
chapter 63

floating-point for real-
time 3-d

hen to Hurl Conventional Math Wisdom
,/

@id

ow
t to go with the first solution that comes into your head-

but not very often.
When I turned 16 her had an aging, three-cylinder Saab-not one of the

e late OS, but a blunt-nosed, ungainly little wagon
sardine-like comfort, with two of them perched on

as the car I learned to drive on, and the one I took whenever I
mother didn’t need it.
, was a Volvo sedan, only a couple of years old and

easily the classiest carfny family had ever owned. To the best of my recollection, as of
New Year’s of my senior year, I had never driven that car. However, I was going to a
New Year’s party-in fact, I was going to chauffeur four other people-and for rea-
sons lost in the mists of time, I was allowed to take the Volvo. So, one crystal clear,
stunningly cold night, I picked up my passengers, who included Robin Viola, Kathy
Smith, Jude Hawron ... and Alan, whose last name I’ll omit in case he wants to run for
president someday.
The party was at Craig Alexander’s house, way out in the middle of nowhere, and it
was a good one. I heard Al Green for the first time, much beer was consumed (none
by me, though), and around 2 a.m., we decided it was time to head home. So we
piled into the Volvo, cranked the heat up to the max, and set off.

1165

We had gone about five miles when I sensed Alan was t y n g to tell me something. As
I turned toward him, he said, quite expressively, “BLEARGH!” and deposited a con-
siderable volume of what had until recently been beer and chips into his lap.
Mind you, this wasn’t just any car Alan was tossing his cookies in-it was my father’s
prized Volvo. My reactions were up to the task; without a moment’s hesitation, I
shouted, “Do it out the window! Open the window!” Alan obligingly rolled the win-
dow down and, with flawless aim, sent some more erstwhile beer and chips on its way.
And it was here that I learned that fast decisions are not necessarily good decisions.
A second after the liquid flew out the window, there was a loud smacking sound, and
a yelp from Robin, as the sodden mass hit the slipstream and splattered along the
length of the car. At that point, I did what I should have done in the first place; I
stopped the car so Alan could get out and finish being sick in peace, while I assessed
the full dimensions of the disaster. Not only was the rear half of the car on the pas-
senger side-including Robin’s window, accounting for the yelp-covered, but the
noxious substance had frozen solid. It looked like someone had melted an enor-
mous candle, or possibly put cake frosting on the car.
The next morning, my father was remarkably good-natured about the whole thing,
considering, although I don’t remember ever actually driving the Volvo again. My
penance consisted of cleaning the car, no small punishment considering that I had
to take a hair dryer out to our unheated garage and melt and clean the gunk one
small piece at a time.
One thing I learned from this debacle is to pull over very, very quickly if anyone
shows signed of being ill, a bit of wisdom that has proven useful a suprising number
of times over the years. More important, though, is the lesson that it almost always
pays to take at least a few seconds to size up a crisis situation and choose an effective
response, and that’s served me well more times than I can count.
There’s a surprisingly close analog to this in programming. Often, when faced with a
problem in his or her code, a programmer’s response is to come up with a solution
as quickly as possible and immediately hack it in. For all but the simplest problems,
though, there are side effects and design issues involved that should be thought
through before any coding is done. I try to think of bugs and other problem situa-
tions as opportunities to reexamine how my code works, as well as chances to detect
and correct structural defects I hadn’t previously suspected; in fact, I’m often able to
simplify code as I fix a bug, thanks to the understanding I gain in the process.
Taking that a step farther, it’s useful to reexamine assumptions periodically even if
no bugs are involved. You might be surprised at how quickly assumptions that once
were completely valid can deteriorate.
For example, consider floating-point math.

1 166 Chapter 63

Not Your Father’s Floating-point
Until last year, I had never done any serious floating-point (FP) optimization, for the
perfectly good reason that FP math had never been fast enough for any of the code
I needed to write. It was an article of faith that FP, while undeniably convenient,
because of its automatic support for constant precision over an enormous range of
magnitudes, was just not fast enough for real-time programming, so I, like pretty
much everyone else doing 3-D, expended a lot of time and effort in making fixed-
point do the job.
That article of faith was true up through the 486, but all the old assumptions are out
the window on the Pentium, for three reasons: faster FP instructions, a pipelined
floating-point unit (FPU) , and the magic of a parallel FXCH. Taken together, these
mean that FP addition and subtraction are nearly as fast as integer operations, and
FP multiplication and division have the potential to be much faster-all with the
range and precision advantages of FP. Better yet, the FPU has its own set of eight
registers, so the use of floating-point can help relieve pressure on the x86’s integer
registers, as well.
One effect of all this is that with the Pentium, floating-point on the x86 has gone
from being irrelevant to real-time 3-D to being a key element. Quake uses FP all the
way down into the inner loop of the span rasterizer, performing several FP opera-
tions every 16 pixels.
Floating-point has not only become important for real-time 3-D on the PC, but will
soon become even more crucial. Hardware accelerators will take care of texture
mapping and will increase feasible scene complexity, meaning the CPU will do less
bit-twiddling and will have far more vertices to transform and project, and far more
motion physics and line-of-sight calculations and the like as well.
By way of getting you started with floating-point for real-time 3-D, in this chapter I’ll
examine the basics of Pentium FP optimization, then look at how some key math-
ematical techniques for 3-D-dot product, cross product, transformation, and
projection-can be accelerated.

Pentium Floating-Point Optimization
I’m going to assume you’re already familiar with x86 FP code in general; for additional
information, check out Intel’s Pentiurn Processor User’s Munuul (order #241430-001;
1-800-548-4725), a book that you should have if you’re doing Pentium programming
of any sort. I’d also recommend taking a look around http://www.intel.com.
I’m going to focus on six core instructions in this section: FLD, FST, FADD, FSUB,
FMUL, and FDIV. First, let’s look at cycle times for these instructions. FLD takes 1
cycle; the value is pushed onto the FP stack and ready for use on the next cycle. FST
takes 2 cycles, although when storing to memory, there’s a potential extra cycle that
can be lost, as I’ll describe shortly.

Floating-Point for Real-Time 3-D 1 167

FDIV is a painfully slow instruction, taking 39 cycles at full precision and 33 cycles at
double precision, which is the default precision for Visual Ct+ 2.0. While FDIV ex-
ecutes, the FPU is occupied, and can’t process subsequent FP instructions until FDIV
finishes. However, during the cycles while FDIV is executing (with the exception of
the one cycle during which FDIV starts), the integer unit can simultaneously execute
instructions other than IMUL. (IMUL uses the FPU, and can only overlap with FDIV
for a few cycles.) Since the integer unit can execute two instructions per cycle, this
means it’s possible to have three instructions, an FDIV and two integer instructions,
executing at the same time. That’s exactly what happens, for example, during the
second cycle of this code:

F D I V S T (O) . S T (l)
ADD EAX.ECX
I N C EDX

There’s an important limitation, though; if the instruction stream following the FDIV
reaches a FP instruction (or an IMUL), then that instruction and all subsequent
instructions, both integer and FP, must wait to execute until FDIV has finished.
When a FADD, FSUB, or FMUL instruction is executed, it is 3 cycles before the result
can be used by another instruction. (There’s an exception: If the instruction that at-
tempts to use the result is an FST to memory, there’s an extra cycle lost, so it’s 4 cycles
from the start of an arithmetic instruction until an FST of that value can begin, so

FMUL ST(O),ST(l)
F S T [temp]

takes 6 cycles in all.) Again, it’s possible to execute integer-unit instructions during
the 2 (or 3, for FST) cycles after one of these FP instructions starts. There’s a more
exciting possibility here, though: Given properly structured code, the FPU is capable
of averaging 1 cycle per FADD, FSUB, or FMUL. The secret is pipelining.

Pipelining, Latency, and Throughput
The Pentium’s FPU is the first pipelined x86 FPU. Pipehingmeans that the FPU is
capable of starting an instruction every cycle, and can simultaneously handle several
instructions in various stages of completion. Only certain x86 FP instructions allow
another instruction to start on the next cycle, though: FADD, FSUB, and FMUL are
pipelined, but FST and FDIV are not. (FLD executes in a single cycle, so pipelining
is not an issue.) Thus, in the code sequence

FADD,
FSUB
FADD,
FMUL

FADD, can start on cycle N, FSUB can start on cycle N+1, FADD, can start on cycle
N+2, and FMUL can start on cycle N+3. At the start of cycle N+3, the result of FADD,

1 168 Chapter 63

is available in the destination operand, because it’s been 3 cycles since the instruc-
tion started; FSUB is starting the final cycle of calculation; FADD, is starting its second
cycle, with one cycle yet to go after this; and FMUL is about to be issued. Each of the
instructions takes 3 cycles to produce a result from the time it starts, but because
they’re simultaneously processed at different pipeline stages, one instruction is is-
sued and one instruction completes every cycle. Thus, the latency of these
instructions-that is, the time until the result is available-is 3 cycles, but the through-
put-the rate at which the FPU can start new instructions-is 1 cycle. An exception
is that the FPU is capable of starting an FMUL only every 2 cycles, so between these
two instructions

FMUL S T (l) . S T (O)
F M U L S T (E) . S T (O)

there’s a l-cycle stall, and the following three instructions execute just as fast as the
above pair:

FMUL ST(l),ST(O)
F L D S T (4)
FMUL ST(O).ST(l)

There’s a caveat here, though: A FP instruction can’t be issued until its operands are
available. The FPU can reach a throughput of 1 cycle per instruction on this code

FADD ST(l).ST(O)
F L D [temp]
FSUB ST(l).ST(O)

because neither the FLD nor the FSUB needs the result from the FADD. Consider,
however

FADD S T (O) . S T (2)
FSUB ST(O).ST(l)

where the ST(0) operand to FSUB is calculated by FADD. Here, FSUB can’t start
until FADD has completed, so there are 2 stall cycles between the two instructions.
When dependencies like this occur, the FPU runs at latency rather than throughput
speeds, and performance can drop by as much as two-thirds.

FXCH
One piece of the puzzle is still missing. Clearly, to get maximum throughput, we
need to interleave FP instructions, such that at any one time ideally three instruc-
tions are in the pipeline at once. Further, these instructions must not depend on one
another for operands. But ST(0) must always be one of the operands; worse, FLD
can only push into ST(0) , and FST can only store from ST(0). How, then, can we
keep three independent instructions going?

Floating-point for Real-Time 3-D 1 169

The easy answer would be for Intel to change the FP registers from a stack to a set of
independent registers. Since they couldn’t do that, thanks to compatibility issues,
they did the next best thing: They made the FXCH instruction, which swaps ST(0)
and any other FP register, virtually free. In general, if FXCH is both preceded and
followed by FP instructions, then it takes no cycles to execute. (Application Note 500,
“Optimizations for Intel’s 32-bit Processors,” February 1994, available from http://
www.intel.com, describes all the conditions under which FXCH is free.) This allows
you to move the target of a pending operation from ST(0) to another register, at the
same time bringing another register into ST(0) where it can be used, all at no cost.
So, for example, we can start three multiplications, then use FXCH to swap back to
start adding the results of the first two multiplications, without incurring any stalls,
as shown in Listing 63.1.

LISTING 63.1 163- 1 .ASM
: u s e o f f x c h t o a l l o w a d d i t i o n o f f i r s t t w o : p r o d u c t s t o s t a r t w h i l e t h i r d
: m u l t i p l i c a t i o n f i n i s h e s

f l d [v e c 0 + 0] ; s t a r t s & ends on c y c l e 0
fmu l [vec l+O l
f 1 d [vec0+4]

; s t a r t s on c y c l e 1
; s t a r t s & ends on c y c l e 2

fmu l [vec l+41
f l d [vecO+dl

: s t a r t s on c y c l e 3

fmu l [vec l+81
: s t a r t s & ends on c y c l e 4
; s t a r t s on c y c l e 5

f x c h s t (1) : n o c o s t
f a d d p s t (2) . s t (O) : s t a r t s on c y c l e 6

The Dot Product
Now we’re ready to look at fast FP for common 3-D operations; we’ll start by looking
at how to speed up the dot product. As discussed in Chapter 30, the dot product is
heavily used in 3-D to calculate cosines and to project points along vectors. The dot
product is calculated as d = ulvl + u2v2 + usv3; with three loads, three multiplies, two
adds, and a store, the theoretical minimum time for this calculation is 10 cycles.
Listing 63.2 shows a straightforward dot product implementation. This version loses
7 cycles to stalls. Listing 63.3 cuts the loss to 5 cycles by doing all three FMULs first,
then using FXCH to set the third FXCH aside to complete while the results of the
first two FMULs, which have completed, are added. Listing 43.3 still loses 50 percent
to stalls, but unless some other code is available to be interleaved with the dot prod-
uct code, that’s all we can do to speed things up. Fortunately, dot products are often
used in contexts where there’s plenty of interleaving potential, as we’ll see when we
discuss transformation.

LISTING 63.2 1163-2.ASM
; u n o p t i m i z e d d o t p r o d u c t ; 17 c y c l e s

f l d [vec0+0] : s t a r t s & ends on c y c l e 0
fmu l [vec l+Ol ; s t a r t s on c y c l e 1
f l d [vec0+41 : s t a r t s & ends on c y c l e 2
fmu l [vec l+41 ; s t a r t s on c y c l e 3

1 170 Chapter 63

f l d [vecO+81
fmul [vec l+8]

f addp s t (l) . s t (O)

faddp s t (l) . s t (O)

s t a r t s & ends on c y c l e 4
s t a r t s on c y c l e 5
s t a l l s f o r c y c l e s 6 - 7
s t a r t s on c y c l e 8
s t a l l s f o r c y c l e s 9 - 1 0
s t a r t s on c y c l e 11
s t a l l s f o r c y c l e s 1 2 - 1 4

f s t p C d o t l : s t a r t s on c y c l e 1 5 .
: ends on c y c l e 1 6

LISTING 63.3 L63-3.ASM
: o p t i m i z e d d o t p r o d u c t : 1 5 c y c l e s

f l d [vec0+01 : s t a r t s & ends on cyc le 0
fmu l [vec l+Ol : s t a r t s on c y c l e 1
f l d [vec0+41 : s t a r t s & ends on cyc le 2
fmu l [vec l+41 : s t a r t s on c y c l e 3
f l d [vec0+8] ; s t a r t s & ends on c y c l e 4
fmu l [vec l+81 ; s t a r t s on c y c l e 5
f x c h s t (1) ;no c o s t
f a d d p s t (Z) . s t (O) ; s t a r t s on c y c l e 6

f a d d p s t (l) . s t (O) ; s t a r t s on c y c l e 9

f s t p [d o t] : s t a r t s on c y c l e 1 3 .

: s t a l l s f o r c y c l e s 7 - 8

: s t a l l s f o r c y c l e s 1 0 - 1 2

: ends on cyc le 14

The Cross Product
When last we looked at the cross product, we found that it’s handy for generating a
vector that’s normal to two other vectors. The cross product is calculated as [u2v3;u3v2
u3vl-u1vs ulv2-u2vl]. The theoretical minimum cycle count for the cross product 1s 21
cycles. Listing 63.4 shows a straightfornard implementation that calculates each com-
ponent of the result separately, losing 15 cycles to stalls.

LISTING 63.4 L63-4.ASM
; u n o p t i m i z e d c r o s s p r o d u c t : 36 c y c l e s

f l d [vec0+41 : s t a r t s & ends on c y c l e 0
fmu l [vec l+8] : s t a r t s on c y c l e 1
f l d [vec0+8] : s t a r t s & ends on cyc le 2
fmul [vec1+4] ; s t a r t s on c y c l e 3

f s u b r p s t (l) . s t (O) ; s t a r t s on c y c l e 6

f s t p [v e c 2 + 0] : s t a r t s on c y c l e 1 0 .

f l d [vecO+8] : s t a r t s & ends on c y c l e 1 2
fmul [vecl+O] : s t a r t s on c y c l e 1 3
f l d [vec0+0] : s t a r t s & ends on cyc le 14
fmu l [vec l+8] ; s t a r t s on c y c l e 1 5

f s u b r p s t (l) . s t (O) ; s t a r t s on c y c l e 1 8

f s t p [v e c 2 + 4 1 ; s t a r t s on c y c l e 2 2 .

: s t a l l s f o r c y c l e s 4 - 5

: s t a l l s f o r c y c l e s 7 - 9

: ends on c y c l e 11

; s t a l l s f o r c y c l e s 1 6 - 1 7

: s t a l l s f o r c y c l e s 1 9 - 2 1

: ends on c y c l e 23

Floating-point for Real-Time 3-D 1 171

f l d Cvec0+01 : s t a r t s & ends on cyc le 24
fmul [vec1+4] : s t a r t s o n c y c l e 25
f l d [vec0+4] : s t a r t s & ends on c y c l e 2 6
fmul [vec l+O] : s t a r t s o n c y c l e 27

f s u b r p s t (l) . s t (O) : s t a r t s o n c y c l e 3 0

f s t p Cvec2+8] : s t a r t s on c y c l e 3 4 .

: s t a l l s f o r c y c l e s 2 8 - 2 9

: s t a l l s f o r c y c l e s 3 1 - 3 3

: ends on cyc le 35

We couldn’t get rid of many of the stalls in the dot product code because with six
inputs and one output, it was impossible to interleave all the operations. However,
the cross product, with three outputs, is much more amenable to optimization. In
fact, three is the magic number; because we have three calculation streams and the
latency of FADD, FSUB, and FMUL is 3 cycles, we can eliminate almost every single
stall in the cross-product calculation, as shown in Listing 63.5. Listing 63.5 loses only
one cycle to a stall, the cycle before the first FST; the relevant FSUB has just finished
on the preceding cycle, so we run into the extra cycle of latency associated with FST.
Listing 63.5 is more than 60 percent faster than Listing 63.4, a striking illustration of
the power of properly managing the Pentium’s FP pipeline.

LISTING 63.5 L63-5.ASM
: o p t i m i z e d c r o s s p r o d u c t : 2 2 c y c l e s

f l d Cvec0+41 : s t a r t s & ends on cyc le 0
fmu l
f l d

Cvec1+8] : s t a r t s on c y c l e 1
Cvec0+8] : s t a r t s & ends on cyc le 2

fmu l
f l d

C v e c l + O l : s t a r t s on c y c l e 3
Cvec0+01 : s t a r t s & ends on c y c l e 4

fmu l
f l d

C v e c l + 4 1 : s t a r t s on c y c l e 5
Cvec0+81 : s t a r t s & ends on c y c l e 6

fmu l
f l d

Cvec1+41 : s t a r t s on c y c l e 7
Cvec0+01 : s t a r t s & ends on c y c l e 8

fmu l
f l d

C v e c l + 8 I : s t a r t s on c y c l e 9
Cvec0+41 : s t a r t s & ends on c y c l e 1 0

fmu l [vec l+Ol : s t a r t s on c y c l e 11
f x c h s t (2) : no cos t
f s u b r p s t (5) . s t (O) : s t a r t s on c y c l e 1 2
f s u b r p s t (3) . s t (O) : s t a r t s on c y c l e 1 3
f s u b r p s t (l) . s t (O) : s t a r t s on c y c l e 1 4
f x c h s t (2) : n o c o s t

: s t a l l s f o r c y c l e 1 5

: ends on c y c l e 1 7

: ends on cyc le 19

: ends on c y c l e 2 1

f s t p [vecE+O] : s t a r t s on c y c l e 1 6 .

f s t p Cvec2+41 : s t a r t s on c y c l e 1 8 .

f s t p [vec2+81 : s t a r t s on c y c l e 2 0 .

Transformation
Transforming a point, for example from worldspace to viewspace, is one of the most
heavily used FP operations in realtime 3-D. Conceptually, transformation is nothing
more than three dot products and three additions, as I will discuss in Chapter 61.

1 172 Chapter 63

(Note that I'm talking about a subset of a general 4x4 transformation matrix, where
the fourth row is always implicitly [0 0 0 11. This limited form suffices for common
transformations, and does 25 percent less work than a full 4x4 transformation.)
Transformation is calculated as:

m31 m32 m33 m34
0 0 0 1 1

-I

"

U1

U,

u3
1
"

'1 = mllul + m12u2 + m13u3 + m14

'2 = m21u1 + m22u2 + m23u3 + m24

'3 = m31u1 + m32u2 + m33u3 + m34.

When it comes to implementation, however, transformation is quite different from
three separate dot products and additions, because once again the magic number
three is involved. Three separate dot products and additions would take 60 cycles if
each were calculated using the unoptimized dot-product code of Listing 63.2, and
would take 54 cycles if done one after the other using the faster dot-product code of
Listing 63.3, in each case followed by the a final addition per dot product.
When fully interleaved, however, only a single cycle is lost (again to the extra cycle of
FST latency), and the cycle count drops to 34, as shown in Listing 63.6. This means
that on a 100 MHz Pentium, it's theoretically possible to do nearly 3,000,000 trans-
forms per second, although that's a purely hypothetical number, due to cache effects
and set-up costs. Still, more than 1,000,000 transforms per second is certainly fea-
sible; at a frame rate of 30 Hz, that's an impressive 30,000 transforms per frame.

LISTING 63.6 163-6.ASM
: o p t i m i z e d t r a n s f o r m a t i o n : 3 4 c y c l e s

f l d [vecO+01
fmu l [m a t r i x + O l
f l d [vec0+01
fmu l [m a t r i x + l 6 1
f l d Cvec0+0]
fmul [mat r i x+321
f l d [vec0+41
fmu l [m a t r i x + 4 1
f l d [vec0+41
fmu l [mat r i x+20]
f l d [vec0+43
fmu l [mat r i x+361
f x c h s t (2)
f a d d p s t (5) , s t (O)
faddp s t (3) , s t (O)
faddp s t (l) , s t (O)
f l d [vecO+81

: s t a r t s & ends on c y c l e 0
; s t a r t s on c y c l e 1
; s t a r t s & ends on c y c l e 2
: s t a r t s on c y c l e 3
: s t a r t s & ends on cyc le 4
; s t a r t s on c y c l e 5
: s t a r t s & ends on c y c l e 6
: s t a r t s on c y c l e 7
; s t a r t s & ends on c y c l e 8
: s t a r t s on c y c l e 9
; s t a r t s & ends on cyc le 10
: s t a r t s on c y c l e 11
:no c o s t
: s t a r t s o n c y c l e 1 2
; s t a r t s on c y c l e 1 3
: s t a r t s on c y c l e 1 4
: s t a r t s & ends on c y c l e 15

Floating-point for Real-Time 3-D 1 173

fmul
fl d
fmul
fld
fmul
fxch
faddp
faddp
faddp
fxch
f add
fxch
fadd
fxch
fadd
fxch
fstp

fstp

fstp

[rnatrix+E]
[vecO+El
[matrix+241
[vecO+81
[matrix+40]
st(2)
st(5),st(O)
st(3).st(O)
st(l).st(O)
st(2)
[matrix+lEl
st(1)
[matrix+28]
st(2)
[matrix+441
st(1)
[vecl+Ol

[vecl+81

[vecl+41

;starts on cycle 16
;starts & ends on cycle 17
:starts on cycle 18
;starts & ends on cycle 19
;starts on cycle 20
:no cost
:starts on cycle 21
;starts on cycle 22
;starts on cycle 23
;no cost
;starts on cycle 24
;starts on cycle 25
;starts on cycle 26
;no cost
:starts on cycle 27
:no cost
;starts on cycle 28,
; ends on cycle 29
;starts on cycle 30.
: ends on cycle 31
;starts on cycle 32,
; ends on cycle 33

Projection
The final optimization we’ll look at is projection to screenspace. Projection itself is
basically nothing more than a divide (to get l / z) , followed by two multiplies (to get
x/z and y/z), so there wouldn’t seem to be much in the way of FP optimization
possibilities there. However, remember that although FDIV has a latency of up to 39
cycles, it can overlap with integer instructions for all but one of those cycles. That
means that if we can find enough independent integer work to do before we need
the l / z result, we can effectively reduce the cost of the FDIV to one cycle. Projection
by itself doesn’t offer much with which to overlap, but other work such as clamping,
window-relative adjustments, or 2-D clipping could be interleaved with the FDIV for
the next point.
Another dramatic speed-up is possible by setting the precision of the FPU down to
single precision via FLDCW, thereby cutting the time FDIV takes to a mere 19 cycles.
I don’t have the space to discuss reduced precision in detail in this book, but be
aware that along with potentially greater performance, it carries certain risks, as well.
The reduced precision, which affects FADD, FSUB, FMUL, FDIV, and FSQRT, can
cause subtle differences from the results you’d get using compiler defaults. If you
use reduced precision, you should be on the alert for precision-related problems,
such as clipped values that vary more than you’d expect from the precise clip point,
or the need for using larger epsilons in comparisons for point-on-plane tests.

Rounding Control
Another useful area that I can note only in passing here is that of leaving the FPU in
a particular rounding mode while performing bulk operations of some sort. For

-

1 1 74 Chapter 63

example, conversion to int via the FIST instruction requires that the FPU be in chop
mode. Unfortunately, the FLDCW instruction must be used to get the FPU into and
out of chop mode, and each FLDCW takes 7 cycles, meaning that compilers often
take at least 14 cycles for each float->int conversion. In assembly, you can just set the
rounding state (or, likewise, the precision, for faster FDIVs) once at the start of the
loop, and save all those FLDCW cycles each time through the loop. This is even
more true for ceil(), which many compilers implement as horrendously inefficient
subroutines, even though there are rounding modes for both ceil() and floor(). Again,
though, be aware that results of FP calculations will be subtly different from com-
piler default behavior while chop, ceil, or floor mode is in effect.
A final note: There are some speed-ups to be had by manipulating FP variables with
integer instructions. Check out Chris Hecker’s column in the February/March 1996
issue of Game Developer for details.

A Farewell to 3-D Fixed-point
As with most optimizations, there are both benefits and hazards to floating-point
acceleration, especially pedal-to-the-metal optimizations such as the last few I’ve
mentioned. Nonetheless, I’ve found floating-point to be generally both more robust
and easier to use than fixed-point even with those maximum optimizations. Now
that floating-point is fast enough for real time, I don’t expect to be doing a whole lot
of fixed-point 3-D math from here on out.
And I won’t miss it a bit.

Floating-point for Real-Time 3-D 1 175

	next:
	home:
	previous:

