Who Was that
Masked Image?®

pfimizing Dirty-Rectangle Animation

Programming is, and large, a linear process. One statement or instruction follows
another, in predictable sequences, with tiny building blocks strung together to make
a custom state machinéy As Programmers, we grow adept at this sort of idealized linear
thinking, which is, of #Good Thing. Still, it’s important to keep in mind that
there’s a large chunki6f the human mind that doesn’t work in a linear fashion.

I've written elsewhefé about the virtues of nonlinear/right-brain/lateral /what-have-
you thinking in sélving tough programming problems, such as debugging or
i bears repeating. The mind can be an awesome pattern-matching
and extrapolationitool, if you let it. For example, the other day I was grinding my way
through a parucular}y difficult bit of debugging. The code had been written by some-
one else, and, to my mind, there’s nothing worse than debugging someone else’s
code; there’s always the nasty feeling that you don’t quite know what’s going on. The
overall operation of this code wouldn’t come clear in my head, no matter how long
I stared at it, leaving me with a rising sense of frustration and a determination not to
quit until I got this bug.

In the midst of this, a coworker poked his head through the door and told me he
had something I had to listen to. Reluctantly, I went to his office, whereupon he
played a tape of what is surely one of the most bizarre 911 calls in history. No doubt
some of you have heard this tape, which I will briefly describe as involving a deer
destroying the interior of a car and biting a man in the neck. Perhaps you found it

861

funny, perhaps not—but as for me, it hit me exactly right. I started laughing helplessly,
tears rolling down my face. When I went back to work-—prestol—the pieces of the de-
bugging puzzle had come together in my head, and the work went quickly and easily.

Obviously, my mind needed a break from linear, left-brain, push-it-out thinking, so it
could do the sort of integrating work it does so well—but that it’s rarely willing to do
under conscious control. It was exactly this sort of thinking I had in mind when I
titled my 1989 optimization book Zen of Assembly Language. (Although I must admit
that few people seem to have gotten the connection, and I've had to field a lot of
questions about whether I'm a Zen disciple. I'm not—actually, I'm more of a Dave
Barry disciple. If you don’t know who Dave Barry is, you should; he’s good for your
right brain.) Give your mind a break once in a while, and I'll bet you’ll find you’re
more productive.

We’re strange thinking machines, but we’re the best ones yet invented, and it’s worth
learning how to tap our full potential. And with that, it’s back to dirty-rectangle
animation.

Dirty-Rectangle Animation, Continued

In the last chapter, I introduced the idea of dirty-rectangle animation. This tech-
nique is an alternative to page flipping that’s capable of producing animation of very
high visual quality, without any help at all from video hardware, and without the
need for any extra, nondisplayed video memory. This makes dirty-rectangle anima-
tion more widely usable than page flipping, because many adapters don’t support
page flipping. Dirty-rectangle animation also tends to be simpler to implement than
page flipping, because there’s only one bitmap to keep track of. A final advantage of
dirty-rectangle animation is that it’s potentially somewhat faster than page flipping,
because display-memory accesses can theoretically be reduced to exactly one access
for each pixel that changes from one frame to the next.

The speed advantage of dirty-rectangle animation was entirely theoretical in the pre-
vious chapter, because the implementation was completely in C, and because no
attempt was made to minimize display memory accesses. The visual quality of Chap-
ter 45’s animation was also less than ideal, for reasons we’ll explore shortly. The code
in Listings 46.1 and 46.2 addresses the shortcomings of Chapter 45’s code.

Listing 46.2 implements the low-level drawing routines in assembly language, which
boosts performance a good deal. For maximum performance, it would be worth-
while to convert more of Listing 46.1 into assembly, so a call isn’t required for each
animated image, and overall performance could be improved by streamlining the C
code, but Listing 46.2 goes a long way toward boosting animation speed. This pro-
gram now supports snappy animation of 15 images (as opposed to 10 for the software
presented in the last chapter), and the images are now two pixels wider. That level of
performance is all the more impressive considering that for this chapter I've con-
verted the code from using rectangular images to using masked images.

862 Chapter 46

LISTING 46.1 L46-1.C

/* Sample simple dirty-rectangle animation program, partially optimized and
featuring internal animation, masked images (sprites), and nonoverlapping dirty
rectangle copying. Tested with Borland C++ in the small model. */

#include <stdlib.h>
#include <conig.h>

#Hinclude <alloc.h>

#include <memory.h>
#include <dos.h>

/* Comment out to disable overlap elimination in the dirty rectangle list. */
#define CHECK_OVERLAP 1

#define SCREEN_WIDTH 320

#define SCREEN_HEIGHT 200

f#idefine SCREEN_SEGMENT 0xA000

/* Describes a dirty rectangle */
typedef struct {
void *Next; /* pointer to next node in linked dirty rect list */
int Top;
int Left;
int Right;
int Bottom;
} DirtyRectangle;
/* Describes an animated ohject */
typedef struct {

int X; /* upper left corner in virtual bitmap */
int Y;
int XDirection; /* direction and distance of movement */

int YDirection;
int InternalAnimateCount; /* tracking internal animation state */
int InternalAnimateMax; /* maximum internal animation state */
} Entity;
/* storage used for dirty rectangles */
ftdefine MAX_DIRTY_RECTANGLES 100
int NumDirtyRectangles;
DirtyRectangle DirtyRectangles[MAX_DIRTY_RECTANGLES];
/* head/tail of dirty rectangle list */
DirtyRectangle DirtyHead;
/* If set to 1, ignore dirty rectangle 1ist and copy the whole screen. */
int DrawWholeScreen = 0;
/* pixels and masks for the two internally animated versions of the image
we'll animate */
f#define IMAGE_WIDTH 13
ftdefine IMAGE_HEIGHT 11
char ImagePixels0[] = {

0,0,0,9,9,9, 9,9,0,0,0,0,0,
0,0,9,9,9,9,9,9,9,0,0,0,0,
g, 9,9,0,0,14,14,14, 9, 9, 0, 0, O,
9, 9,0,0,0, 0,14,14,14, 9, 9, 0, O,
9, 9, 0, 0, 0, 0,14,14,14, 9, 9, 0, O,
9, 9,14, 0, 0,14,14,14,14, 9, 9, 0, O,
9, 9,14,14,14,14,14,14,14, 9, 9, 0, O,
9, 9,14,14,14,14,14,14,14, 9, 9, 0, O,
0, 9, 9,14,14,14,14,14, 9, 9, 0, 0, O,
0,0,9,9,9,9,9,9,9,0,0,0,0,
0,0,0,9,9, 9,9,9,0,0,0,0,0,

Who Was that Masked Image? 863

char ImageMaskO[] = {

coocooocosoo
ccoccooocoooo
B R)
o=)
P e

e e e I B R R R]

e I B e B I B R]
oA O O =

HO OO O A A A A

1

—H A O OO QO
O AN OO~ —O
OO A4 A=A A 40O

OO A" A OO0

)-

char ImagePixelsl[

cnococcococoao

Coccoocoaaa

Cooncocococoaao

Socodcoccooaoo

SooYooco<tana o
~— —

99444444“99

Do oo ot T T OO
—
DO DI NHO O

SO0 MO OO

}.

char ImageMaskl

L0000 SO
OO
c-HoococoS—~O
corHococcooAoS
CA OGO RO
g S g

L B R B B B B B e B

-

I A A OO =

|

L
1
1
0
0
0
0
1
1
1
1
1

O A A0 O A~ ~O
OO HArm A~ OO

COO0O A A0 O0OC

}-

/* Pointers to pixel and mask data for various internally animated

*/

versions of our animated image.
char * ImagePixelArray[] = {ImagePixelsO, ImagePixelsl};

char * ImageMaskArray[] = {ImageMask0, ImageMaskl};

/* Animated entities */

void DrawMasked(char far *, char *, char *, int, int,

/* pointer to system buffer into which we'll draw */
void FillRect{char far *,

char far *SystemBufferPtr;
/* pointer to screen */

char far *ScreenPtr;
void AddDirtyRect(Entity *, int, int);

fdefine NUM_ENTITIES 15

Entity Entities[NUM_ENTITIES];

void EraseEntities(void);

void CopyDirtyRectanglesToScreen(void);
void DrawEntities(void);

int);

int, int);

int,

int,

void CopyRect(char far *, char far *, int, int, int, int);

864 Chapter 46

void main()
{
int i, XTemp, YTemp:;
unsigned int TempCount;
char far *TempPtr;
union REGS regs;
/* Allocate memory for the system buffer into which we’l) draw */
if (1(SystemBufferPtr = farmalloc((unsigned int)SCREEN_WIDTH*
SCREEN_HEIGHT))) {
printf("Couldn't get memory\n");
exit(l);
}
/* Clear the system buffer */
TempPtr = SystemBufferPtr;
for (TempCount = ((unsigned)SCREEN_WIDTH*SCREEN_HEIGHT); TempCount--;) {
*TempPtr++ = 0;
}
/* Point to the screen */
ScreenPtr = MK_FP(SCREEN_SEGMENT, 0);
/* Set up the entities we'll animate, at random locations */
randomize();
for (i = 0; i < NUM_ENTITIES; i++) {
Entities[1].X = random(SCREEN_WIDTH - IMAGE_WIDTH);
Entities[1].Y = random(SCREEN_HEIGHT - IMAGE_HEIGHT);
Entities{i].XDirection = 1;
Entities[1].YDirection = -1;
Entities[i].InternalAnimateCount = i & 1;
Entities[1].InternalAnimateMax = 2;
}
/* Set the dirty rectangle 1ist to empty, and set up the head/tail node
as a sentinel */
NumDirtyRectangles = 0;
DirtyHead.Next = &DirtyHead;
DirtyHead.Top = Ox7FFF;
DirtyHead.Left= Ox7FFF;
DirtyHead.Bottom = Ox7FFF;
DirtyHead.Right = Ox7FFF;
/* Set 320x200 256-color graphics mode */
regs.x.ax = 0x0013;
int86(0x10, ®s, ®s);
/* Loop and draw until a key is pressed */
do {
/* Draw the entities to the system buffer at their current locationms,
updating the dirty rectangle list */
DrawEntities();
/* Draw the dirty rectangles, or the whole system buffer if
appropriate */
CopyDirtyRectanglesToScreen();
/* Reset the dirty rectangle 1ist to empty */
NumDirtyRectangles = 0;
DirtyHead.Next = &DirtyHead:
/* Erase the entities in the system buffer at their old locations,
updating the dirty rectangle Tist */
EraseEntities();
/* Move the entities, bouncing off the edges of the screen */
for (i = 0; 1 < NUM_ENTITIES; i++) {
XTemp = Entities[1].X + Entities[i].XDirection;
YTemp = Entities[i].Y + Entities[i].YDirection;

Who Was that Masked Image? 865

if ((XTemp < 0) || ((XTemp + IMAGE_WIDTH) > SCREEN_WIDTH}) {
Entities[i].XDirection = -Entities[i].XDirection;
XTemp =~ Entities[i].X + Entities(i].XDirection;
1
if ((YTemp < 0) || ((YTemp + IMAGE_HEIGHT) > SCREEN_HEIGHT)) {
Entities[i].YDirection = -Entities[i].YDirection;
YTemp = Entities[i].Y + Entities[i].YDirection;
1
Entities(i].X = XTemp;
Entities[i].Y = YTemp;
}
} while (!kbhit());
getch(); /* clear the keypress */

/* Return back to text mode */
regs.x.ax =~ 0x0003;
int86(0x10, ®s, ®s);
}
/* Draw entities at their current locations, updating dirty rectangle 1ist.
void DrawEntities()
{
int i;
char far *RowPtrBuffer;
char *TempPtrImage;
char *TempPtrMask;
Entity *EntityPtr;

for (i = 0, EntityPtr = Entities; i < NUM_ENTITIES; i++, EntityPtr++) {
/* Remember the dirty rectangle info for this entity */
AddDirtyRect(EntityPtr, IMAGE_HEIGHT, IMAGE_WIDTH);
/* Point to the destination in the system buffer */
RowPtrBuffer = SystemBufferPtr + (EntityPtr->Y * SCREEN_WIDTH) +
EntityPtr->X;
/* Advance the image animation pointer */
if (++EntityPtr->InternalAnimateCount >=~
EntityPtr->InternalAnimateMax) {
EntityPtr->InternalAnimateCount = 0;
}
/* Point to the image and mask to draw */
TempPtrimage = ImagePixelArray[EntityPtr->InternalAnimateCount];
TempPtrMask = ImageMaskArray[EntityPtr->InternalAnimateCount];
DrawMasked(RowPtrBuffer, TempPtrImage, TempPtrMask, IMAGE_HEIGHT,
IMAGE_WIDTH, SCREEN_WIDTH):;
}
}
/* Copy the dirty rectangles, or the whole system buffer if appropriate.
to the screen. */
void CopyDirtyRectanglesToScreen()
{
int i1, RectWidth, RectHeight;
unsigned int Offset;
DirtyRectangle * DirtyPtr;
if (DrawWholeScreen) {
/* Just copy the whole buffer to the screen */
DrawWholeScreen = 0;
CopyRect(ScreenPtr, SystemBufferPtr, SCREEN_HEIGHT, SCREEN_WIDTH,
SCREEN_WIDTH, SCREEN_WIDTH):
} else {
/* Copy only the dirty rectangles, in the YX-sorted order in which
they're Tinked */

866 Chapter 46

DirtyPtr = DirtyHead.Next;
for (i = 0; 1 < NumDirtyRectangles; i++) {
/* 0ffset in both system buffer and screen of image */
Offset = (unsigned int) (DirtyPtr->Top * SCREEN_WIDTH) +
DirtyPtr->Left;
/* Dimensions of dirty rectangle */
RectWidth = DirtyPtr->Right - DirtyPtr->Left;
RectHeight = DirtyPtr->Bottom - DirtyPtr->Top;
/* Copy a dirty rectangle */
CopyRect{ScreenPtr + Offset, SystemBufferPtr + Offset,
RectHeight, RectWidth, SCREEN_WIDTH, SCREEN_WIDTH);
/* Point to the next dirty rectangle */
DirtyPtr = DirtyPtr->Next:

}

}

/* Erase the entities in the system buffer at their current locations,
updating the dirty rectangle list. */

void EraseEntities()

{
int i;
char far *RowPtr;
for (i = 0; 1 < NUM_ENTITIES; i++) (
/* Remember the dirty rectangle info for this entity */
AddDirtyRect(&Entities[i], IMAGE_HEIGHT, IMAGE_WIDTH);
/* Point to the destination in the system buffer */
RowPtr = SystemBufferPtr + (Entities[i].Y * SCREEN_WIDTH) +
Entities[{i].X;
/* Clear the rectangle */
Fi11Rect (RowPtr, IMAGE_HEIGHT, IMAGE_WIDTH, SCREEN_WIDTH, 0);
}
1

/* Add a dirty rectangle to the 1ist. The list is maintained in top-to-bottom,
left-to-right (YX sorted) order, with no pixel ever included twice, to minimize
the number of display memory accesses and to avoid screen artifacts resulting
from a Targe time interval between erasure and redraw for a given object or for
adjacent objects. The technique used is to check for overlap between the
rectangle and all rectangles already in the 1ist. If no overlap is found, the
rectangle is added to the Tist. If overlap is found, the rectangle is broken
into nonoverlapping pieces, and the pieces are added to the list by recursive
calls to this function. */
void AddDirtyRect(Entity * pEntity, int ImageHeight, int ImageWidth)

DirtyRectangle * DirtyPtr;

DirtyRectangle * TempPtr;

Entity TempEntity;

int 1;

if (NumDirtyRectangles >= MAX_DIRTY_RECTANGLES) {

/* Too many dirty rectangles; just redraw the whole screen */
DrawWholeScreen = 1;
return;

}

/* Remember this dirty rectanglie. Break up if necessary to avoid
overlap with rectangles already in the 1ist, then add whatever
rectangles are left, in YX sorted order */

#ifdef CHECK_OVERLAP

/* Check for overlap with existing rectangles */

TempPtr = DirtyHead.Next;

for (i = 0; i < NumDirtyRectangles; i++, TempPtr = TempPtr->Next) {

Who Was that Masked Image2 867

if ((TempPtr->Left < (pEntity->X + ImageWidth)) &&
(TempPtr->Right > pEntity->X) &&
(TempPtr->Top < (pEntity->Y + ImageHeight)) &&
(TempPtr->Bottom > pEntity->Y)) {

/* We've found an overlapping rectangle. Calculate the
rectangles, if any, remaining after subtracting out the
overiapped areas, and add them to the dirty 1list */

/* Check for a nonoverlapped left portion */

if (TempPtr->Left > pEntity->X) {

/* There's definitely a nonoverlapped portion at the left; add
it, but only to at most the top and bottom of the overlapping
rect; top and bottom strips are taken care of below */

TempEntity.X = pEntity->X;

TempEntity.Y = max(pEntity->Y, TempPtr->Top);

AddDirtyRect(&TempEntity,

min(pEntity->Y + ImageHeight, TempPtr->Bottom) -
TempEntity.Y,
TempPtr->Left - pEntity->X);

/* Check for a nonoverlapped right portion */
if (TempPtr->Right < (pEntity->X + ImageWidth)) (

/* There's definitely a nonoverlapped portion at the right; add
it, but only to at most the top and bottom of the overlapping
rect; top and bottom strips are taken care of below */

TempEntity.X = TempPtr->Right;

TempEntity.Y = max(pEntity->Y, TempPtr->Top);

AddDirtyRect (&TempEntity,

min(pEntity->Y + ImageHeight, TempPtr->Bottom) -
TempEntity.Y,
(pEntity->X + ImageWidth) - TempPtr->Right):

/* Check for a nonoverlapped top portion */
if (TempPtr->Top > pEntity->Y) {
/* There's a top portion that's not overlapped */
TempEntity.X = pEntity->X;
TempEntity.Y =~ pEntity->Y;
AddDirtyRect(&TempEntity, TempPtr->Top - pEntity->Y, ImageWidth):

/* Check for a nonoverlapped bottom portion */
if (TempPtr->Bottom < (pEntity->Y + ImageHeight)) {
/* There's a bottom portion that's not overlapped */
TempEntity.X = pEntity->X;
TempEntity.Y = TempPtr->Bottom;
AddDirtyRect(&TempEntity,
(pEntity->Y + ImageHeight) - TempPtr->Bottom, ImageWidth);
1
/* We've added all non-overlapped portions to the dirty 1ist */
return;
1
1
#endif /* CHECK_OVERLAP */
/* There's no overlap with any existing rectangle, so we can just
add this rectangle as-is */
/* Find the YX-sorted insertion point. Searches will always terminate,
because the head/tail rectangle is set to the maximum values */
TempPtr = &DirtyHead;
while (((DirtyRectangle *)TempPtr->Next)->Top < pEntity->Y) {
TempPtr = TempPtr->Next;
}

868 Chapter 46

while ((((DirtyRectangle *)TempPtr->Next)->Top == pEntity->Y) &&

(((DirtyRectangle *)TempPtr->Next)->Left < pEntity->X)) {
TempPtr = TempPtr->Next;

}

/* Set the rectangle and actually add it to the dirty list */

DirtyPtr = &DirtyRectangles[NumDirtyRectangles++];

DirtyPtr->Left = pEntity->X;

DirtyPtr->Top = pEntity->Y;

DirtyPtr->Right = pEntity->X + ImageWidth;

DirtyPtr->Bottom = pEntity->Y + ImageHeight;

DirtyPtr->Next = TempPtr->Next;

TempPtr->Next = DirtyPtr;

LISTING 46.2 L46-2.ASM

B

Assembly language helper routines for dirty rectangle animation. Tested with
TASM.

; Fills a rectangle in the specified buffer.

C-callable as:
void FillRect(char far * BufferPtr, int RectHeight, int RectWidth.
int BufferWidth, int Color);

.model small

.code

parms struc

dw ? ipushed BP

dw ? ;pushed return address
BufferPtr dd ? ;far pointer to buffer in which to fill
RectHeight dw ? ;height of rectangle to fill
RectWidth dw ? ;width of rectangle to fi11
BufferWidth dw ? ;width of buffer in which to fill
Color dw ? ;color with which to fill

parms ends

public Fil1Rect

_Fi1TRect proc near

cld

push bp

mov bp.sp

push di

les di,[bp+BufferPtr]

mov dx,[bp+RectHeight]

mov bx, [bp+BufferWidth]

sub bx, [bp+tRectWidth] ;distance from end of one dest scan

; to start of next

mov al,byte ptr [bp+Color]

mov ah,al ;double the color for REP STOSW
RowlLoop:

mov cx, [bp+RectWidth]

shr cx,1

rep stosw

adc CcX,CX

rep stosb

add di,bx ;point to next scan to fill

dec dx ;count down rows to fill

jnz RowlLoop

pop di

pop bp

ret

_Fil11Rect endp

Who Was that Masked Image2 869

; Draws a masked image (a sprite) to the specified buffer. C-callable as:
H void DrawMasked(char far * BufferPtr, char * Pixels, char * Mask,

; int ImageHeight, int ImageWidth, int BufferWidth);
parms2 struc

dw ? ;pushed B8P
dw ? ;pushed return address
BufferPtr2 dd ? ;far pointer to buffer in which to draw
Pixels dw ? ;pointer to image pixels
Mask dw ? ;pointer to image mask
ImageHeight dw ? sheight of image to draw
ImageWidth dw ? ;width of image to draw
BufferWidth2 dw ? ;width of buffer in which to draw

parms2 ends
public _DrawMasked

_DrawMasked proc near
cld
push bp
mov bp,sp
push si
push di
les di,[bptBufferPtr2]
mov si,[bp+Mask]
mov bx, [bp+Pixels]
mov dx, [bp+ImageHeight]
mov ax,[bp+tBufferWidth2]
sub ax,[bp+ImageWidth] ;distance from end of one dest scan
mov [bp+BufferWidth2],ax ; to start of next
RowLoop2:
mov cx,[bptImageWidth]
ColumnLoop:
Todsb ;get the next mask byte
and al,al ;draw this pixel?
Jjz SkipPixel ino
mov al,[bx] ;yes, draw the pixel
mov es:[di],al
SkipPixel:
inc bx ;point to next source pixel
inc di ;point to next dest pixel
dec (34
jnz ColumnLoop
add di,[bp+BufferWidth2] ;point to next scan to fill
dec dx ;count down rows to fill
jnz Rowloop2
pop di
pop si
pop bp
ret
_DrawMasked endp

; Copies a rectangle from one buffer to another. C-callable as:
H void CopyRect(DestBufferPtr, SrcBufferPtr, CopyHeight, CopyWidth,

; DestBufferWidth, SrcBufferWidth);
parms3 struc

dw ;pushed BP

dw ;pushed return address

DestBufferPtr dd
SrcBufferPtr dd

;far pointer to buffer to which to copy
;far pointer to buffer from which to copy

R]

870 Chapter 46

;height of rect to copy

;width of rect to copy

;width of buffer to which to copy
;width of buffer from which to copy

CopyHeight dw
CopyWidth dw
DestBufferWidth dw
SrcBufferWidth dw
parms3 ends
public _CopyRect

SRRNC Y

_CopyRect proc near
cld
push bp
mov bp,sp
push si
push di
push ds
les di,[bp+DestBufferPtr]
1ds si,[bp+SrcBufferpPtr]
mov dx, [bp+CopyHeight]
mov bx,[bp+DestBufferWidth] ;distance from end of one dest scan
sub bx, [bp+CopyWidth] ; of copy to the next
mov ax,[bp+SrcBufferWidth] ;distance from end of one source scan
sub ax,[bp+CopyWidth] ; of copy to the next
RowLoop3:
mov cx, [bp+CopyWidth] :# of bytes to copy
shr cx,1
rep movsw ;copy as many words as possible
adc CX,CX
rep movsb ;copy odd byte, if any
add si,ax ;point to next source scan line
add di,bx ;point to next dest scan line
dec dx ;count down rows to fill
jnz RowLoop3
pop ds
pop di
pop si
pop bp
ret
_CopyRect endp
end

Masked Images

Masked images are rendered by drawing an object’s pixels through a mask; pixels
are actually drawn only where the mask specifies that drawing is allowed. This makes
it possible to draw nonrectangular objects that don’t improperly interfere with one
another when they overlap. Masked images also make it possible to have transparent
areas (windows) within objects. Masked images produce far more realistic animation
than do rectangular images, and therefore are more desirable. Unfortunately, masked
images are also considerably slower to draw—however, a good assembly language
implementation can go a long way toward making masked images draw rapidly
enough, as illustrated by this chapter’s code. (Masked images are also known as sprites;
some video hardware supports sprites directly, but on the PC it’s necessary to handle
sprites in software.)

Who Was that Masked Image? 871

Masked images make it possible to render scenes so that a given image convincingly
appears to be in front of or behind other images; that is, so images are displayed in z-
order (by distance). By consistently drawing images that are supposed to be farther
away before drawing nearer images, the nearer images will appear in front of the
other images, and because masked images draw only precisely the correct pixels (as
opposed to blank pixels in the bounding rectangle), there’s no interference between
overlapping images to destroy the illusion.

In this chapter, I've used the approach of having separate, paired masks and images.
Another, quite different approach to masking is to specify a transparent color for
copying, and copy only those pixels that are not the transparent color. This has the
advantage of not requiring separate mask data, so it’s more compact, and the code
to implement this is a little less complex than the full masking I’ve implemented. On
the other hand, the transparent color approach is less flexible because it makes one
color undrawable. Also, with a transparent color, it’s not possible to keep the same
base image but use different masks, because the mask information is embedded in
the image data.

Internal Animation

I’'ve added another feature essential to producing convincing animation: internal
animation, which is the process of changing the appearance of a given object over
time, as distinguished from changing only the location of a given object. Internal
animation makes images look active and alive. I’ve implemented the simplest pos-
sible form of internal animation in Listing 46.1—alternation between two images—but
even this level of internal animation greatly improves the feel of the overall animation.
You could easily increase the number of images cycled through, simply by increasing the
value of InternalAnimateMax for a given entity. You could also implement more com-
plex image-selection logic to produce more interesting and less predictable
internal-animation effects, such as jumping, ducking, running, and the like.

Dirty-Rectangle Management

As mentioned above, dirty-rectangle animation makes it possible to access display
memory a minimum number of times. The previous chapter’s code didn’t do any of
that; instead, it copied all portions of every dirty rectangle to the screen, regardless
of overlap between rectangles. The code I've presented in this chapter goes to the
other extreme, taking great pains never to draw overlapped portions of rectangles
more than once. This is accomplished by checking for overlap whenever a rectangle
is to be added to the dirty list. When overlap with an existing rectangle is detected,
the new rectangle is reduced to between zero and four nonoverlapping rectangles.
Those rectangles are then again considered for addition to the dirty list, and may
again be reduced, if additional overlap is detected.

872 Chapter 46

A good deal of code is required to generate a fully nonoverlapped dirty list. Is it
worth it? It certainly can be, but in the case of Listing 46.1, probably not. For one
thing, you'd need larger, heavily overlapped objects for this approach to pay off big.
Besides, this program is mostly in C, and spends a lot of time doing things other than
actually accessing display memory. It also takes a fair amount of time just to generate
the nonoverlapped list; the overhead of all the looping, intersecting, and calling
required to generate the list eats up a lot of the benefits of accessing display memory
less often. Nonetheless, fully nonoverlapped drawing can be useful under the right
circumstances, and I've implemented it in Listing 46.1 so you’ll have something to
refer to should you decide to go this route.

There are a couple of additional techniques you might try if you want to wring maxi-
mum performance out of dirty-rectangle animation. You could try coalescing
rectangles as you generate the dirty-rectangle list. That is, you could detect pairs of
rectangles that can be joined together into larger rectangles, so that fewer, larger
rectangles would have to be copied. This would boost the efficiency of the low-level
copying code, albeit at the cost of some cycles in the dirty-list management code.

You might also try taking advantage of the natural coherence of animated graphics
screens. In particular, because the rectangle used to erase an image at its old loca-
tion often overlaps the rectangle within which the image resides at its new location,
you could just directly generate the two or three nonoverlapped rectangles required
to copy both the erase rectangle and the new-image rectangle for any single moving
image. The calculation of these rectangles could be very efficient, given that you
know in advance the direction of motion of your images. Handling this particular
overlap case would eliminate most overlapped drawing, at a minimal cost. You might
then decide to ignore overlapped drawing between different images, which tends to
be both less common and more expensive to identify and handle.

Drawing Order and Visual Quality

A final note on dirty-rectangle animation concerns the quality of the displayed screen
image. In the last chapter, we simply stuffed dirty rectangles into a list in the order
they became dirty, and then copied all of the rectangles in that same order. Unfortu-
nately, this caused all of the erase rectangles to be copied first, followed by all of the
rectangles of the images at their new locations. Consequently, there was a significant
delay between the appearance of the erase rectangle for a given image and the ap-
pearance of the new rectangle. A byproduct was the fact that a partially complete—part
old, part new—image was visible long enough to be noticed. In short, although the
pixels ended up correct, they were in an intermediate, incorrect state for a sufficient
period of time to make the animation look wrong.

This violated a fundamental rule of animation: No pixel should ever be displayed in a
perceptibly incorrect state. To correct the problem, I've sorted the dirty rectangles first

Who Was that Masked Image? 873

Previous Home Next

by Y coordinate, and secondly by X coordinate. This means the screen updates from
the top down, and from left to right, so the several nonoverlapping rectangles copied to
draw a given image should be drawn nearly simultaneously. Run the code from the
last chapter and then this chapter; you'll see quite a difference in appearance.

Avoid the trap of thinking animation is merely a matter of drawing the right pixels,
one after another. Animation is the art of drawing the right pixels at the right times so that
the eye and brain see what you want them to see. Animation is a lot more challeng-
ing than merely cranking out pixels, and it sure as heck isn’t a purely linear process.

874 Chapter 46

	previous:
	home:
	next:

