop:
mov cx,LOGICAL_SCREEN_WIDTH/8/4
;fi11 1 scan line
ColumnlLoop:

stosw ;draw part of a diagonal line
mov word ptr es:[di],0 ;make vertical blank spaces so
; panning effects can be seen easily
inc di
inc di
Toop ColumnLoop
rol ax,l1 ;shift pattern word
dec dx

jnz RowLoop

Video Est Omnis Divisa

577

: Fi11 the portion of display memory that will be displayed in the
; normal screen (the non-split screen part of the display) with a
; choppy diagonal pattern sloping right.

mov
mov
mov
cld
RowlLoop2:
mov

di,SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)

dx,SCREEN_HEIGHT ;fi11
ax,0c510h

all lines
;starting fill pattern

cX,LOGICAL_SCREEN_WIDTH/8/4

ColumnLoop2:

stosw

mov

inc
inc
Toop
ror
dec
Jnz

mov
call

word ptr es:[di].,0

di

di
ColumnLoop2
ax,1

dx

RowLoop2

cx,200
PanRight

;111 1 scan line
;draw part of a diagonal line

;make vertical blank spaces so
: panning effects can be seen easily

;shift pattern word

Pel pan the non-split screen portion of the display; because
split screen pel panning suppression is not turned on, the split
screen jerks back and forth as the pel panning setting cycles.

;pan 200 pixels to the left

; Wait for a key press (don't echo character).

mov
int

mov
call
mov

call

ah,8
21h

;D0S console input without echo function

Return to the original screen location, with pel panning turned off.

[StartAddress]}.SPLIT_SCREEN_HEIGHT*(LOGICAL_SCREEN_WIDTH/8)

SetStartAddress
[PelPan],0
SetPelPan

; Turn on split screen pel panning suppression, so the split screen

; won't be affected by pel panning. Not done on EGA because both

; readable registers and the split screen pel panning suppression bit
; aren't supported by EGAs.

if IS_VGA
mov
in

mov

mov
out
inc
in
or

dx, INPUT_STATUS_O
al,dx

al,20h+AC_MODE_CONTROL

dx,AC_INDEX
dx,al

dx

al,dx
al,20h

578 Chapter 30

;reset the AC Index/Data toggle to
; Index state

;bit 5 set to 1 to keep video on
;point to AC Index/Data register

;point to AC Data reg (for reads only)
;get the current AC Mode Control reg
;enable split screen pel panning

i suppression

dec dx ;point to AC Index/Data reg (Data for
; writes only)
out dx,al ;write the new AC Mode Control setting
; with split screen pel panning
; suppression turned on
endif
; Pel pan the non-split screen portion of the display; because
; split screen pel panning suppression is turned on, the split
; screen will not move as the pel panning setting cycies.
mov ¢x,200 ;pan 200 pixels to the left
call PanRight

; Wait for a key press (don't echo character).

mov ah,8 ;00S console input without echo function
int 21lh

; Return to text mode and DOS.

mov ax,0003h ;AH=0 is select mode function
;AL=3 is mode to select, text mode
int 10h ;return to text mode
mov ah,4ch
int 21h ;return to DOS
Start endp

AR AKEIKKAAK A KA K A AT KA KRR I A AR AR AR AR KRN TR RA KAk Ak Ik hkhhkkhkhhhk Ak kkxhkdkhhk
s

; Waits for the leading edge of the vertical sync pulse.

; Input: none

; Output: none

; Registers altered: AL, DX

WaitForVerticalSyncStart proc near

mov dx,INPUT_STATUS_O
WaitNotVerticalSync:

in al,dx

test al,08h

jnz WaitNotVerticalSync
WaitVerticalSync:

in al,dx

test al,08h
jz WaitVerticalSync
ret

WaitForVerticalSyncStart endp
;***
; Waits for the trailing edge of the vertical sync pulse.

; Input: none

; Output: none

; Registers altered: AL, DX

WaitForVerticalSyncEnd proc near
mov dx, INPUT_STATUS_0O

Video Est Omnis Divisa 579

WaitVerticalSync2:

in al,dx

test al,08h

iz WaitVerticalSync2
WaitNotVerticalSync2:

in al,dx

test al,08h

jnz WaitNotVerticalSync2

ret
WaitForVerticalSyncEnd endp
:***
; Sets the start address to the value specifed by StartAddress.
Wait for the trailing edge of vertical sync before setting so that
one half of the address isn't loaded before the start of the frame
and the other half after, resulting in flicker as one frame is
displayed with mismatched halves. The new start address won't be
loaded until the start of the next frame; that is, one full frame
; will be displayed before the new start address takes effect.

: Input: none
; Output: none
; Registers altered: AX, DX

SetStartAddress proc near
call WaitForVerticalSyncEnd
mov dx,CRTC_INDEX
mov al,START_ADDRESS_HIGH
mov ah,byte ptr [StartAddress+1]
cli ;make sure both registers get set at once
OQUT_WORD
mov al,START_ADDRESS_LOW
mov ah,byte ptr [StartAddress]
OUT_WORD
sti
ret
SetStartAddress endp
;***
; Sets the horizontal pel panning setting to the value specified
; by PelPan. Waits until the start of vertical sync to do so, so
; the new pel pan setting can be loaded during non-display time
and can be ready by the start of the next frame.

; Input: none
; Output: none
; Registers altered: AL, DX

SetPelPan proc near
call WaitForVerticalSyncStart ;also resets the AC
; Index/Data toggle
; to Index state
mov dx,AC_INDEX

mov al,PEL_PANNING+20h ;bit 5 set to 1 to keep video on
out dx,al ;point the AC Index to Pel Pan reg
mov al,[PelPan]

out dx,al ;1oad the new Pel Pan setting

ret

SetPelPan endp

580 Chapter 30

;***

; Sets the scan line the split screen starts after to the scan line
; specified by SplitScreenLine.

Input: none
; Output: none

; A1l registers preserved

SetSplitScreenScanline proc near
push ax
push c¢x
push dx

Wait for the leading edge of the vertical sync pulse. This ensures
that we don't get mismatched portions of the split screen setting
while setting the two or three split screen registers (register 18h
set but register 7 not yet set when a match occurs, for example),
which could produce brief flickering.

call WaitForVerticalSyncStart

Set the split screen scan line.

mov dx,CRTC_INDEX
mov ah,byte ptr [SplitScreenLine]
mov al,LINE_COMPARE

cli ;make sure all the registers get set at once
OUT_WORD ;set bits 7-0 of the split screen scan Tine
mov ah,byte ptr [SplitScreenlLine+l]

and ah,1

mov cl,4

shl ah,cl ;move bit 8 of the split split screen scan

; line into position for the Overflow reg
mov al,OVERFLOW
if IS_VGA
; The Split Screen, QOverflow, and Line Compare registers all contain
; part of the split screen start scan line on the VGA. We'll take
; advantage of the readable registers of the VGA to leave other bits
; in the registers we access undisturbed.

out dx,al ;set CRTC Index reg to point to Overflow
inc dx ;point to CRTC Data reg
in al,dx ;get the current Overflow reg setting
and al,not 10h sturn off split screen bit 8
or al,ah ;insert the new split screen bit 8
; (works in any mode)
out dx,al ;set the new split screen bit 8
dec dx ;point to CRTC Index reg
mov ah,byte ptr [SplitScreenLine+l1]
and ah,2
mov cl1,3
ror ah,cl ;move bit 9 of the split split screen scan

; 1ine into position for the Maximum Scan
; Line register

mov al,MAXIMUM_SCAN_LINE

out dx,al ;set CRTC Index reg to point to Maximum
; Scan Line

Video Est Omnis Divisa

581

582

inc dx ;point to CRTC Data reg

in al,dx ;get the current Maximum Scan Line setting
and al,not 40h ;turn off split screen bit 9
or al,ah ;insert the new split screen bit 9
; (works in any mode)
out dx,al ;set the new split screen bit 9

else

; Only the Split Screen and Overflow registers contain part of the
; Split Screen start scan line and need to be set on the EGA.

; EGA registers are not readable, so we have to set the non-split
; screen bits of the Overflow register to a preset value, in this
; case the value for 350-scan-1ine modes.

or ah,0fh ;insert the new split screen bit 8
; (only works in 350-scan-line EGA modes)
OUT_WORD ;set the new split screen bit 8
endif
sti
pop dx
pop Cx
pop ax
ret

SetSplitScreenScanline endp

;***
; Pan horizontally to the right the number of pixels specified by CX.
; Input: CX = # of pixels by which to pan horizontally

; Output: none

; Registers altered: AX, CX, DX

PanRight proc near
PanLoop:

inc [PelPan]

and [PelPan],07h

jnz DoSetStartAddress

inc [StartAddress]
DoSetStartAddress:

call SetStartAddress

call SetPelPan

loop PanlLoop

ret
pPanRight endp
;***
Code ends

end Start

Notes on Setting and Reading Registers

There are a few interesting points regarding setting and reading registers to be made
about Listing 30.2. First, bit 5 of the AC Index register should be set to 1 whenever
palette RAM is not being set (which is to say, all the time in your code, because
palette RAM should normally be set via the BIOS). When bit 5 is 0, video data from
display memory is no longer sent to palette RAM, and the screen becomes a solid

color—not normally a desirable state of affairs.

Chapter 30

Recall also that the AC Index and Data registers are both written to at I/O address
3COH, with the toggle that determines which one is written to at any time switching
state on every write to 3COH; this toggle is reset to index mode by each read from the
Input Status 0 register (3DAH in color modes, 3BAH in monochrome modes). The
AC Index and Data registers can also be written to at 3C1H on the EGA, but not on
the VGA, so steer clear of that practice.

On the VGA, reading AC registers is a bit different from writing to them. The AC
Data register can be read from 3COH, and the AC register currently addressed by the
AC Index register can be read from 3C1H; reading does not affect the state of the
AC index/data toggle. Listing 30.2 illustrates reading from and writing to the AGC
registers. Finally, setting the start address registers (CRTC registers 0CH and 0DH)
has its complications. As with the split screen registers, the start address registers
must be set together and without interruption at a time when there’s no chance of a
partial setting being used for a frame. However, it’s a little more difficult to know
when that might be the case with the start address registers than it was with the split
screen registers, because it’s not clear when the start address is used.

You see, the start address is loaded into the EGA’s or VGA’s internal display memory
pointer once per frame. The internal pointer is then advanced, byte-by-byte and
line-by-line, until the end of the frame (with a possible resetting to zero if the split
screen line is reached), and is then reloaded for the next frame. That’s straightfor-
ward enough; the real question is, Exactly when is the start address loaded?

In his excellent book Programmer’s Guide to PC Video Systems (Microsoft Press) Richard
Wilton says that the start address is loaded at the start of the vertical sync pulse.
(Wilton calls it vertical retrace, which can also be taken to mean vertical non-display
time, but given that he’s testing the vertical sync status bit in the Input Status 0 regis-
ter, I assume he means that the start address is loaded at the start of vertical sync.)
Consequently, he waits until the end of the vertical sync pulse to set the start address
registers, confident that the start address won’t take effect until the next frame.

I'm sure Richard is right when it comes to the real McCoy IBM VGA and EGA, but
I'm less confident that every clone out there loads the start address at the start of
vertical sync.
: p For that very reason, I generally advise people not to use horizontal smooth panning
unless they can test their software on all the makes of display adapter it might run on.
I've used Richard s approach in Listings 30.1 and 30.2, and so far as I 've seen it works
fine, but be aware that there are potential, albeit unproven, hazards to relying on
the setting of the start address registers to occur at a specific time in the frame.

The interaction of the start address registers and the Pel Panning register is worthy
of note. After waiting for the end of vertical sync to set the start address in Listing
30.2, I wait for the start of the next vertical sync to set the Pel Panning register. That’s

Video Est Omnis Divisa 583

because the start address doesn’t take effect until the start of the next frame, but the
pel panning setting takes effect at the start of the next line; if we set the pel panning
at the same time we set the start address, we’d get a whole frame with the old start
address and the new pel panning settings mixed together, causing the screen to
jump. As with the split screen registers, it’s safest to set the Pel Panning register
during non-display time. For maximum reliability, we’d have interrupts off from the
time we set the start address registers to the time we change the pel planning setting,
to make sure an interrupt doesn’t come in and cause us to miss the start of a vertical
sync and thus get a mismatched pel panning/start address pair for a frame, although
for modularity I haven’t done this in Listing 30.2. (Also, doing so would require
disabling interrupts for much too long a time.)

What if you wanted to pan faster? Well, you could of course just move two pixels at a
time rather than one; I assure you no one will ever notice when you’re panning at a
rate of 10 or more times per second.

Split Screens in Other Modes

So far we’ve only discussed the split screen in mode 10H. What about other modes?
Generally, the split screen works in any mode; the basic rule is that when a scan line
on the screen matches the split screen scan line, the internal display memory pointer
is reset to zero. I've found this to be true even in oddball modes, such as line-doubled
CGA modes and the 320x200 256-color mode (which is really a 320x400 mode with
each line repeated. For split-screen purposes, the VGA and EGA seem to count purely
in scan lines, not in rows or doubled scan lines or the like. However, I have run into
small anomalies in those modes on clones, and I haven’t tested all modes (nor, lord
knows, all clones!) so be careful when using the split screen in modes other than
modes 0DH-12H, and test your code on a variety of hardware.

Come to think of it, warn you about the hazards of running fancy VGA code on clones
pretty often, don’t I? Ah, well—just one of the hazards of the diversity and competition of
the PC market! It is a fact of life, though—if you’re a commercial developer and
don’t test your video code on at least half a dozen VGAs, you’re living dangerously.

What of the split screen in text mode? It works fine; in fact, it not only resets the
internal memory pointer to zero, but also resets the text scan line counter—which
marks which line within the font you’re on—to zero, so the split screen starts out
with a full row of text. There’s only one trick with text mode: When split screen pel
panning suppression is on, the pel panning setting is forced to 0 for the rest of the
frame. Unfortunately, 0 is not the “no-panning” setting for 9-dot-wide text; 8 is. The
result is that when you turn on split screen pel panning suppression, the text in the
split screen won’t pan with the normal screen, as intended, but will also display the
undesirable characteristic of moving one pixel to the left. Whether this causes any
noticeable on-screen effects depends on the text displayed by a particular application;

584 Chapter 30

for example, there should be no problem if the split screen has a border of blanks
on the left side.

How Safe?

So, how safe is it to use the split screen? My opinion is that it’s perfectly safe, al-
though I'd welcome input from people with extensive split screen experience—and
the effects are striking enough that the split screen is well worth using in certain
applications.

I’'m a little more leery of horizontal smooth scrolling, with or without the split screen.
Still, the Wilton book doesn’t advise any particular caution, and I haven’t heard any
horror stories from the field lately, so the clone manufacturers must finally have
gotten it right. (I vividly remember some early clones years back that didnt quite get
it right.) So, on balance, I'd say to use horizontal smooth scrolling if you really need
it; on the other hand, in fast animation you can often get away with byte scrolling,
which is easier, faster, and safer. (I recently saw a game that scrolled as smoothly as
you could ever want. It was only by stopping it with Ctrl-NumLock that I was able to
be sure that it was, in fact, byte panning, not pel panning.)

In short, use the fancy stuff—but only when you have to.

Video Est Omnis Divisa 585

	next:
	home:
	previous:

