
chapter 36

the good, the bad, and the run-sliced

nham Lines with Run-Length
Slice Line Diwrwing

that asked me to write blazingly fast line-drawing
lemented the basic Bresenham’s linedrawing algo

ssible; special-cased horizontal, diagonal, and
mized routines for lines in each octant; and mas-

done, I had line drawing down to a mere five or six
and I handed the code over to the AutoCAD driver person, con-

shed the theoretical limits of the Bresenham’s
and that this was as fast as line drawing could get
ut a week, until Dave Miller, who these days is a

Windows display-driver whiz at Engenious Solutions, casually mentioned Bresenham’s
faster run-length slice linedrawing algorithm.
Remember Bill Murray’s safety tip in Ghostbusters? It goes something like this. Harold
Ramis tells the Ghostbusters not to cross the beams of the antighost guns. ‘Why?”
Murray asks.
“It would be bad,” Ramis says.
Murray says, “I’m fuzzy on the whole good/bad thing. What exactly do you mean
by ‘bad’?’’ It turns out that what Ramis means by bad is basically the destruction of
the universe.

68 1

“Important safety tip,” Murray comments dryly.
I learned two important safety tips from my line-drawing experience; neither in-
volves the possible destruction of the universe, so far as I know, but they are
nonetheless worth keeping in mind. First, never, never, never think you’ve written
the fastest possible code. Odds are, you haven’t. Run your code past another good
programmer, and he or she will probably say, “But why don’t you do this?” and you’ll
realize that you could indeed do that, and your code would then be faster. Or relax and
come back to your code later, and you may well see another, faster approach. There
are a million ways to implement code for any task, and you can almost always find a
faster way if you need to.
Second, when performance matters, never have your code perform the same calcu-
lation more than once. This sounds obvious, but it’s astonishing how often it’s ignored.
For example, consider this snippet of code:

f o r (i - 0 : i < R u n L e n g t h : i++)
{

*Work ingScreenPtr - C o l o r ;
i f (X D e l t a > 0)
I

1
e l s e
(

1

WorkingScreenPtr++:

W o r k i n g S c r e e n P t r - - :

1

Here, the programmer knows which way the line is going before the main loop be-
gins-but nonetheless performs that test every time through the loop, when
calculating the address of the next pixel. Far better to perform the test only once,
outside the loop, as shown here:

i f (X D e l t a > 0)
I

f o r (i -0 : i<RunLength: i++)
{

I
}
e l s e
{

*Work ingScreenPtr++ - C o l o r :

f o r (i - 0 : i < R u n L e n g t h : i++)
I

I
*Work ingScreenPt r - - - C o l o r :

3

Think of it this way: A program is a state machine. It takes a set of inputs and pro-
duces a corresponding set of outputs by passing through a set of states. Your primary
job as a programmer is to implement the desired state machine. Your additional job
as a performance programmer is to minimize the lengths of the paths through the

682 Chapter 36

state machine. This means performing as many tests and calculations as possible
outside the loops, so that the loops themselves can do as little work-that is, pass
through as few states-as possible.
Which brings us full circle to Bresenham's run-length slice line-drawing algorithm,
which just happens to be an excellent example of a minimized state machine. In case
you're fuzzy on the good/bad performance thing, that's "good"-as in fast.

Run-Length Slice Fundamentals
First off, I have a confession to make: I'm not sure that the algorithm I'll discuss is
actually, precisely Bresenham's run-length slice algorithm. It's been a long time since
I read about this algorithm; in the intervening years, I've misplaced Bresenham's
article, and have been unable to unearth it. As a result, I had to derive the algorithm
from scratch, which was admittedly more fun than reading about it, and also en-
sured that I understood it inside and out. The upshot is that what I discuss may or
may not be Bresenham's run-length slice algorithm-but it surely is fast.
The place to begin understanding the run-length slice algorithm is the standard
Bresenham's line-drawing algorithm. (I discussed the standard Bresenham's line-
drawing algorithm at length in the previous chapter.) The basis of the standard
approach is stepping one pixel at a time along the major axis (the longer dimension
of the line), while maintaining an integer error term that indicates at each major-
axis step how close the line is to advancing halfway to the next pixel along the minor
axis. Figure 36.1 illustrates standard Bresenham's line drawing. The key point here is
that a calculation and a test are performed once for each step along the major axis.

0 0 0 0
"""."""""""""""""..""""..""""..""~

Midway points /
between pixels

along minor axis '.\ t
__"""."_"""."""".""" . ___""".""""".

\\//
Pixels are stepped one at a time along the major axis,
and the error term evaluated after each step, to see

if it's time for the minor axis to advance.

Standard Bresenham 5 line drawing.
Figure 36.1

The Good, the Bad, and the Run-Sliced 683

The run-length slice algorithm rotates matters 90 degrees, with salubrious results.
The basis of the run-length slice algorithm is stepping one pixel at a time along the
minor axis (the shorter dimension), while maintaining an integer error term indicating
how close the line is to advancing an extra pixel along the major axis, as illustrated by
Figure 36.2.
Consider this: When you’re called upon to draw a line with an Xdimension of 35
and a Y-dimension of 10, you have a great deal of information available, some of
which is ignored by standard Bresenham’s. In particular, because the slope is be-
tween 1/3 and 1/4, you know that every single run-a run being a set of pixels at the
same minor-axis coordinate-must be either three or four pixels long. No other
length is possible, as shown in Figure 36.3 (apart from the first and last runs, which
are special cases that I’ll discuss shortly). Therefore, for this line, there’s no need to
perform an error-term calculation and test for each pixel. Instead, we can just per-
form one test per run, to see whether the run is three or four pixels long, thereby
eliminating about 70 percent of the calculations in drawing this line.
Take a moment to let the idea behind run-length slice drawing soak in. Periodic deci-
sions must be made to control pixel placement. The key to speed is to make those
decisions as infrequently and as quickly as possible. Of course, it will work to make a
decision at each pixel-that’s standard Bresenham’s. However, most of those per-pixel
decisions are redundant, and in fact we have enough information before we begin
drawing to know which are the redundant decisions. Run-length slice drawing is exactly
equivalent to standard Bresenham’s, but it pares the decision-making process down
to a minimum. It’s somewhat analogous to the difference between finding the greatest
common divisor of two numbers using Euclid’s algorithm and finding it by trying

Error terms
(cumulative partial pixels) / at ends of runs \

after each step, to see
whether to draw
RUNLENGTH or
RUNLENGTH+l pixels
along the major axis.

0 0 0

Run-length slice line drawing.
Figure 36.2

684 Chapter 36

0 0 0 0 0 0 0 0 0 0 0 0 0 0

I""""""""_

Runs are four pixels long

Runs in a slope 1/3.5 line.
Figure 36.3

every possible divisor. Both approaches produce the desired result, but that which
takes maximum advantage of the available information and minimizes redundant
work is preferable.

Run-Length Slice Implementation
We know that for any line, a given run will always be one of two possible lengths.
How, though, do we know which length to select? Surprisingly, this is easy to determine.
For the following discussion, assume that we have a slope of 1/3.5, so that X is the major
axis; however, the discussion also applies to Y-major lines, with X and Y reversed.
The minimum possible length for any run in an X-major line is int(XDelta/YDelta),
where XDelta is the X-dimension of the line and YDelta is the Y-dimension. The
maximum possible length is int(XDelta/YDelta)+ 1. The trick, then, is knowing which
of these two lengths to select for each run. To see how we can make this selection,
refer to Figure 36.4. For each one-pixel step along the minor axis (x in this case), we
advance at least three pixels. The full advance distance along X (the major axis) is
actually three-plus pixels, because there is also a fractional portion to the advance
along X for a single-pixel Y step. This fractional advance is the key to deciding when
to add an extra pixel to a run. The fraction indicates what portion of an extra pixel
we advance along X (the major axis) during each run. If we keep a running sum of
the fractional parts, we have a measure of how close we are to needing an extra pixel;
when the fractional sum reaches 1, it's time to add an extra pixel to the current run.
Then, we can subtract 1 from the running sum (because we just advanced one pixel),
and continue on.

The Good, the Bad, and the Run-Sliced 685

I

minimum run length == 3

0 0 0 ,io\o 0 Q 0 /& ~.* 4 .""""""""" ;- I , " _ - 1

8
I , i -,"" """""__:".~ '"""I

""""""""""_
0 im *io 0 6 0

""""..""""r"I 6 I
P
0

0

m o o o o o ~ o \ o # I Cumulative error
Cumulative error term < 1, term > 1, so draw
so don't draw an extra pixel an extra pixel

How the error term determines run length.
Figure 36.4

Practically speaking, however, we can't work with fractions because floating-point
arithmetic is slow and fixed-point arithmetic is imprecise. Therefore, we take a cue
from standard Bresenham's and scale all the error-term calculations up so that we
can work with integers. The fractional X (major axis) advance per one-pixel Y (minor
axis) advance is the fractional portion ofXDelta/YDelta. This value is exactly equiva-
lent to D e l t a % YDelta)/YDelta. We'll scale this up by multiplying it by YDelta"2,
so that the amount by which we adjust the error term up for each one-pixel minor-
axis advance is (XDelta % YDelta)*2.
We'll similarly scale up the one pixel by which we adjust the error term down after it
turns over, so our downward error-term adjustment is YDelta*2. Therefore, before
drawing each run, we'll add (D e l t a % YDelta)*2 to the error term. If the error term
runs over (reaches one full pixel), we'll lengthen the run by 1, and subtract YDelta"2
from the error term. (All values are multiplied by 2 so that the initial error term,
which involves a 0.5 term, can be scaled up to an integer, as discussed next.)
This is not a complicated process; it involves only integer addition and subtraction
and a single test, and it lends itself to many and varied optimizations. For example,
you could break out hardwired optimizations for drawing each possible pair of run
lengths. For the aforementioned line with a slope of 1/3.5, for example, you could
have one routine hardwired to blast in a run of three pixels as quickly as possible,
and another hardwired to blast in a run of four pixels. These routines would ideally
have no looping, but rather just a series of instructions customized to draw the de-
sired number of pixels at maximum speed. Each routine would know that the only

686 Chapter 36

possibilities for the length of the next run would be three and four, so they could
increment the error term, then jump directly to the appropriate one of the two
routines depending on whether the error term turned over. Properly implemented,
it should be possible to reduce the average per-run overhead of line drawing to less
than one branch, with only two additions and two tests (the number of runs must
also be counted down), plus a subtraction half the time. On a 486, this amounts to
something on the order of 150 nanoseconds of overhead per pixel, exclusive of the
time required to actually write the pixel to display memory.
That’s good.

Run-Length Slice Details
A couple of run-length slice implementation details yet remain. First is the matter of
how error-term turnover is detected. This is done in much the same way as it is with
standard Bresenham’s: The error term is maintained as a negative valve and advances
for each step; when the error term reaches 0, it’s time to add an extra pixel to the
current run. This means that we only have to test for carry after advancing the error
term to determine whether or not to add an extra pixel to each run. (Actually, the
code in this chapter tests for the error term being greater than zero, but the assem-
bly code in the next chapter will use the very efficient carry approach.)
The second and more difficult detail is balancing the runs so that they’re centered
around the ideal line, and therefore draw the same pixels that standard Bresenham’s
would draw. If we just drew full-length runs from the start, we’d end up with an
unbalanced line, as shown in Figure 36.5. Instead, we have to split the initial pixel
plus one full run as evenly as possible between the first and last runs of the line, and
adjust the initial error term appropriately for the initial half-run.
The initial error term is advanced by one-half of the normal per-step fractional ad-
vance, because the initial step is only one-half pixel along the minor axis. This half-step
gets us exactly halfivay between the initial pixel and the next pixel along the minor
axis. All the error-term adjustments are scaled up by two times precisely so that we
can scale up this halved error term for the initial run by two times, and thereby make
it an integer.
The other trick here is that if an odd number of pixels are allocated between the first
and last partial runs, we’ll end up with an odd pixel, since we are unable to draw a
half-pixel. This odd pixel is accounted for by adding half a pixel to the error term.
That’s all there is to run-length slice line drawing; the partial first and last runs are
the only tricky part. Listing 36.1 is a run-length slice implementation in C. This is not
an optimized implementation, nor is it meant to be; this listing is provided so that
you can see how the run-length slice algorithm works. In the next chapter, I’ll move
on to an optimized version, but for now, Listing 36.1 will make it much easier to
grasp the principles of run-length slice drawing, and to understand the optimized
code I’ll present in the next chapter.

The Good, the Bad, and the Run-Sliced 687

Balancing run-length slice lines: a) unbalanced; b) balanced.
Figure 36.5

LISTING 36.1 136- 1 .C
/ * R u n - l e n g t h s l i c e l i n e d r a w i n g i m p l e m e n t a t i o n f o r mode 0x13. the VGA’s
320x200 256 -co lo r mode. N o t o p t i m i z e d ! T e s t e d w i t h B o r l a n d C++ i n
the sma l l mode l . * /

li ncl ude <dos. h>

d e f i n e SCREEN-WIDTH 320
d e f i n e SCREEN-SEGMENT OxAOOO

v o i d D r a w H o r i z o n t a l R u n (c h a r f a r * * S c r e e n P t r , i n t X A d v a n c e , i n t R u n L e n g t h .

v o i d D r a w V e r t i c a l R u n (c h a r far **ScreenPtr . i n t XAdvance. i n t RunLength.

/* Draws a l i n e b e t w e e n t h e s p e c i f i e d e n d p o i n t s i n c o l o r C o l o r . * /
v o i d L i n e D r a w (i n t X S t a r t . i n t Y S t a r t . i n t XEnd. i n t YEnd. i n t C o l o r)
I.

i n t Temp. AdjUp. AdjDown. ErrorTerm. XAdvance. XDelta. YDelta;
i n t W h o l e s t e p . I n i t i a l P i x e l C o u n t . F i n a l P i x e l C o u n t . i. RunLength:
c h a r f a r * S c r e e n P t r :

i n t C o l o r) :

i n t C o l o r) ;

688 Chapter 36

/* W e ' l l a l w a y s d r a w t o p t o b o t t o m , t o r e d u c e t h e number o f cases we have t o
handle, and t o make l i n e s b e t w e e n t h e same e n d p o i n t s d r a w t h e same p i x e l s * /
i f (Y S t a r t > YEnd) {

Temp - Y S t a r t :
Y S t a r t - YEnd;
YEnd - Temp;
Temp - X S t a r t ;
X S t a r t - XEnd;
XEnd - Temp;

I
/ * P o i n t t o t h e b i t m a p a d d r e s s f i r s t p i x e l t o d r a w */
S c r e e n P t r - MK-FP(SCREEN_SEGMENT. Y S t a r t * SCREEN-WIDTH + X S t a r t) :

/ * F i g u r e o u t w h e t h e r w e ' r e g o i n g l e f t o r r i g h t , a n d how f a r w e ' r e

i f ((X D e l t a - XEnd - X S t a r t) < 0)
{

g o i n g h o r i z o n t a l l y * /

XAdvance - -1;
XDel ta - - X D e l t a :

I
e l s e
I

I
/* F i g u r e o u t how f a r w e ' r e g o i n g v e r t i c a l l y * /
YDel ta - YEnd - Y S t a r t ;

XAdvance - 1;

S p e c i a l - c a s e h o r i z o n t a l , v e r t i c a l . a n d d i a g o n a l l i n e s . f o r s p e e d
and t o a v o i d n a s t y b o u n d a r y c o n d i t i o n s a n d d i v i s i o n b y 0 * /
(X D e l t a - 0)

I* V e r t i c a l l i n e * I
f o r (i - 0 ; i < - Y D e l t a ; i++)
{

*ScreenPt r - C o l o r ;
S c r e e n P t r +- SCREEN-WIDTH;

I
r e t u r n ;

(Y D e l t a - 0)

/* H o r i z o n t a l l i n e * /
f o r (i - 0 ; i < - X D e l t a : i++)
{

*ScreenPt r - C o l o r ;
S c r e e n P t r +- XAdvance;

I
r e t u r n ;

(X D e l t a - Y D e l t a)

/ * D i a g o n a l l i n e *I
f o r (i - 0 : i < - X D e l t a ; i++)
{

*ScreenPt r - C o l o r ;
S c r e e n P t r +- XAdvance + SCREEN-WIDTH;

I
r e t u r n ;

The Good, the Bad, and the Run-Sliced 689

/*
i f
{

3

D e t e r m i n e w h e t h e r t h e l i n e i s X o r Y m a j o r , a n d h a n d l e a c c o r d i n g l y * /
(X D e l t a >- Y D e l t a)

/ * X m a j o r l i n e * /
/* Minimum # o f p i x e l s i n a r u n i n t h i s l i n e */
WholeStep - XDel ta / YDe l ta :

/ * E r r o r t e r m a d j u s t e a c h t i m e Y s teps by 1: used t o t e l l when one
e x t r a p i x e l s h o u l d be drawn as p a r t o f a r u n , t o a c c o u n t f o r
f r a c t i o n a l s t e p s a l o n g t h e X a x i s p e r 1 - p i x e l s t e p s a l o n g Y * /

AdjUp - (X D e l t a % YDe l ta) * 2:

/ * E r r o r t e r m a d j u s t when t h e e r r o r t e r m t u r n s o v e r , u s e d t o f a c t o r

AdjDown - YDe l ta * 2:

/* I n i t i a l e r r o r t e r m : r e f l e c t s an i n i t i a l s t e p o f 0 .5 a l o n g t h e Y

E r ro rTe rm - (X D e l t a % YDe l ta) - (Y D e l t a * 2) ;

/ * The i n i t i a l and l a s t r u n s a r e p a r t i a l , b e c a u s e Y advances on l y 0.5

o u t t h e X s t e p made a t t h a t t i m e * I

a x i s * /

f o r t h e s e r u n s , r a t h e r t h a n 1. D i v i d e o n e f u l l r u n , p l u s t h e
i n i t i a l p i x e l , b e t w e e n t h e i n i t i a l and l a s t r u n s * /

I n i t i a l P i x e l C o u n t - (Wholestep / 2) + 1:
F i n a l P i x e l C o u n t - I n i t i a l P i x e l C o u n t :

/ * I f t h e b a s i c r u n l e n g t h i s e v e n and t h e r e ' s n o f r a c t i o n a l
advance, we h a v e o n e p i x e l t h a t c o u l d g o t o e i t h e r t h e i n i t i a l
o r l a s t p a r t i a l r u n , w h i c h w e ' l l a r b i t r a r i l y a l l o c a t e t o t h e
l a s t r u n */

i f ((Ad jUp -- 0) && ((WholeStep & 0x01) - 0))
{

3
/* I f t h e r e ' r e an odd number o f p i x e l s p e r r u n , we have 1 p i x e l t h a t c a n ' t

I n i t i a l P i x e l C o u n t - - :

be a l l o c a t e d t o e i t h e r t h e i n i t i a l o r l a s t p a r t i a l r u n . s o w e ' l l add 0 .5
t o e r r o r t e r m s o t h i s p i x e l will b e h a n d l e d b y t h e n o r m a l f u l l - r u n l o o p * /
i f ((Who les tep & 0x01) !- 0)

E r ro rTe rm +- YDe l ta :
t

3
I* Draw t h e f i r s t , p a r t i a l r u n o f p i x e l s * /
DrawHor izonta lRun(&ScreenPtr . XAdvance. I n i t i a l P i x e l C o u n t , C o l o r) ;
/ * Draw all f u l l r u n s */
f o r (i - 0 : i < (Y D e l t a - 1) ; i++)
t

RunLength - Wholestep: / * r u n i s a t l e a s t t h i s l o n g */
/* Advance the e r ro r t e rm and add an e x t r a p i x e l i f t h e e r r o r

i f ((E r r o r T e r m +- AdjUp) > 0)
t

t e r m so i n d i c a t e s * /

RunLength++;
E r ro rTe rm -- AdjDown; / * r e s e t t h e e r r o r t e r m */

I
/* Draw t h i s s c a n l i n e ' s r u n */
DrawHor izonta lRun(&ScreenPtr . XAdvance. RunLength. Color) :

3
/ * Draw t h e f i n a l r u n o f p i x e l s * /
DrawHor izonta lRun(&ScreenPtr , X A d v a n c e , F i n a l P i x e l C o u n t . C o l o r) :
r e t u r n :

690 Chapter 36

e l s e
{

/ * Y m a j o r l i n e * /

/* Minimum # o f p i x e l s i n a r u n i n t h i s l i n e * /
Wholestep = YDel ta / XDel ta :

/ * E r r o r t e r m a d j u s t e a c h t i m e X s teps by 1: used t o t e l l when 1 e x t r a
p i x e l s h o u l d b e d r a w n as p a r t o f a r u n . t o a c c o u n t f o r
f r a c t i o n a l s t e p s a l o n g t h e Y a x i s p e r 1 - p i x e l s t e p s a l o n g X * /

AdjUp = (Y D e l t a % X D e l t a) * 2 ;

/ * E r r o r t e r m a d j u s t when t h e e r r o r t e r m t u r n s o v e r , u s e d t o f a c t o r

AdjDown = XDel ta * 2 :

/ * I n i t i a l e r r o r t e r m : r e f l e c t s i n i t i a l s t e p o f 0 .5 a l o n g t h e X a x i s * /
E r r o r T e r m = (Y D e l t a % X D e l t a) - (X D e l t a * 2) :

/ * The i n i t i a l and l a s t r u n s a r e p a r t i a l , b e c a u s e X advances on ly 0 .5

o u t t h e Y s t e p made a t t h a t t i m e * /

f o r t h e s e r u n s , r a t h e r t h a n 1. D i v i d e o n e f u l l r u n . p l u s t h e
i n i t i a l p i x e l , b e t w e e n t h e i n i t i a l a n d l a s t r u n s * /

I n i t i a l P i x e l C o u n t = (Wholes tep / 2) + 1:
F i n a l P i x e l C o u n t = I n i t i a l P i x e l C o u n t :

/ * I f t h e b a s i c r u n l e n g t h i s e v e n and t h e r e ' s n o f r a c t i o n a l a d v a n c e . we
have 1 p i x e l t h a t c o u l d go t o e i t h e r t h e i n i t i a l o r l a s t p a r t i a l r u n ,
w h i c h w e ' l l a r b i t r a r i l y a l l o c a t e t o t h e l a s t r u n */

i f ((A d j U p == 0) && ((W h o l e s t e p & 0x01) -- 0))
c

1
/* I f t h e r e a r e an odd number o f p i x e l s p e r r u n , we have one p i xe l

t h a t c a n ' t be a l l o c a t e d t o e i t h e r t h e i n i t i a l o r l a s t p a r t i a l
r u n , s o w e ' l l add 0.5 t o t h e e r r o r t e r m s o t h i s p i x e l will be
h a n d l e d b y t h e n o r m a l f u l l - r u n l o o p */

I n i t i a l P i x e l C o u n t - - ;

i f ((W h o l e s t e p & 0x01) != 0)
[

I
/* Draw t h e f i r s t , p a r t i a l r u n o f p i x e l s * /
DrawVerticalRun(&ScreenPtr. X A d v a n c e . I n i t i a l P i x e l C o u n t . C o l o r) :

/ * Draw a l l f u l l r u n s */
f o r (i = O ; i < (X D e l t a - 1) : i++)
(

E r r o r T e r m += XDel t a :

RunLength = WholeStep: /* r u n i s a t l e a s t t h i s l o n g * /
/ * Advance the e r ro r t e rm and add an ex t ra p i xe l i f t h e e r r o r

i f ((E r r o r T e r m +- AdjUp) > 0)
1

t e r m s o i n d i c a t e s * /

RunLength++;
E r r o r T e r m -= AdjDown: / * r e s e t t h e e r r o r t e r m * /

I
/ * Draw t h i s s c a n l i n e ' s r u n */
DrawVer t i ca lRun(&ScreenPt r . XAdvance, RunLength. Color) :

1
/* Draw t h e f i n a l r u n o f p i x e l s * /
DrawVerticalRun(&ScreenPtr. X A d v a n c e . F i n a l P i x e l C o u n t , C o l o r) :
r e t u r n :

1

The Good, the Bad, and the Run-Sliced 691

1
I* Draws a h o r i z o n t a l r u n o f p i x e l s , t h e n a d v a n c e s t h e b i t m a p p o i n t e r t o

v o i d D r a w H o r i z o n t a l R u n (c h a r far * * S c r e e n P t r . i n t XAdvance.

{

t h e f i r s t p i x e l o f t h e n e x t r u n . *I

i n t RunLength. i n t C o l o r)

i n t i:
c h a r f a r * W o r k i n g S c r e e n P t r - *ScreenPt r ;

f o r (i - 0 ; i < R u n L e n g t h ; i++)
{

*Work ingScreenPtr - C o l o r :

1
WorkingScreenPtr +- XAdvance;

I* Advance t o t h e n e x t s c a n l i n e *I
WorkingScreenPtr +- SCREEN-WIDTH;
*Sc reenPt r - Work ingScreenPt r ;

1
/ * Draws a v e r t i c a l r u n o f p i x e l s , t h e n a d v a n c e s t h e b i t m a p p o i n t e r t o

v o i d D r a w V e r t i c a l R u n (c h a r f a r * * S c r e e n P t r . i n t XAdvance.

{

t h e f i r s t p i x e l o f t h e n e x t r u n . *I

i n t RunLength. i n t C o l o r)

i n t i:
c h a r f a r * W o r k i n g S c r e e n P t r - *ScreenPt r ;

f o r (i - 0 ; i<RunLength; i++)
(

*Work ingScreenPtr - C o l o r ;
Work ingScreenPtr +- SCREEN-WIDTH:

1
I* Advance t o t h e n e x t c o l u m n *I
WorkingScreenPtr +- XAdvance;
*Sc reenPt r - Work ingScreenPt r :

1

Notwithstanding that it’s not optimized, Listing 36.1 is reasonably fast. If you run
Listing 36.2 (a sample linedrawing program that you can use to testdrive Listing 36.1),
you may be as surprised as I was at how quickly the screen fills with vectors, consider-
ing that Listing 36.1 is entirely in C and has some redundant divides. Or perhaps you
won’t be surprised-in which case I suggest you not miss the next chapter.

LISTING 36.2 136-2.C
I* Sample l i n e - d r a w i n g p r o g r a m . Uses t h e o p t i m i z e d
l i n e - d r a w i n g f u n c t i o n s c o d e d i n L L i s t i n g L36.1.C.
T e s t e d w i t h B o r l a n d C++ i n t h e s m a l l m o d e l . *I

#i n c l ude <dos. h>

d e f i n e GRAPHICS-MODE 0x13
d e f i n e TEXT-MODE 0x03
d e f i n e BIOS-VIDEO-INT Ox10
#de f i ne X-MAX 320 / * w o r k i n g s c r e e n w i d t h *I
d e f i n e Y-MAX 200 /* w o r k i n g s c r e e n h e i g h t * /

e x t e r n v o i d L i n e D r a w (i n t X S t a r t . i n t Y S t a r t . i n t XEnd. i n t YEnd. i n t C o l o r) ;

692 Chapter 36

I* S u b r o u t i n e t o d r a w a r e c t a n g l e f u l l o f v e c t o r s , o f t h e s p e c i f i e d

void VectorsUp(XCenter, YCenter. XLength. YLength. Color)
i n t XCenter. YCenter: I* c e n t e r o f r e c t a n g l e t o fill *I
i n t XLength. YLength: I* d i s t a n c e f r o m c e n t e r t o edge o f r e c t a n g l e *I
i n t C o l o r ;
(

* l e n g t h and c o l o r , a r o u n d t h e s p e c i f i e d r e c t a n g l e c e n t e r . *I

I* c o l o r t o draw 1 ines i n *I

i n t WorkingX. WorkingY;

I* l i n e s f r o m c e n t e r t o t o p o f r e c t a n g l e *I
WorkingX - XCenter - XLength:
WorkingY - YCenter - YLength;
f o r (; WorkingX < (XCenter + XLength 1: WorkingX++
t

}
I* l i n e s f r o m c e n t e r t o r i g h t o f r e c t a n g l e *I
WorkingX - XCenter + XLength - 1;
WorkingY - YCenter - YLength;
f o r (; WorkingY < (YCenter + YLength) ; WorkingY++)

t

1
I* l i n e s f r o m c e n t e r t o b o t t o m o f r e c t a n g l e * /
WorkingX - XCenter + XLength - 1:
WorkingY - YCenter + YLength - 1;
f o r (; WorkingX >- (XCenter - XLength 1: WorkingX--)

1.

I
I* l i n e s f r o m c e n t e r t o l e f t o f r e c t a n g l e *I
WorkingX - XCenter - XLength;
WorkingY - YCenter + YLength - 1;
f o r (; WorkingY >- (YCenter - YLength) ; WorkingY--)

r
1

LineDraw(XCenter. YCenter. WorkingX. WorkingY. Color);

LineDraw(XCenter. YCenter. WorkingX. WorkingY. Color);

LineDraw(XCenter. YCenter. WorkingX. WorkingY. Color);

LineDraw(XCenter. YCenter. WorkingX. WorkingY. Color);

1
I* Sample program t o d r a w f o u r r e c t a n g l e s f u l l o f l i n e s . *I
i n t m a i n 0
(

un ion REGS regs ;

I* S e t g r a p h i c s mode */
regs.x.ax - GRAPHICS-MODE;
int86(BIOS-VIDEO-INT. ®s. ®s);

I* Draw each o f f o u r r e c t a n g l e s f u l l o f v e c t o r s * I
VectorsUp(X-MAX I 4 . Y-MAX I 4 . X-MAX I 4 . Y-MAX I 4 . 1);
VectorsUp(X-MAX * 3 1 4 . Y-MAX / 4. X-MAX 1 4 . Y-MAX / 4. 2) ;
VectorsUp(X-MAX I 4 . Y-MAX * 3 I 4. X-MAX I 4 . Y-MAX I 4 , 3) ;
VectorsUp(X-MAX * 3 I 4 . Y-MAX * 3 I 4 , X-MAX I 4 . Y-MAX I 4 . 4) ;

I* Wait f o r a key t o be pressed * I
ge tch () :

I* R e t u r n b a c k t o t e x t mode * I
regs.x.ax - TEXT-MODE;
int86(BIDS-YIDED-INT. ®s, ®s):

}

The Good, the Bad, and the Run-Sliced 693

	previous:
	home:
	next:

