
chapter 65

3-d clipping and other thoughts

hat’s Inside Your Field of View
is changing, and I’m concerned. By way of explanation, three

anecdotes.
Anecdote the first: In

ii ” : ;n k ”&,
on to one of his books, Frank Herbert, author of
proached by a friend who claimed he (the friend)

d offered to tell it to Herbert. In return, Herbert had to
a story, he’d split the money from the story with this

nse was that ideas were a dime a dozen; he had more story ideas
me. The hard part was the writing, not the ideas.
ogramming micros for 15 years, and writing about
until about a year ago, I had never-not once!-

had anyone offer to sell me a technical idea. In the last year, it’s happened multiple
times, generally via unsolicited email along the lines of Herbert’s tale.
This trend toward selling ideas is one symptom of an attitude that I’ve noticed more
and more among programmers over the past few years-an attitude of which soft-
ware patents are the most obvious manifestation-a desire to think something up
without breaking a sweat, then let someone else’s hard work make you money. It’s an
attitude that says, “I’m so smart that my ideas alone set me apart.” Sorry, it doesn’t
work that way in the real world. Ideas are a dime a dozen in programming, too; I
have a lifetime’s worth of article and software ideas written neatly in a notebook, and

1193

I know several truly original thinkers who have far more yet. Folks, it’s not the ideas;
it’s design, implementation, and especially hard work that make the difference.
Virtually every idea I’ve encountered in 3-D graphics was invented decades ago. You
think you have a clever graphics idea? Sutherland, Sproull, Schumacker, Catmull,
Smith, Blinn, Glassner, Kajiya, Heckbert, or Teller probably thought of your idea
years ago. (I’m serious-spend a few weeks reading through the literature on 3-D
graphics, and you’ll be amazed at what’s already been invented and published.) If
they thought it was important enough, they wrote a paper about it, or tried to com-
mercialize it, but what they didn’t do was try to charge people for the idea itself.
A closely related point is the astonishing lack of gratitude some programmers show
for the hard work and sense of community that went into building the knowledge
base with which they work. How about this? Anyone who thinks they have a unique
idea that they want to “own” and milk for money can do so-but first they have to
track down and appropriately compensate all the people who made possible the
compilers, algorithms, programming courses, books, hardware, and so forth that
put them in a position to have their brainstorm.
Put that way, it sounds like a silly idea, but the idea behind software patents is pre-
cisely that eventually everyone will own parts of our communal knowledge base, and
that programming will become in large part a process of properly identifylng and
compensating each and every owner of the techniques you use. All I can say is that if
we do go down that path, I guarantee that it will be a poorer profession for all of us-
except the patent attorneys, I guess.
Anecdote the third: A while back, I had the good fortune to have lunch down by
Seattle’s waterfront with Neal Stephenson, the author of Snow Crash and The Diu-
mond Age (one of the best SF books I’ve come across in a long time). As he talked
about the nature of networked technology and what he hoped to see emerge, he
mentioned that a couple of blocks down the street was the pawn shop where Jimi
Hendrix bought his first guitar. His point was that if a cheap guitar hadn’t been
available, Hendrix’s unique talent would never have emerged. Similarly, he views the
networking of society as a way to get affordable creative tools to many people, so as
much talent as possible can be unearthed and developed.
Extend that to programming. The way it should work is that a steady flow of informa-
tion circulates, so that everyone can do the best work they’re capable of. The idea is
that I don’t gain by intellectually impoverishing you, and vice-versa; as we both com-
pete and (intentionally or otherwise) share ideas, both our products become better,
so the market grows larger and everyone benefits.
That’s the way things have worked with programming for a long time. So far as I can
see it has worked remarkably well, and the recent signs of change make me con-
cerned about the future of our profession.

1 194 Chapter 65

Things aren’t changing everywhere, though; over the past year, I’ve circulated a good
bit of info about 3-D graphics, and plan to keep on doing it as long as I can. Next,
we’re going to take a look at 3-D clipping.

3-D Clipping Basics
Before I got deeply into 3-D, I kept hearing how difficult 3-D clipping was, so I was
pleasantly surprised when I actually got around to doing it and found that it was
quite straightforward, after all. At heart, 3-D clipping is nothing more than evaluat-
ing whether and where a line intersects a plane; in this context, the plane is considered
to have an “inside” (a side on which points are to be kept) and an “outside” (a side
on which points are to be removed or clipped). We can easily extend this single
operation to polygon clipping, working with the line segments that form the edges
of a polygon.
The most common application of 3-D clipping is as part of the process of hidden
surface removal. In this application, the four planes that make up the view volume,
or view frustum, are used to clip away parts of polygons that aren’t visible. Sometimes
this process includes clipping to near and far plane, to restrict the depth of the
scene. Other applications include clipping to splitting planes while building BSP
trees, and clipping moving objects to convex sectors such as BSP leaves. The clipping
principles I’ll cover apply to any sort of 3-D clipping task, but clipping to the frustum
is the specific context in which I’ll discuss clipping below.
In a commercial application, you wouldn’t want to clip every single polygon in the
scene database individually. As I mentioned in the last chapter, the use of bounding
volumes to cull chunks of the scene database that fall entirely outside the frustum,
without having to consider each polygon separately, is an important performance
aspect of scene rendering. Once that’s done, however, you’re still left with a set of
polygons that may be entirely inside, or partially or completely outside, the frustum.
In this chapter, I’m going to talk about how to clip those remaining polygons. 1’11
focus on the basics of 3 D clipping, the stuff I wish I’d known when I started doing 3-D.
There are plenty of ways to speed up clipping under various circumstances, some of
which I’ll mention, but the material covered below will give you the tools you need to
implement functional 3-D clipping.

Intersecting a Line Segment with a Plane
The fundamental 3-D clipping operation is clipping a line segment to a plane. There
are two parts to this operation: determining if the line is clipped by (intersects) the
plane at all and, if it is clipped, calculating the point of intersection.
Before we can intersect a line segment with a plane, we must first define how we’ll repre-
sent the line segment and the plane. The segment will be represented in the obvious
way by the (x,y,z) coordinates of its two endpoints; this extends well to polygons,

3-D Clipping and Other Thoughts 1 195

where each vertex is an (x,y,z) point. Planes can be described in many ways, among
them are three points on the plane, a point on the plane and a unit normal, or a unit
normal and a distance from the origin along the normal; we’ll use the latter defini-
tion. Further, we’ll define the normal to point to the inside (unclipped side) of the
plane. The structures for points, polygons, and planes are shown in Listing 65.1.

LISTING 65.1 165-1 .h
t y p e d e f s t r u c t I

doub le vC31;
1 p o i n t - t ;

t y p e d e f s t r u c t I

I po in t2D- t :

t y p e d e f s t r u c t {

d o u b l e x . y ;

i n t c o l o r :
i n t n u m v e r t s ;
p o i n t - t verts[MAX-POLY-VERTSl;

1 po lygon- t :

t y p e d e f s t r u c t I
i n t c o l o r ;
i n t
po in t2D- t vertsCMAX-POLY-VERTSI;

numver ts ;

1 polygon2D-t;

t y p e d e f s t r u c t c o n v e x o b j e c t L s {
s t r u c t c o n v e x o b j e c t - s *pnex t ;
p o i n t - t c e n t e r ;
doub le v d i s t ;
i n t numpolys :
po lygon- t * p p o l y ;

1 c o n v e x o b j e c t - t :

t y p e d e f s t r u c t I
d o u b l e d i s t a n c e ;
p o i n t - t n o r m a l ;

1 p l a n e - t ;

Given a line segment, and a plane to which to clip the segment, the first question is
whether the segment is entirely on the inside or the outside of the plane, or inter-
sects the plane. If the segment is on the inside, then the segment is not clipped by
the plane, and we’re done. If it’s on the outside, then it’s entirely clipped, and we’re
likewise done. If it intersects the plane, then we have to remove the clipped portion
of the line by replacing the endpoint on the outside of the plane with the point of
intersection between the line and the plane.
The way to answer this question is to find out which side of the plane each endpoint
is on, and the dot product is the right tool for the job. As you may recall from Chap-
ter 61, dotting any vector with a unit normal returns the length of the projection of
that vector onto the normal. Therefore, if we take any point and dot it with the plane
normal we’ll find out how far from the origin the point is, as measured along the

1 196 Chapter 65

plane normal. Another way to think of this is to say that the dot product of a point
and the plane normal returns how far from the origin along the normal the plane
would have to be in order to have the point lie within the plane, as if we slid the
plane along the normal until it touched the point.
Now, remember that our definition of a plane is a unit normal and a distance along
the normal. That means that we have a distance for the plane as part of the plane
structure, and we can get the distance at which the plane would have to be to touch
the point from the dot product of the point and the normal; a simple comparison of
the two values suffices to tell us which side of the plane the point is on. If the dot
product of the point and the plane normal is greater than the plane distance, then
the point is in front of the plane (inside the volume being clipped to); if it’s less,
then the point is outside the volume and should be clipped.
After we do this twice, once for each line endpoint, we know everything necessary to
categorize our line segment. If both endpoints are on the same side of the plane,
there’s nothing more to do, because the line is either completely inside or com-
pletely outside; otherwise, it’s on to the next step, clipping the line to the plane by
replacing the outside vertex with the point of intersection of the line and the plane.
Happily, it turns out that we already have all of the information we need to do this.
From our earlier tests, we already know the length from the plane, measured along
the normal, to the inside endpoint; that’s just the distance, along the normal, of
the inside endpoint from the origin (the dot product of the endpoint with the
normal), minus the plane distance, as shown in Figure 65.1. We also know the
length of the line segment, again measured as projected onto the normal; that’s
the difference between the distances along the normal of the inside and outside
endpoints from the origin. The ratio of these two lengths is the fraction of the
segment that remains after clipping. If we scale the x, y, and z lengths of the line
segment by that fraction, and add the results to the inside endpoint, we get a new,
clipped endpoint at the point of intersection.

Polygon Clipping
” . . -

Line clipping is fine for wireframe rendering, but what we really want to do is poly-
gon rendering of solid models, which requires polygon clipping. As with line segments,
the clipping process with polygons is to determine if they’re inside, outside, or par-
tially inside the clip volume, lopping off any vertices that are outside the clip volume
and substituting vertices at the intersection between the polygon and the clip plane,
as shown in Figure 65.2.
An easy way to clip a polygon is to decompose it into a set of edges, and clip each edge
separately as a line segment. Let’s define a polygon as a set of vertices that wind clock-
wise around the outside of the polygonal area, as viewed from the front side of the
polygon; the edges are implicitly defined by the order of the vertices. Thus, an edge is

3-D Clipping and Other Thoughts 1 1 97

1 1 98 Chapter 65

the line segment described by the two adjacent vertices that form its endpoints. We’ll
clip a polygon by clipping each edge individually, emitting vertices for the resulting
polygon as appropriate, depending on the clipping state of the edge. If the start point
of the edge is inside, that point is added to the output polygon. Then, if the start and
end points are in different states (one inside and one outside), we clip the edge to the
plane, as described above, and add the point at which the line intersects the clip plane
as the next polygon vertex, as shown in Figure 65.3. Listing 65.2 shows a polygon-
clipping function.

LISTING 65.2 165-2.c
i n t C l i p T o P l a n e (p o 1 y g o n - t * p i n . p l a n e - t * p p l a n e . p o l y g o n - t * p o u t)
I

i n t i, j . n e x t v e r t . c u r i n . n e x t i n :
d o u b l e c u r d o t . n e x t d o t , s c a l e :
p o i n t - t * p i n v e r t . * p o u t v e r t :

p i n v e r t = p i n - > v e r t s ;
p o u t v e r t = p o u t - > v e r t s ;

c u r d o t = D o t P r o d u c t (p i n v e r t . & p p l a n e - > n o r m a l) :
c u r i n = (c u r d o t >= p p l a n e - > d i s t a n c e) :

f o r (i=O : i < p i n - > n u m v e r t s : i++)
I

n e x t v e r t = (i + 1) % p i n - > n u m v e r t s :

/ / Keep t h e c u r r e n t v e r t e x i f i t ’ s i n s i d e t h e p l a n e
i f (c u r i n)

*poutver t++ = * p i n v e r t ;

n e x t d o t = D o t P r o d u c t (& p i n - > v e r t s [n e x t v e r t l , & p p l a n e - > n o r m a l) :
n e x t i n = (n e x t d o t >= p p l a n e - > d i s t a n c e) ;

Add a c l i p p e d v e r t e x i f one end o f t h e c u r r e n t e d g e i s
i n s i d e t h e p l a n e a n d t h e o t h e r i s o u t s i d e
(c u r i n != n e x t i n)

s c a l e = (p p l a n e - > d i s t a n c e - c u r d o t) /

f o r (j = O : j < 3 : j++)
I

(n e x t d o t - c u r d o t) :

p o u t v e r t - > v [j l = p i n v e r t - > v [j l +
((pin->verts[nextvertl.v[jl - p i n v e r t - > v C J l) *

1
poutver t++:

s c a l e) :

c u r d o t = n e x t d o t ;
c u r i n = n e x t i n ;
p i n v e r t + + :

I

p o u t - > n u m v e r t s = p o u t v e r t - p o u t - > v e r t s ;
i f (p o u t - > n u m v e r t s < 3)

r e t u r n 0:

3-D Clipping and Other Thoughts 1 199

p o u t - > c o l o r - p i n - > c o l o r :
return 1;

I

Believe it or not, this technique, applied in turn to each edge, is all that’s needed to
clip a polygon to a plane. Better yet, a polygon can be clipped to multiple planes by
repeating the above process once for each clip plane, with each interation trimming
away any part of the polygon that’s clipped by that particular plane.
One particularly useful aspect of 3-D clipping is that if you’re drawing texture mapped
polygons, texture coordinates can be clipped in exactly the same way as (x,y,z) coor-
dinates. In fact, the very same fraction that’s used to advance x, y, and z from the
inside point to the point of intersection with the clip plane can be used to advance
the texture coordinates as well, so only one extra multiply and one extra add are
required for each texture coordinate.

Clipping to the Frustum
Given a polygon-clipping function, it’s easy to clip to the frustum: set up the four
planes for the sides of the frustum, with another one or two planes for near and far
clipping, if desired; next, clip each potentially visible polygon to each plane in turn;
then draw whatever polygons emerge from the clipping process. Listing 65.3 is the
core code for a simple 3-D clipping example that allows you to move around and
look at polygonal models from any angle. The full code for this program is available
on the CD-ROM in the file DDJCLIP.ZIP.

1 200 Chapter 65

LISTING 65.3 165-3.c
i n t DIBWidth. DIBHeight :
i n t D I B P i t c h :
d o u b l e r o l l , p i t c h , yaw:
d o u b l e c u r r e n t s p e e d ;
p o i n t - t c u r r e n t p o s ;
d o u b l e f i e l d o f v i e w , x c e n t e r . y c e n t e r :
d o u b l e x s c r e e n s c a l e , ysc reensca le . maxsca l e :
i n t n u m o b j e c t s :
doub le speedsca le - 1 . 0 ;
p l a n e - t frustumplanesCNUM-FRUSTUM_PLANESl:
double mro l lC31C31 - ((1. 0 . 01, CO. 1. 01. (0 . 0 . 111:
double mpitchC31C31 = I { l , 0 . 0 1 , IO, 1. 0) . IO, 0, 111:
d o u b l e myawC31C31 = (11. 0. 01 , IO, 1. 01, IO, 0. 111:
p o i n t - t v p n . v r i g h t . v u p :
p o i n t - t x a x i s - 11. 0 . 0) :
p o i n t - t z a x i s = (0, 0 . 1):
c o n v e x o b j e c t - t o b j e c t h e a d = {NULL. t O . O . O j . -999999.01;

11 P r o j e c t v i e w s p a c e p o l y g o n v e r t i c e s i n t o s c r e e n c o o r d i n a t e s .
I / N o t e t h a t t h e y ax is goes up i n wor ldspace and v iewspace. bu t
11 goes down i n screenspace.
vo id P ro jec tPo lygon (po l ygon- t *ppo ly , po l ygon2D- t *ppo ly2D)

i n t i:
d o u b l e z r e c i p :

f o r (i - 0 : i < p p o l y - > n u m v e r t s : i++)
I

z r e c i p - 1.0 I p p o l y - > v e r t s [i] . v [Z] :
p p o l y Z D - > v e r t s [i 1 . x -
p p o l y Z D - > v e r t s [i l . y = DIBHeigh t -

p p o l y - > v e r t s ~ i I . v [0 1 * z r e c i p * maxsca le + x c e n t e r :

(p p o l y - > v e r t s [i l . v [1 1 * z r e c i p * maxsca le + y c e n t e r) :
I
p p o l y 2 D - > c o l o r - p p o l y - > c o l o r ;
ppo ly2D->numver ts - p p o l y - > n u m v e r t s :

/ / S o r t t h e o b j e c t s a c c o r d i n g t o z d i s t a n c e f r o m v i e w p o i n t .
v o i d Z S o r t O b j e c t s (v o i d)
I

i n t
d o u b l e v d i s t :
c o n v e x o b j e c t - t * p o b j e c t ;
p o i n t - t d i s t :

o b j e c t h e a d . p n e x t - & o b j e c t h e a d :
f o r (i - 0 : i < n u m o b j e c t s : i++)
t

f o r (j - 0 : j < 3 : j++)

o b j e c t s [i] . v d i s t = s q r t (d i s t . v C 0 1 * d i s t . v [O l +
d i s t . v C 1 1 * d i s t . v C 1 1 +
d i s t . v [Z] * d i s t . v C 2 1) :

i. j:

d i s t . v [j] = o b j e c t s C i l . c e n t e r . v [j l - c u r r e n t p o s . v [j] ;

p o b j e c t = & o b j e c t h e a d :
v d i s t - o b j e c t s [i l . v d i s t ;
I1 V i e w s p a c e - d i s t a n c e - s o r t t h i s o b j e c t i n t o t h e o t h e r s .
11 Guaranteed t o t e r m i n a t e b e c a u s e o f s e n t i n e l
w h i l e (v d i s t < p o b j e c t - > p n e x t - > v d i s t)

p o b j e c t = p o b j e c t - > p n e x t :

3-D Clipping and Other Thoughts 1201

o b j e c t s [i l . p n e x t - p o b j e c t - > p n e x t :
p o b j e c t - > p n e x t - & o b j e c t s [i l :

1
1

/ / Move t h e v i e w p o s i t i o n and s e t t h e w o r l d - > v i e w t r a n s f o r m .
vo id Upda teV iewPosO
{

i n t i;
p o i n t - t m o t i o n v e c ;
d o u b l e s . c, mtemplC31C31, mtempZC31C31:

/ / Move i n t h e v i e w d i r e c t i o n , a c r o s s t h e x - y p l a n e , as if
I / w a l k i n g . T h i s a p p r o a c h moves s lower when l o o k i n g up or
I / down a t more o f an a n g l e
mot ionvec.vC01 - D o t P r o d u c t (& v p n . & x a x i s) :
m o t i o n v e c . v [l l - 0.0:
m o t i o n v e c . v [Z l - D o t P r o d u c t (& v p n . & z a x i s) :
f o r (i - 0 : i < 3 ; i++)
{

c u r r e n t p o s . v [i] +- m o t i o n v e c . v [i l * c u r r e n t s p e e d :
i f (c u r r e n t p o s . v [i l > MAXKCOORD)

c u r r e n t p o s . v C i 1 - MAX-COORD:
i f (c u r r e n t p o s . v [i l < -MAX-COORD)

c u r r e n t p o s . v C i 1 = -MAXLCOORD:
1
11 S e t u p t h e w o r l d - t o - v i e w r o t a t i o n .
/ / Note: much o f t h e w o r k d o n e i n c o n c a t e n a t i n g t h e s e m a t r i c e s
/ / c a n b e f a c t o r e d o u t , s i n c e i t c o n t r i b u t e s n o t h i n g t o t h e
/ I f i n a l r e s u l t : m u l t i p l y t h e t h r e e m a t r i c e s t o g e t h e r on paper
/ / t o g e n e r a t e a m i n i m u m e q u a t i o n f o r e a c h o f t h e 9 f i n a l e l e m e n t s
s - s i n (r o l 1) :
c - c o s (r o l 1) :
m r o l l [O l [O 1 - c :
m r o l l [0] [1 1 - s ;
m r o l l [1 1 C O l = - s :
m r o l l [l l [l l - c ;
s - s i n (p i t c h 1 :
c = c o s (p i t c h 1 :
m p i t c h C l l C l 1 - c :
m p i t c h C l] [Z l - s ;
mpi tch [21 [11 - - s ;
m p i t c h [Z l [Z l - c :
s - s i n (y a w) ;
c - cos (yaw) ;
myaw[Ol[Ol - c ;
myaw[O1[21 - - s :
myaw[Zl[O] - s :
myawCEl[Zl - c :
MConcat(mrol1. myaw. mtemp l) ;
MConcat(mpitch. mtempl, mtempz);
/ / B r e a k o u t t h e r o t a t i o n m a t r i x i n t o v r i g h t . v u p , and vpn.
/ / We c o u l d w o r k d i r e c t l y w i t h t h e m a t r i x : b r e a k i n g i t o u t
/ / i n t o t h r e e v e c t o r s i s j u s t t o make t h i n g s c l e a r e r
f o r (i - 0 : i < 3 : i++)
{

v r i g h t . v C i 1 - mtempZCOlCi1:
v u p . v [i l - mtempZC11Cil:
v p n . v [i l - mtempZC21Cil:

1

1 202 Chapter 65

/ / S i m u l a t e c r u d e f r i c t i o n
i f (c u r r e n t s p e e d > (MOVEMENT-SPEED * speedsca le I 2.0))

e l s e i f (c u r r e n t s p e e d < -(MOVEMENT-SPEED * speedsca le I 2.0))

e l s e

c u r r e n t s p e e d -- MOVEMENT-SPEED * speedsca le I 2.0;

c u r r e n t s p e e d +- MOVEMENT-SPEED * speedscale / 2.0;

c u r r e n t s p e e d - 0.0:
3

/ / R o t a t e a v e c t o r f r o m v i e w s p a c e t o w o r l d s p a c e .
v o i d B a c k R o t a t e V e c t o r (p o i n t - t * p i n . p o i n t - t * p o u t)
{

i n t i:

11 R o t a t e i n t o t h e w o r l d o r i e n t a t i o n
f o r (i - 0 ; i < 3 : it+)

p o u t - > v [i l - p i n - > v [0 1 * v r i g h t . v [i l +
p i n - > v [1 1 * v u p . v [i l +
p i n - > v [2 1 * v p n . v [i] :

3

/ I Trans fo rm a p o i n t f r o m w o r l d s p a c e t o v i e w s p a c e .
v o i d T r a n s f o r m P o i n t (p o i n t - t * p i n , p o i n t - t * p o u t)
{

i n t i:
p o i n t - t t v e r t :

/ / T r a n s l a t e i n t o a v i e w p o i n t - r e l a t i v e c o o r d i n a t e
f o r (i - 0 : i < 3 : i++)

t v e r t . v [i l - p i n - > v [i l - c u r r e n t p o s . v [i l :
/ / R o t a t e i n t o t h e v i e w o r i e n t a t i o n
pout->v[O] - D o t P r o d u c t (& t v e r t . & v r i g h t) ;
p o u t - > v [I] - O o t P r o d u c t (& t v e r t . L v u p) :
p o u t - > v [2] - D o t P r o d u c t (& t v e r t . b v p n) ;

1

/ / T rans fo rm a p o l y g o n f r o m w o r l d s p a c e t o v i e w s p a c e .
v o i d TransformPolygon(po1ygon-t * p i n p o l y , p o l y g o n - t * p o u t p o l y)
{

i n t i:

f o r (i - 0 : i < p i n p o l y - > n u m v e r t s : i++)

p o u t p o l y - > c o l o r - p i n p o l y - > c o l o r ;
p o u t p o l y - > n u m v e r t s - p i n p o l y - > n u m v e r t s ;

T r a n s f o r m P o i n t (& p i n p o l y - > v e r t s [i l . L p o u t p o l y - > v e r t s ~ i l) ;

3

/ I R e t u r n s t r u e i f p o l y g o n f a c e s t h e v i e w p o i n t , a s s u m i n g a c l o c k w i s e
/ / w i n d i n g o f v e r t i c e s a s s e e n f r o m t h e f r o n t .
i n t PolyFacesViewer(po1ygon-t * p p o l y)
I

i n t i:
p o i n t - t v i e w v e c ,

f o r (i - 0 : i < 3 :
{

v i e w v e c . v [i l
e d g e l . v C i 1 -
edge2 .vE i l -

3

edgel , edge2. normal :

i ++)

- p p o ~ y - > v e r t s [0 l . v ~ i l - c u r r e n t p o s . v [i l :
p p o l y - > v e r t s [0] . v C i l - p p o l y - > v e r t s ~ l l . v ~ i l ;
p p o l y - > v e r t s [2] . v [i l - p p o l y - > v e r t s ~ l l . v ~ i l ;

3-0 Clipping and Other Thoughts 1 203

CrossProduct(&edgel. &edge2. &normal):
if (DotProduct(&viewvec. &normal) > 0)

else
return 1:

return 0:
1

/ I Set up a clip plane with the specified normal.
void SetWorldspaceClipPlane(point-t *normal, planect *plane)
{

I / Rotate the plane normal into worldspace
BackRotateVector(norma1. &plane->normal);
plane->distance - DotProduct(¤tpos. &plane->normal) +

CLIP-PLANELEPSILON;
1

/ / Set up the planes of the frustum, in worldspace coordinates.
void SetUpFrustum(void)
t

double angle, s, c;
point-t normal ;

angle - atan(2.0 I fieldofview * maxscale / xscreenscale);
s - sin(ang1e):
c - cos(ang1e):
11 Left clip plane
normal .v[O1 - s:
normal.vC11 - 0:
normal .v[21 - c;
SetWorldspaceClipPlane(&normal. &frustumplanes[Ol):
/ / Right clip plane
normal.v[Ol - - s :
SetWorldspaceClipPlane(&normal. &frustumplanes[ll):
angle - atan(2.0 I fieldofview * maxscale / yscreenscale);
s - sin(ang1e);
c - cos(ang1e);
11 Bottom clip plane
normal.v[Ol - 0;
normal .v[11 - s ;
normal.vC21 - c;
SetWorldspaceClipPlane(&normal. &frustumplanes[2]);
I / Top clip plane
normal.v[lI - - s ;
SetWorldspaceClipPlane(&normal, &frustumplanes[31);

1

I / Clip a polygon to the frustum.
int ClipToFrustum(po1ygon-t *pin, polygon-t *pout)
t

i nt i , curpoly;
polygon-t tpolyC21. *ppoly;

curpoly - 0;
ppoly - pin;
for (i-0 : i< (NUM-FRUSTUM-PLANES- l) ; i++)
t

if (!ClipToPlane(ppoly.
&frustumpl anes[i 3 ,
&tpolyCcurpolyl) 1

return 0;

1 204 Chapter 65

p p o l y = & t p o l y [c u r p o l y l ;
c u r p o l y 1;

1
r e t u r n C l i p T o P l a n e (p p o 1 y .

&frustumplanes[NUMKFRUSTUM_PLANES-ll,
p o u t) :

1

11 R e n d e r t h e c u r r e n t s t a t e o f t h e w o r l d t o t h e s c r e e n .
v o i d U p d a t e W o r l d O
I

HPALETTE h o l d p a l :
HDC hdcScreen. hdcOIBSect ion;
HBITMAP h o l d b i t m a p :
polygon2D-t s c r e e n p o l y :

c o n v e x o b j e c t - t * p o b j e c t :
i n t i, j . k:

UpdateViewPosO;
memset(pDIBBase, 0, OIBWid th*OIBHeigh t) : / / c l e a r f r a m e
SetUpFrus tumO:
Z S o r t O b j e c t s O :
/ I Draw a l l v i s i b l e f a c e s i n a l l o b j e c t s
p o b j e c t = o b j e c t h e a d . p n e x t ;
w h i l e (p o b j e c t != & o b j e c t h e a d)
t

p p o l y = p o b j e c t - > p p o l y :
f o r (i - 0 ; i < p o b j e c t - > n u m p o l y s ; i++)
{

p o l Y g o n K t * p p o l y . t p o l y 0 . t p o l y l . t p o l y 2 :

/ I Move t h e p o l y g o n r e l a t i v e t o t h e a b j e c t c e n t e r
t p o l y 0 . c o l o r = p p o l y - > c o l o r :
tpoly0.numvert .s - p p o l y - > n u m v e r t s :
f o r (j = O : j < t p o l y O . n u m v e r t s : j++)
t

f o r (k=O ; k<3 ; k++)
t p o l y O . v e r t s [j l . v [k l - p p o l y - > v e r t s [j l . v [k l +

I
i f (PalyFacesViewer(&tpalyO))
t

p o b j e c t - > c e n t e r . v [k l ;

i f (C l i p T o F r u s t u m (& t p o l y O . & t p o l y l))
I

T r a n s f o r m P o l y g o n (& t p o l y l , & t p o l y 2) :
P r o j e c t P o l y g o n (& t p o l y 2 . & s c r e e n p o l y) :
F i l l P o l y g o n E D (& s c r e e n p o l y) ;

I
1
ppoly++:

1
p o b j e c t - p o b j e c t - > p n e x t :

>
/ I We've drawn the f rame: copy i t t o t h e s c r e e n
hdcScreen - GetDC(hwnd0utput) :
h o l d p a l - S e l e c t P a l e t t e (h d c S c r e e n , hpalDIB. FALSE):
R e a l i z e P a l e t t e (h d c S c r e e n) :
hdcDIBSect ion = CreateCompat ib leDC(hdcScreen) ;
h o l d b i t m a p - SelectObject(hdc0IBSection. hOIBSect ion) :
B i t B l t (h d c S c r e e n . 0. 0. DIBWidth. DIBHeight . hdcDIBSect ion.

0. 0, S R C C O P Y) :

3-D Clipping and Other Thoughts 1205

SelectPalette(hdcScreen. holdpal. F A L S E) :
ReleaseDC(hwnd0utput. hdckreen):
SelectObject(hdcD1BSection. holdbitmap):
ReleaseDC(hwnd0utput. hdcDIBSection):

I

The Lessons of Listing 65.3
There are several interesting points to Listing 65.3. First, floating-point arithmetic is
used throughout the clipping process. While it is possible to use fixed-point, doing
so requires considerable care regarding range and precision. Floating-point is much
easier-and, with the Pentium generation of processors, is generally comparable in
speed. In fact, for some operations, such as multiplication in general and division
when the floating-point unit is in single-precision mode, floating-point is much faster.
Check out Chris Hecker’s column in the February 1996 Game Deueloperfor an inter-
esting discussion along these lines.
Second, the planes that form the frustum are shifted ever so slightly inward from
their proper positions at the edge of the field of view. This guarantees that it’s never
possible to generate a visible vertex exactly at the eyepoint, averting the divide-by-zero
error that such a vertex would cause when projected and at no performance cost.
Third, the orientation of the viewer relative to the world is specified via yaw, pitch, and
roll angles, successively applied in that order. These angles are accumulated from frame
to frame according to user input, and for each frame are used to rotate the view up,
view right, and viewplane normal vectors, which define the world coordinate system,
into the viewspace coordinate system; those transformed vectors in turn define the
rotation from worldspace to viewspace. (See Chapter 61 for a discussion of coordinate
systems and rotation, and take a look at Chapters 5 and 6 of Complter Graphics, by Foley
and van Dam, for a broader overview.) One attractive aspect of accumulating angular
rotations that are then applied to the coordinate system vectors is that there is no
deterioration of the rotation matrix over time. This is in contrast to my XSharp package,
in which I accumulated rotations by keeping a cumulative matrix of all the rotations
ever performed; unfortunately, that approach caused roundoff error to accumulate,
so objects began to warp visibly after many rotations.
Fourth, Listing 65.3 processes each input polygon into a clipped polygon, one line
segment at a time. It would be more efficient to process all the vertices, categorizing
whether and how they’re clipped, and then perform a test such as the Cohen-
Sutherland outcode test to detect trivial acceptance (the polygon is entirely inside)
and sometimes trivial rejection (the polygon is fully outside) without ever dealing
with the edges, and to identify which planes actually need to be clipped against, as
discussed in “Line-Segment Clipping Revisited,”Dr. DobbkJournaZ, January 1996. Some
clipping approaches also minimize the number of intersection calculations when a
segment is clipped by multiple planes. Further, Listing 65.3 clips a polygon against
each plane in turn, generating a new output polygon for each plane; it is possible

1 206 Chapter 65

and can be more efficient to generate the final, clipped polygon without any inter-
mediate representations. For further reading on advanced clipping techniques, see
the discussion starting on page 271 of Foley and van Dam.
Finally, clipping in Listing 65.3 is performed in worldspace, rather than in viewspace.
The frustum is backtransformed from viewspace (where it is defined, since it exists
relative to the viewer) to worldspace for this purpose. Worldspace clipping allows us
to transform only those vertices that are visible, rather than transforming all vertices
into viewspace, then clipping them. However, the decision whether to clip in
worldspace or viewspace is not clear-cut and is affected by several factors.

Advantages of Viewspace Clipping
Although viewspace clipping requires transforming vertices that may not be drawn, it
has potential performance advantages. For example, in worldspace, near and far clip
planes are just additional planes that have to be tested and clipped to, using dot prod-
ucts. In viewspace, near and far clip planes are typically planes with constant z
coordinates, so testing whether a vertex is near or far-clipped can be performed with a
single z compare, and the fractional distance along a line segment to a near or far clip
intersection can be calculated with a couple of z subtractions and a divide; no dot
products are needed.
Similarly, if the field of view is exactly 90 degrees, so the frustum planes go out at 45
degree angles relative to the viewplane, then x==z and y==z along the clip planes.
This means that the clipping status of a vertex can be determined with a simple
comparison, far more quickly than the standard dot-product test. This lends itself
particularly well to outcode-based clipping algorithms, since each compare can set
one outcode bit.
For a game, 90 degrees is a pretty good field of view, but can we get the same sort of
efficient clipping if we need some other field of view? Sure. All we have to do is scale
the x and y results of the world-to-view transformation to account for the field of view,
so that the coordinates lie in a viewspace that’s normalized such that the frustum planes
extend along lines of x==z and y==z. The resulting visible projected points span the
range -1 to 1 (before scaling up to get pixel coordinates), just as with a 90degree field
of view, so the rest of the drawing pipeline remains unchanged. Better yet, there is no cost
in performance because the adjustment can be added to the transformation matrix.
I didn’t implement normalized clipping in Listing 65.3 because I wanted to illustrate
the general 3-D clipping mechanism without additional complications, and because
for many applications the dot product (which, after all, takes only 10-20 cycles on a
Pentium) is sufficient. However, the more frustum clipping you’re doing, especially
if most of the polygons are trivially visible, the more attractive the performance ad-
vantages of normalized clipping become.

3-D Clipping and Other Thoughts 1 207

Further Reading
You now have the basics of 3-D clipping, but because fast clipping is central to high-
performance 3-D, there’s a lot more to be learned. One good place for further reading
is Foley and van Dam; another is Procedural Elements of Computer Graphics, by David F.
Rogers. Read and understand either of these books, and you’ll know everything you
need for world-class clipping.
And, as you read, you might take a moment to consider how wonderful it is that
anyone who’s interested can tap into so much expert knowledge for the price of a
book-or, on the Internet, for free-with no strings attached. Our part of the world
is a pretty good place right now, isn’t it?

1 208 Chapter 65

	previous:
	home:
	next:

