Mode X:
256-Color
VGA Magic

Anirsducing the VGA's Undocumented
“Animation:Optimal” Mode

At a book signing forimy book Zen of Code Optimization, an attractive young woman
came up to me, holding mybeek, and said, “You’re Michael Abrash, aren’t you?” I con-
fessed that I was, prepared to respond in an appropriately modest yet proud way to
the compliments I was sure would follow. (It was my own book signing, after all.) It
tc that way, though. The first thing out of her mouth was:

id name for a graphics mode.” As my jaw started to drop, she

And they say there are no groupies in programming!

Well. I never claimed that I invented the mode (which is a 320x240 256-color mode with
some very special properties, as we'll see shortly). I did discover it independently,
but so did other people in the game business, some of them no doubt before I did.
The difference is that all those other people held onto this powerful mode as a trade
secret, while I didn’t; instead, I spread the word as broadly as I could in my column
in Dr. Dobb’s Journal, on the theory that the more people knew about this mode, the
more valuable it would be. And I succeeded, as evidenced by the fact that this now
widely-used mode is universally known by the name I gave it in DDJ, “Mode X.” Nei-
ther do I think that’s a bad name; it’s short, catchy, and easy to remember, and it
befits the mystery status of this mode, which was omitted entirely from IBM’s docu-
mentation of the VGA.

877

In fact, when all is said and done, Mode X is one of my favorite accomplishments. I
remember reading that Charles Schultz, creator of “Peanuts,” was particularly proud
of having introduced the phrase “security blanket” to the English language. I feel
much the same way about Mode X; it’s now a firmly entrenched part of the com-
puter lexicon, and how often do any of us get a chance to do that? And that’s not to
mention all the excellent games that would not have been as good without Mode X.

So, in the end, I'm thoroughly pleased with Mode X; the world is a better place for it,
even if it did cost me my one potential female fan. (Contrary to popular belief, the
lives of computer columnists and rock stars are not, repeat, not, all that similar.) This
and the following two chapters are based on the DDJ columns that started it all back
in 1991, three columns that generated a tremendous amount of interest and spawned
a ton of games, and about which I still regularly get letters and e-mail. Ladies and
gentlemen, I give you...Mode X.

What Makes Mode X Special?

Consider the strange case of the VGA’s 320x240 256-color mode—Mode X—which is
undeniably complex to program and isn’t even documented by IBM—but which is,
nonetheless, perhaps the single best mode the VGA has to offer, especially for animation.

We’ve seen the VGA’s undocumented 256-color modes, in Chapters 31 and 32, but
now it’s time to delve into the wonders of Mode X itself. (Most of the performance
tips I'll discuss for this mode also apply to the other non-standard 256-color modes,
however.) Five features set Mode X apart from other VGA modes. First, it has a 1:1 aspect
ratio, resulting in equal pixel spacing horizontally and vertically (that is, square pixels).
Square pixels make for the most attractive displays, and avoid considerable program-
ming effort that would otherwise be necessary to adjust graphics primitives and images
to match the screen’s pixel spacing. (For example, with square pixels, a circle can be
drawn as a circle; otherwise, it must be drawn as an ellipse that corrects for the aspect
ratio—a slower and considerably more complicated process.) In contrast, mode 13H,
the only documented 256-color mode, provides a nonsquare 320x200 resolution.

Second, Mode X allows page flipping, a prerequisite for the smoothest possible ani-
mation. Mode 13H does not allow page flipping, nor does mode 12H, the VGA’s
high-resolution 640x480 16-color mode.

Third, Mode X allows the VGA’s plane-oriented hardware to be used to process pix-
els in parallel, improving performance by up to four times over mode 13H.

Fourth, like mode 13H but unlike all other VGA modes, Mode X is a byte-per-pixel
mode (each pixel is controlled by one byte in display memory), eliminating the slow
read-before-write and bit-masking operations often required in 16-color modes, where
each byte of display memory represents more than a single pixel. In addition to
cutting the number of memory accesses in half, this is important because the 486/
Pentium write FIFO and the memory caching schemes used by many VGA clones
speed up writes more than reads.

878 Chapter 47

Fifth, unlike mode 13H, Mode X has plenty of offscreen memory free for image
storage. This is particularly effective in conjunction with the use of the VGA’s latches;
together, the latches and the off-screen memory allow images to be copied to the
screen four pixels at a time.

There’s a sixth feature of Mode X that’s not so terrific: It’s hard to program effi-
ciently. As Chapters 23 through 30 of this book demonstrates, 16-color VGA
programming can be demanding. Mode X is often as demanding as 16-color pro-
gramming, and operates by a set of rules that turns everything you’ve learned in
16-color mode sideways. Programming Mode X is nothing like programming the
nice, flat bitmap of mode 13H, or, for that matter, the flat, linear (albeit banked)
bitmap used by 256-color SuperVGA modes. (I't’s important to remember that Mode
X works on all VGAs, not just SuperVGAs.) Many programmers I talk to love the flat
bitmap model, and think that it’s the ideal organization for display memory because it’s
so straightforward to program. Here, however, the complexity of Mode X is opportu-
nity—opportunity for the best combination of performance and appearance the VGA
has to offer. If you do 256-color programming, and especially if you use animation,
you’re missing the boat if you're not using Mode X.

Although some developers have taken advantage of Mode X, its use is certainly not
universal, being entirely undocumented; only an experienced VGA programmer
would have the slightest inkling that it even exists, and figuring out how to make it
perform beyond the write pixel/read pixel level is no mean feat. Little other than my
DDJ columns has been published about it, although John Bridges has widely distributed
his code for a number of undocumented 256-color resolutions, and I'd like to ac-
knowledge the influence of his code on the mode set routine presented in this chapter.

Given the tremendous advantages of Mode X over the documented mode 13H, I'd
very much like to get it into the hands of as many developers as possible, so I'm
going to spend the next few chapters exploring this odd but worthy mode. I'll pro-
vide mode set code, delineate the bitmap organization, and show how the basic write
pixel and read pixel operations work. Then, I'll move on to the magic stuff: rect-
angle fills, screen clears, scrolls, image copies, pixel inversion, and, yes, polygon fills
(just a different driver for the polygon code), all blurry fast; hardware raster ops; and
page flipping. In the end, I'll build a working animation program that shows many
of the features of Mode X in action.

The mode set code is the logical place to begin.

Selecting 320x240 256-Color Mode

We could, if we wished, write our own mode set code for Mode X from scratch—but
why bother? Instead, we’ll let the BIOS do most of the work by having it set up mode
13H, which we’ll then turn into Mode X by changing a few registers. Listing 47.1
does exactly that.

Mode X: 256-Color VGA Magic 879

The code in Listing 47.1 has been around for some time, and the very first version
had a bug that serves up an interesting lesson. The original DDJversion made images
roll on IBM’s fixed-frequency VGA monitors, a problem that didn’t come to my at-
tention until the code was in print and shipped to 100,000 readers.

The bug came about this way: The code I modified to make the Mode X mode set
code used the VGA’s 28-MHz clock. Mode X should have used the 25-MHz clock, a
simple matter of setting bit 2 of the Miscellaneous Output register (3C2H) to 0 in-
stead of 1.

Alas, I neglected to change that single bit, so frames were drawn at a faster rate than
they should have been; however, both of my monitors are multifrequency types, and
they automatically compensated for the faster frame rate. Consequently, my clock-
selection bug was invisible and innocuous—until it was distributed broadly and
everybody started banging on it.

IBM makes only fixed-frequency VGA monitors, which require very specific frame
rates; if they don’t get what you’ve told them to expect, the image rolls. The cor-
rected version is the one shown here as Listing 47.1; it does select the 25-MHz clock,
and works just fine on fixed-frequency monitors.

Why didn’t I catch this bug? Neither I nor a single one of my testers had a fixed-
frequency monitor! This nicely illustrates how difficult it is these days to test code in
all the PC-compatible environments in which it might run. The problem is particu-
larly severe for small developers, who can’t afford to buy every model of every hardware
component from every manufacturer; just imagine trying to test network-aware soft-
ware in all possible configurations!

When people ask why software isn’t bulletproof; why it crashes or doesn’t coexist
with certain programs; why PC clones aren’t always compatible; why, in short, the
myriad irritations of using a PC exist—this is a big part of the reason. I guess that’s
just the price we pay for the unfettered creativity and vast choice of the PC market.

LISTING 47.1 L47-1.ASM

Mode X (320x240, 256 colors) mode set routine. Works on all VGAs.
AAKAKAAEA KA I AAKAARAKRA KA A A A AT AR A I AT AR A A A Ak Ak kR A kA AR kA kA hhkhhhx
* Revised 6/19/91 to select correct clock; fixes vertical roll *
* problems on fixed-frequency (IBM 851X-type) monitors. *
e v e J e d e dk e ok e vk e 3k ek e ke e e ok e ok e sk gk e sk ok ok e sk e ke e ke e sk ok vk sk v e e e e e ke ke e ok ok ke ke ke R e e de s ok ok
C near-callable as:

H void Set320x240Mode(void);

Tested with TASM

Modified from public-domain mode set code by John Bridges.

SC_INDEX equ 03c4h ;Sequence Controller Index
CRTC_INDEX equ 03d4h ;CRT Controller Index

MISC_OUTPUT equ 03c2h ;Miscellaneous Output register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X

.model small
.data

880 Chapter 47

; Index/data pai

rs for CRT Controlier registers that differ between

; mode 13h and mode X.

CRTParms label

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw
CRT_PARM_LENGTH

.code
public
_Set320x240Mode
push
push
push

mov
int

mov
mov
out
mov
out

mov
mov
out

mov
mov
out

mov
mov
out
inc
in
and
out
dec
cld
mov
mov
SetCRTParmsLoop:
lodsw
out
loop

mov
mov
out
mov
mov

word

00d06h ;vertical total

03e07h ;overflow (bit 8 of vertical counts)
04109h ;cell height (2 to double-scan)
OealOh ;v sync start

Qacllh ;v sync end and protect cr0-cr?
0dfl2h ;vertical displayed

00014h ;turn off dword mode

0e715h ;v blank start

00616h ;v blank end

0e317h ;turn on byte mode

equ (($-CRTParms)/2)

_Set320x240Mode

proc near

bp ;preserve caller's stack frame

si ;preserve C register vars

di s (don't count on BIOS preserving anything)

ax,13h ;let the BIOS set standard 256-color
10h ; mode (320x200 linear)

dx,SC_INDEX
ax,0604h
dx,ax ;disable chaind4 mode
ax,0100h
dx,ax ;synchronous reset while setting Misc Output
; for safety, even though clock unchanged
dx .MISC_OUTPUT
al,0e3h
dx,al ;select 25 MHz dot clock & 60 Hz scanning rate

dx,SC_INDEX
ax,0300h
dx,ax ;undo reset (restart sequencer)

dx,CRTC_INDEX ;reprogram the CRT Controller
al,1lh ;VSync End reg contains register write
dx,al ; protect bit

dx sCRT Controller Data register

al,dx ;get current VSync End register setting
al,7fh ;remove write protect on various

dx,al ; CRTC registers

dx sCRT Controller Index

si,offset CRTParms ;point to CRT parameter table
cx,CRT_PARM_LENGTH ;# of table entries

;get the next CRT Index/Data pair
dx,ax ;set the next CRT Index/Data pair
SetCRTParmsLoop

dx,SC_INDEX

ax,0f02h

dx,ax ;enable writes to all four planes
ax,SCREEN_SEG ;now clear all display memory, 8 pixels
es,ax ; at a time

Mode X: 256-Color VGA Magic

881

sub di,di ;point ES:DI to dispiay memory

sub ax,ax ;clear to zero-value pixels
mov cx,8000h ;# of words in display memory
rep stosw ;clear all of display memory
pop di ;restore C register vars
pop si
pop bp ;restore caller's stack frame
ret

_Set320x240Mode endp
end

After setting up mode 13H, Listing 47.1 alters the vertical counts and timings to
select 480 visible scan lines. (There’s no need to alter any horizontal values, because
mode 13H and Mode X both have 320-pixel horizontal resolutions.) The Maximum
Scan Line register is programmed to double scan each line (that is, repeat each scan
line twice), however, so we get an effective vertical resolution of 240 scan lines. It is,
in fact, possible to get 400 or 480 independent scan lines in 256-color mode, as
discussed in Chapter 31 and 32; however, 400-scan-line modes lack square pixels and
can’t support simultaneous off-screen memory and page flipping. Furthermore, 480-
scan-line modes lack page flipping altogether, due to memory constraints.

At the same time, Listing 47.1 programs the VGA’s bitmap to a planar organization
that is similar to that used by the 16-color modes, and utterly different from the
linear bitmap of mode 13H. The bizarre bitmap organization of Mode X is shown in
Figure 47.1. The first pixel (the pixel at the upper left corner of the screen) is con-
trolled by the byte at offset 0 in plane 0. (The one thing that Mode X blessedly has in
common with mode 13H is that each pixel is controlled by a single byte, eliminating
the need to mask out individual bits of display memory.) The second pixel, immedi-
ately to the right of the first pixel, is controlled by the byte at offset 0 in plane 1. The
third pixel comes from offset 0 in plane 2, and the fourth pixel from offset 0 in plane
3. Then, the fifth pixel is controlled by the byte at offset 1 in plane 0, and that cycle
continues, with each group of four pixels spread across the four planes at the same
address. The offset M of pixel N in display memory is M = N/4, and the plane P of
pixel N is P = N mod 4. For display memory writes, the plane is selected by setting bit
P of the Map Mask register (Sequence Controller register 2) to 1 and all other bits to
0; for display memory reads, the plane is selected by setting the Read Map register
(Graphics Controller register 4) to P.

It goes without saying that this is one ugly bitmap organization, requiring a lot of
overhead to manipulate a single pixel. The write pixel code shown in Listing 47.2
must determine the appropriate plane and perform a 16-bit OUT to select that plane
for each pixel written, and likewise for the read pixel code shown in Listing 47.3.
Calculating and mapping in a plane once for each pixel written is scarcely a recipe
for performance.

That’s all right, though, because most graphics software spends little time drawing
individual pixels. I've provided the write and read pixel routines as basic primitives,

882 Chapter 47

Screen 2\

>

—

— 5@
*_».

|

Pixel O |Pixel 4 |Pixel 8 [Pixel 12] and soon in
increments of 4...
Plane O

Pixel 1 |Pixel 5 |Pixel 9 [Pixel 13] and so on in
increments of 4...

Plane 1

Pixel 2 |Pixel 6 [Pixel 10]Pixel 14] and'so on in
increments of 4...
Plane 2

Pixel 3 [Pixel 7 |Pixel 11 [Pixel 15] and so on in
increments of 4...
Plane 3

Display Memory

Mode X display memory organization.
Figure 47.1

and so you’ll understand how the bitmap is organized, but the building blocks of
high-performance graphics software are fills, copies, and bitblts, and it’s there that
Mode X shines.

LISTING 47.2 L47-2.ASM

; Mode X (320x240, 256 colors) write pixel routine. Works on all VGAs.
; No clipping is performed.

; C near-callable as:

H void WritePixelX(int X, int Y, unsigned int PageBase, int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index

MAP_MASK equ 02h ;index in SC of Map Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X
SCREEN_WIDTH equ 80 ;width of screen in bytes from one scan line

; to the next

parms struc

dw 2 dup (?) ;pushed BP and return address
X dw ? ;X coordinate of pixel to draw
Y dw ? ;Y coordinate of pixel to draw
PageBase dw ? ;base offset in display memory of page in

; which to draw pixel
Color dw ? ;color in which to draw pixel
parms ends

Mode X: 256-Color VGA Magic 883

.model small

.code
public _WritePixelX
_WritePixelX proc near
push bp ;preserve caller's stack frame
mov bp,sp ;point to local stack frame

mov ax,SCREEN_WIDTH

mul [bp+Y] ;offset of pixel's scan line in page
mov bx, [bp+X]

shr bx,1

shr bx,1 ;X/4 = offset of pixel in scan line
add bx,ax ;offset of pixel in page

add bx,[bp+PageBase] ;offset of pixel in display memory
mov ax,SCREEN_SEG

mov es,ax ;point ES:BX to the pixel's address
mov cl,byte ptr [bp+X]

and c1,011b ;CL = pixel's plane

mov ax,0100h + MAP_MASK ;AL = index in SC of Map Mask reg
shl ah,cl ;set only the bit for the pixel's plane to 1
mov dx,SC_INDEX ;set the Map Mask to enable only the
out dx,ax ; pixel's plane

mov al,byte ptr [bp+Color]

mov es:[bx],al ;draw the pixel in the desired color
pop bp ;restore caller's stack frame
ret
_WritePixelX endp
end

LISTING 47.3 L47-3.ASM

; Mode X (320x240, 256 colors) read pixel routine. Works on all VGAs.
; No clipping is performed.

; C near-callable as:

H unsigned int ReadPixelX(int X, int Y, unsigned int PageBase):

GC_INDEX equ 03ceh ;Graphics Controller Index

READ_MAP equ 04h ;index in GC of the Read Map register
SCREEN_SEG equ 0a000h ;segment of dispiay memory in mode X
SCREEN_WIDTH equ 80 ;width of screen in bytes from one scan Tine

; to the next
parms struc

dw 2 dup (?) ;pushed BP and return address
X dw ? ;X coordinate of pixel to read
Y dw ? ;Y coordinate of pixel to read
PageBase dw ? ;base offset in display memory of page from

; which to read pixel
parms ends

.model small

.code
public _ReadPixelX
_ReadPixelX proc near
push bp ;preserve caller's stack frame
mov bp.sp ;point to local stack frame

884 Chapter 47

mov ax,SCREEN_WIDTH

mul [bp+Y] ;offset of pixel's scan 1ine in page
mov bx, {bp+X]
shr bx,1
shr bx,1 ;X/4 = offset of pixel in scan line
add bx,ax ;offset of pixel in page
add bx,[bp+PageBase] ;offset of pixel in display memory
mov ax,SCREEN_SEG
mov es,ax ;point ES:BX to the pixel's address
mov ah,byte ptr [bp+X]
and ah,011b ;AH = pixel's plane
mov al,READ_MAP ;AL = index in GC of the Read Map reg
mov dx,GC_INDEX ;set the Read Map to read the pixel's
out dx,ax ; plane
mov al,es:[bx] ;read the pixel’s color
sub ah,ah ;convert it to an unsigned int
pop bp ;restore caller's stack frame
ret

_ReadPixelX endp
end

Designing from a Mode X Perspective

Listing 47.4 shows Mode X rectangle fill code. The plane is selected for each pixel in
turn, with drawing cycling from plane 0 to plane 3, then wrapping back to plane 0.
This is the sort of code that stems from a write-pixel line of thinking; it reflects nota
whit of the unique perspective that Mode X demands, and although it looks reason-
ably efficient, it is in fact some of the slowest graphics code you will ever see. I've
provided Listing 47.4 partly for illustrative purposes, but mostly so we’ll have a point
of reference for the substantial speed-up that’s possible with code that’s designed
from a Mode X perspective.

LISTING 47.4 L47-4.ASM

; Mode X (320x240, 256 colors) rectangle fill routine. Works on all

; VGAs. Uses slow approach that selects the plane explicitly for each
; pixel. Fills up to but not including the column at EndX and the row
; at EndY. No clipping is performed.

; C near-caltlable as:

H void FillRectangleX(int StartX, int StartY, int EndX, int EndY,
H unsigned int PageBase, int Color);

SC_INDEX equ 03c4h :Sequence Controller Index
MAP_MASK equ 02h ;index in SC of Map Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X
SCREEN_WIDTH equ 80 ;width of screen in bytes from one scan line
; to the next
parms struc
dw 2 dup (?) ;pushed BP and return address
StartX dw ? ;X coordinate of upper teft corner of rect
StartY dw ? ;Y coordinate of upper left corner of rect
EndX dw ? ;X coordinate of lower right corner of rect

; (the row at EndX is not filled)

Mode X: 256-Color VGA Magic 885

EndY dw ? :Y coordinate of lower right corner of rect
s (the column at EndY is not filled)

PageBase dw ? ;base offset in display memory of page in
; which to fill rectangle
Color dw ? ;color in which to draw pixel

parms ends

.model small

.code
public _FillRectangleX
_Fil1RectangleX proc near
push bp ;preserve caller's stack frame
mov bp,sp ;point to local stack frame
push si ;preserve caller's register variables
push di
mov ax,SCREEN_WIDTH
mul [bp+StartY] ;offset in page of top rectangie scan line
mov di,[bp+StartX]
shr di,1
shr di,1l ;X/4 = offset of first rectangle pixel in scan
; line
add di,ax ;offset of first rectangle pixel in page
add di,[bp+PageBase] ;offset of first rectangle pixel in
; display memory
mov ax,SCREEN_SEG
mov es,ax ;point ES:DI to the first rectangle pixel's
; address
mov dx,SC_INDEX ;set the Sequence Controller Index to
mov al,MAP_MASK ; point to the Map Mask register
out dx,al
inc dx ;point DX to the SC Data register
mov c1,byte ptr [bp+StartX]
and c1,011b ;CL = first rectangle pixel's plane
mov al,01lh
shl al,cl ;set only the bit for the pixel's plane to 1
mov ah,byte ptr [bp+Color] ;color with which to fill
mov bx,[bp+EndY]
sub bx,[bp+StartY] ;:BX = height of rectangle
Jjle Fi11Done ;skip if 0 or negative height
mov si,[bp+EndX]
sub si,[bp+StartX] ;CX = width of rectangle
jle Fil11Done ;skip if 0 or negative width
Fil11RowsLoop:
push ax ;remember the plane mask for the left edge
push di ;remember the start offset of the scan line
mov cx,si :set count of pixels in this scan line
Fil1ScanlLineLoop:
out dx,al ;set the plane for this pixel
mov es:[di],ah ;draw the pixel
shl al,1 ;adjust the plane mask for the next pixel's
and al,01111b ; bit, modulo 4
jnz AddressSet ;advance address if we turned over from
inc di ; plane 3 to plane 0
mov al,00001b ;set plane mask bit for plane 0
AddressSet:
loop Fill1ScanLinelLoop
pop di ;retrieve the start offset of the scan line
add di,SCREEN_WIDTH ;point to the start of the next scan

; line of the rectangle

886 Chapter 47

pop ax ;retrieve the plane mask for the left edge

dec bx ;count down scan Tines
jnz Fil1RowsLoop
Fil1Done:
pop di ;restore caller’'s register variables
pop si
pop bp ;restore caller's stack frame
ret
_Fil1RectangleX endp
end

The two major weaknesses of Listing 47.4 both result from selecting the plane on a
pixel by pixel basis. First, endless OUTs (which are particularly slow on 386s, 486s,
and Pentiums, much slower than accesses to display memory) must be performed,
and, second, REP STOS can’t be used. Listing 47.5 overcomes both these problems
by tailoring the fill technique to the organization of display memory. Each plane is
filled in its entirety in one burst before the next plane is processed, so only five OUTs
are required in all, and REP STOS can indeed be used; I've used REP STOSB in
Listings 47.5 and 47.6. REP STOSW could be used and would improve performance on
most VGAs; however, REP STOSW requires extra overhead to set up, so it can be slower
for small rectangles, especially on 8-bit VGAs. Note that doing an entire plane at a time
can produce a “fading-in” effect for large images, because all columns for one plane
are drawn before any columns for the next. If this is a problem, the four planes can
be cycled through once for each scan line, rather than once for the entire rectangle.

Listing 47.5 is 2.5 times faster than Listing 47.4 at clearing the screen on a 20-MHz
cached 386 with a Paradise VGA. Although Listing 47.5 is slightly slower than an
equivalent mode 13H fill routine would be, it’s not grievously so.

,p In general, performing plane-at-a-time operations can make almost any Mode X
operation, at the worst, nearly as fast as the same operation in mode 13H (al-
though this sort of Mode X programming is admittedly fairly complex). In this

pursuit, it can help to organize data structures with Mode X in mind. For example,
icons could be prearranged in system memory with the pixels organized into four
plane-oriented sets (or, again, in four sets per scan line to avoid a fading-in effect)
to facilitate copying to the screen a plane at a time with REP MOV'S.

LISTING 47.5 L47-5.ASM

; Mode X (320x240, 256 colors) rectangle fill routine. Works on all

: VGAs. Uses medium-speed approach that selects each ptane only once

; per rectangle; this results in a fade-in effect for large

; rectangles. Fills up to but not including the column at EndX and the
; row at EndY. No clipping is performed.

; C near-callable as:

; void FillRectangleX(int StartX, int StartY, int EndX, int EndY,
H unsigned int PageBase, int Color);

SC_INDEX equ 03cé4h ;Sequence Controller Index
MAP_MASK equ 02h ;index in SC of Map Mask register
SCREEN_SEG equ 0a000h ;segment of display memory in mode X

Mode X: 256-Color VGA Magic 887

SCREEN_WIDTH equ 80
parms struc
dw 2 dup (?)
StartX dw ?
Starty dw ?
EndX dw ?
EndY dw ?
PageBase dw ?
Color dw ?
parms ends
StartOffset equ -2
Width equ -4
Height equ -6
Planelnfo equ -8
STACK_FRAME_SIZE equ 8
.model small
.code
public _Fil1RectangleX
_FillRectangleX proc near
push bp
mov bp.sp
sub sp,STACK_FRAME_SIZE
push si
push di
cld
mov ax,SCREEN_WIDTH
mul [bp+StartY]
mov di,[bp+StartX]
shr di,1
shr di,1
add di,ax
add di,[bp+PageBase]
mov ax,SCREEN_SEG
mov es,ax
mov [bp+StartOffset],di
mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al
mov bx, [bp+EndY]
sub bx,{bp+StartyY]
jle Fi11Done
mov [bp+Height],bx
mov dx, [bp+EndX]
mov cx,[bp+StartXx]
cmp dx,cx
Jle Fi1iDone
dec dx
and c¢x,not 011b
sub dx,cx
shr dx,1
shr dx,1

888 Chapter 47

;width of screen in bytes from one scan line
; to the next

;pushed BP and return address

;X coordinate of upper left corner of rect

;Y coordinate of upper left corner of rect

;X coordinate of lower right corner of rect
; (the row at EndX is not filled)

;Y coordinate of lower right corner of rect
; (the column at EndY is not filied)

;base offset in display memory of page in

; which to fill rectangle

;color in which to draw pixel

;local
s1ocal
;local
;Tocal

storage for start offset of rectangle
storage for address width of rectangle
storage for height of rectangle
storage for plane # and plane mask

;preserve caller's stack frame

;point to local stack frame

;allocate space for local vars
;preserve caller's register variables

;offset in page of top rectangle scan line

:X/4 = offset of first rectangle pixel in scan
; line

;offset of first rectangle pixel in page
;offset of first rectangle pixel in

s display memory

;point ES:DI to the first rectangle pixel's
; address

;set the Sequence Controller Index to

; point to the Map Mask register

;BX = height of rectangle
;skip if 0 or negative height

;skip if 0 or negative width

inc
mov
mov

Fil1PlanesLloop:
mov
mov
out
mov
mov
mov
and
cmp
jae
dec
jz
inc

InitAddrSet:
mov
dec
and
cmp
jbe
dec
jz

WidthSet:
mov
sub

mov
mov

Fil1RowsLoop:
mov
rep
add

dec
jnz
FillLoopBottom:
mov
shil
inc
mov
cmp
jnz
FillDone:
pop
pop
mov
pop
ret

dx ;# of addresses across rectangle to fill
[bp+Width],dx
word ptr [bp+Planelnfo],0001h

;lower byte = plane mask for plane 0,

; upper byte = pliane # for plane 0

ax,word ptr [bp+Planelnfo]

dx,SC_INDEX+1 ;point DX to the SC Data register
dx,al ;set the plane for this pixel
di,[bp+StartOffset] ;point ES:DI to rectangle start

dx, [bp+Width]
cl,byte ptr [bp+StartX]

c1,011b ;plane # of first pixel in initial byte
ah,cl ;do we draw this plane in the initial byte?
InitAddrSet ;yes
dx ;no, so skip the initial byte
Fil1LoopBottom ;skip this plane if no pixels in it
di
cl,byte ptr [bp+EndX]
cl
¢1,011b ;plane # of last pixel in final byte
ah,cl ;do we draw this plane in the final byte?
WidthSet ;yes
dx ;no, so skip the final byte
Fi11LoopBottom ;skip this planes if no pixels in it
si,SCREEN_WIDTH
si,dx ;distance from end of one scan line to start
; of next
bx,[bp+Height] # of lines to fill
al,byte ptr [bp+Color] ;color with which to fill
cx,dx ;## of bytes across scan line
stosb ;f111 the scan line in this plane
di,si ;point to the start of the next scan
; 1ine of the rectangle
bx ;count down scan lines

FiT1RowsLoop

ax,word ptr [bp+Planelnfol

al,l1 ;set the plane bit to the next plane
ah ;increment the plane #

word ptr [bp+Planelnfo],ax

ah.,4 ;have we done all planes?
FillPlanesLoop ;continue if any more planes

di ;restore caller's register variables
si

sp,bp ;discard storage for local variables
bp ;restore caller's stack frame

_Fil1RectangleX endp

end

Hardware Assist from an Unexpected Quarter

Listing 47.5 illustrates the benefits of designing code from a Mode X perspective;
this is the software aspect of Mode X optimization, which suffices to make Mode X

Mode X: 256-Color VGA Magic

889

about as fast as mode 13H. That alone makes Mode X an attractive mode, given its
square pixels, page flipping, and offscreen memory, but superior performance would
nonetheless be a pleasant addition to that list. Superior performance is indeed pos-
sible in Mode X, although, oddly enough, it comes courtesy of the VGA’s hardware,
which was never designed to be used in 256-color modes.

All of the VGA’s hardware assist features are available in Mode X, although some are
not particularly useful. The VGA hardware feature that’s truly the key to Mode X
performance is the ability to process four planes’ worth of data in parallel; this in-
cludes both the latches and the capability to fan data out to any or all planes. For
rectangular fills, we’ll just need to fan the data out to various planes, so I'll defer a
discussion of other hardware features for now. (By the way, the ALUs, bit mask, and
most other VGA hardware features are also available in mode 13H—but parallel
data processing is not.)

In planar modes, such as Mode X, a byte written by the CPU to display memory may
actually go to anywhere between zero and four planes, as shown in Figure 47.2. Each
plane for which the setting of the corresponding bit in the Map Mask register is 1 re-
ceives the CPU data, and each plane for which the corresponding bit is 0 is not modified.

In 16-color modes, each plane contains one-quarter of each of eight pixels, with the
4 bits of each pixel spanning all four planes. Not so in Mode X. Look at Figure 47.1
again; each plane contains one pixel in its entirety, with four pixels at any given
address, one per plane. Still, the Map Mask register does the same job in Mode X as

CPU write of value The CPU value (41h) is written to offset O in each of
41h to offset O in the two planes enabled by the Map Mask register,
display memory f planes O and 2; planes 1 and 3 are not altered.
(A000:0000)

Plane O

Plane 1
Plane 2
Plane 3

Map Mask Register

Display Memory

Selecting planes with the Map Mask register.
Figure 47.2

890 Chapter 47

in 16-color modes; set it to OFH (all 1-bits), and all four planes will be written to by
each CPU access. Thus, it would seem that up to four pixels could be set by a single
Mode X byte-sized write to display memory, potentially speeding up operations like
rectangle fills by four times.

And, as it turns out, four-plane parallelism works quite nicely indeed. Listing 47.6 is
yet another rectangle-fill routine, this time using the Map Mask to set up to four
pixels per STOS. The only trick to Listing 47.6 is that any left or right edge thatisn’t
aligned to a multiple-of-four pixel column (thatis, a column at which one four-pixel
set ends and the next begins) must be clipped via the Map Mask register, because not
all pixels at the address containing the edge are modified. Performance is as ex-
pected; Listing 47.6 is nearly ten times faster at clearing the screen than Listing 47.4
and just about four times faster than Listing 47.5—and also about four times faster
than the same rectangle fill in mode 13H. Understanding the bitmap organization
and display hardware of Mode X does indeed pay.

Note that the return from Mode X’s parallelism is not always 4x; some adapters lack
the underlying memory bandwidth to write data that fast. However, Mode X parallel
access should always be faster than mode 13H access; the only question on any given
adapter is how much faster.

LISTING 47.6 L47-6.ASM

; Mode X (320x240, 256 colors) rectangle fill routine. Works on all

; VGAs. Uses fast approach that fans data out to up to four planes at
; once to draw up to four pixels at once. Fills up to but not

; including the column at EndX and the row at EndY. No clipping is

; performed.

i C near-callable as:

H void FillRectangleX(int StartX, int StartY, int EndX, int EndY,
; unsigned int PageBase, int Color);

SC_INDEX equ 03c4h ;Sequence Controller Index

MAP_MASK equ 02h ;index in SC of Map Mask register

SCREEN_SEG equ 0a000h ;segment of display memory in mode X

SCREEN_WIDTH equ 80 ;width of screen in bytes from one scan line
; to the next

parms struc

dw 2 dup (?) ;pushed BP and return address

StartX dw ? ;X coordinate of upper left corner of rect

StartyY dw ? ;Y coordinate of upper left corner of rect

EndX dw ? ;X coordinate of lower right corner of rect
; (the row at EndX is not filled)

EndY dw ? ;Y coordinate of lower right corner of rect
; (the column at EndY is not filled)

PageBase dw ? ;base offset in display memory of page in
; which to fill rectangle

Color dw ? ;color in which to draw pixel

parms ends

.model small

.data
; Plane masks for clipping left and right edges of rectangle.
LeftClipPlaneMask db 00fh,00eh,00ch,008h

Mode X: 256-Color VGA Magic

891

RightClipPlaneMask db

00fh,001h,003h,007h

;preserve caller's stack frame
;point to local stack frame
;preserve caller's register variables

;offset in page of top rectangle scan line

;X/4 = offset of first rectangle pixel in scan
; line

;offset of first rectangle pixel in page
;offset of first rectangle pixel 1in

; display memory

;point ES:DI to the first rectangle

; pixel’s address

;set the Sequence Controller Index to

; point to the Map Mask register

;point DX to the SC Data register

;1ook up left edge plane mask

bh,LeftClipPlaneMask[si] ; to clip & put in BH

;100k up right edge plane

b1,RightCiipPlaneMask[si] ; mask to clip & put in BL

.code

public _Fil11RectangleX
_Fil1RectangleX proc near

push bp

mov bp.sp

push si

push di

cld

mov ax,SCREEN_WIDTH

mul [bp+StartY]

mov di,[bp+StartX]

shr di,1

shr di,1

add di,ax

add di,[bp+PageBase]

mov ax,SCREEN_SEG

mov es,ax

mov dx,SC_INDEX

mov al,MAP_MASK

out dx,al

inc dx

mov si,[bp+StartX]

and s1,0003h

mov

mov si,[bp+EndX]

and s1,0003h

mov

mov cx, [bp+EndX]

mov s1,[bp+StartX]

cmp cx,si

jle F111Done

dec cX

and si,not 011b

sub cx,si

shr cx,1

shr cx,1

jnz MasksSet

and bh,bl
MasksSet:

mov si,[bp+EndY]

sub s1,[bp+Starty]

Jle Fil11Done

mov ah,byte ptr [bp+Color]

mov bp,SCREEN_WIDTH

sub bp,cx

dec bp
Fi11RowsLoop:

push cX

mov al,bh

out dx,al

mov al,ah

stosb

dec cXx

Js Fi11LoopBottom

Jjz DoRightEdge

892 Chapter 47

;calculate # of addresses across rect

;skip if 0 or negative width

:# of addresses across rectangle to fi11 - 1
;there's more than one byte to draw

;there's only one byte, so combine the left-
; and right-edge clip masks

;BX = height of rectangle

sskip 1f 0 or negative height

scolor with which to fil1l

;stack frame isn’'t needed any more

;distance from end of one scan line to start
; of next

;remember width in addresses - 1
;put left-edge clip mask in AL

;set the left-edge plane (clip) mask
sput color in AL

sdraw the left edge

;count off left edge byte

;that's the only byte

;there are only two bytes

Previous Home

mov al,00fh ;middle addresses are drawn 4 pixels at a pop
out dx,al ;set the middle pixel mask to no clip
mov al,ah ;put color in AL
rep stosb ;draw the middle addresses four pixels apiece
DoRightEdge:
mov al,bl ;put right-edge cl1ip mask in AL
out dx,al ;set the right-edge plane (clip) mask
mov al,ah ;put color in AL
stosb ;draw the right edge
FillLoopBottom:
add di,bp ;point to the start of the next scan line of
; the rectangle
pop [;retrieve width in addresses - 1
dec si ;count down scan lines
jnz FiT11RowsLoop
Fi11Done:
pop di ;restore caller's register variables
pop si
pop bp ;restore caller's stack frame
ret
_Fil1RectangleX endp
end

Just so you can see Mode X in action, Listing 47.7 is a sample program that selects
Mode X and draws a number of rectangles. Listing 47.7 links to any of the rectangle
fill routines I've presented.

And now, I hope, you’re beginning to see why I'm so fond of Mode X. In the next
chapter, we’ll continue with Mode X by exploring the wonders that the latches and
parallel plane hardware can work on scrolls, copies, blits, and pattern fills.

LISTING 47.7 L147-7.C

/* Program to demonstrate mode X (320x240, 256-colors) rectangle
fi11 by drawing adjacent 20x20 rectangles in successive colors from
0 on up across and down the screen */

#include <conio.h>

#include <dos.h>

void Set320x240Mode(void);
void FillRectangleX(int, int, int, int, unsigned int, int);

void main() {
int 1,j;:
union REGS regset;

Set320x24CMode();
Fil1RectangleX(0,0,320,240,0,0); /* clear the screen to black */
for (j = 1; j < 220; j +=21) {
for (i = 1; i < 300; i += 21) {
Fi11RectangleX(i, Jj, i+20, j+20, 0, ((j/21*1%)+i/21) & OxFF);
}
}
getch();
regset.x.ax = 0x0003; /* switch back to text mode and done */
int86(0x10, ®set, ®set);

Mode X: 256-Color VGA Magic 893

Next

	previous:
	home:
	next:

