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quake's hidden-surface removal



ed of  classic rock. Admittedly,  it’s been  a while, about 
to hear anything by the Cars or Boston, and I was 

e first place about Bob Seger or  Queen, to say noth- 
n’t  changed. But I knew something was up when I 
n on  the Allman Brothers and Steely Dan and Pink 
atles (just stuff  like “Hello Goodbye” and “I’ll Cry 

“Ticket to Ride” or “A Day in the Life”; I’m not that far gone). 
figure out what the  problem was; I’d  been  hearing  the same 

songs for  a quarter-ckntury, and I was bored. 
I tell  you this by  way of explaining why it was that when my daughter  and  I drove back 
from dinner  the  other  night,  the radio in my car was tuned,  for  the first time ever, to 
a station whose slogan is “There is no alternative.” 
Now, we’re talking here  about a 10-year-old  who  worships the Beatles and has been 
raised on a steady diet of oldies. She loves melodies, catchy songs, and good singers, 
none of which you’re likely  to find on  an alternative rock station. So it’s no surprise 
that when I turned  on  the radio,  the first word out of her  mouth was  “Yuck!” 
What did surprise me was that after listening for a while, she said, “You know, Dad, 
it’s  actually kind of interesting.” 
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Apart  from giving me  a  clue as to what sort of music I  can expect  to  hear blasting 
through  our  house when  she’s  a  teenager, her quick uptake  on  alternative rock 
(versus my decades-long  devotion  to the music of my youth)  reminded me of 
something  that it’s  easy to  forget as we become  older  and  more  set  in  our ways. It 
reminded  me  that it’s essential  to  keep an  open  mind,  and  to  be willing, better 
yet, eager,  to try new things.  Programmers  tend to become  attached  to familiar 
approaches,  and  are  inclined  to stick with whatever is currently  doing  the  job 
adequately well, but in programming  there  are always alternatives, and I’ve found 
that they’re often worth  considering. 
Not that  I  should have needed any reminding,  considering the ever-evolving nature 
of Quake. 

Creative Flux and Hidden Surfaces 
Back in  Chapter 64, I described the creative  flux that led to John Carmack’s  decision 
to  use a precalculated  potentially  visible  set  (PVS)  of  polygons for each  possible  viewpoint 
in Quake, the game we’re  developing here  at id Software. The precalculated PVS meant 
that instead of  having to spend  a  lot of time searching through  the world database to 
find out which  polygons  were  visible from the  current viewpoint, we could simply  draw 
all the polygons  in the PVS from back-to-front (getting the  ordering courtesy  of the 
world BSP tree)  and  get  the  correct scene drawn  with no searching at all; letting the 
back-to-front  drawing perform  the final stage of hidden-surface removal (HSR) . This 
was a terrific idea, but it was far from the  end of the road for Quake’s design. 

Drawing Moving Objects 
For one thing,  there was still the question of  how to sort and draw  moving objects 
properly; in fact, this is the single technical question I’ve been asked most often in 
recent  months, so I’ll take a  moment to address it  here.  The primary problem is that 
a moving model can span multiple BSP leaves,  with the leaves that  are  touched vary- 
ing as the model moves; that,  together with the possibility  of multiple models in one 
leaf, means there’s no easy  way to use BSP order to draw the models in correctly 
sorted  order. When I wrote Chapter 64, we were drawing sprites (such as explo- 
sions), moveable BSP models (such as doors),  and polygon models (such as monsters) 
by clipping  each  into all the leaves it  touched,  then drawing the  appropriate  parts as 
each BSP leaf was reached in back-to-front traversal.  However, this didn’t solve the 
issue  of sorting multiple moving models in  a single leaf against each  other, and also 
left some ugly sorting  problems with complex polygon models. 
John solved the  sorting issue for sprites and polygon models in a startlingly low-tech 
way:  We  now z-buffer them. (That is, before we draw each pixel, we compare its 
distance, or z, value  with the z value  of the pixel currently on  the screen, drawing 
only if the new pixel is nearer  than  the  current  one.) First, we draw the basic world, 
walls, ceilings, and  the like. No z-buffer testing is  involved at this point  (the world 
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visible surface determination is done in a different way,  as  we’ll see soon) ; however, 
we do fill the z-buffer  with the z values  (actually, l / z  values,  as  discussed  below) for 
all the world  pixels.  Z-filling is a much faster  process than z-buffering the  entire 
world  would be, because no reads or compares are involved, just writes  of z values. 
Once  the drawing and z-filling  of the world is done, we can simply  draw the sprites 
and polygon models with  z-buffering and get  perfect sorting all around. 

Performance Impact 
Whenever a z-buffer is involved, the questions  inevitably are: What’s the memory  foot- 
print and what’s the performance impact? Well, the memory footprint  at 320x200 is 
128K, not trivial but  not a big deal for a game that requires 8 MB to run.  The perfor- 
mance impact is about 10 percent for z-filling the world, and roughly 20 percent (with 
lots  of  variation) for drawing  sprites and polygon  models. In return, we get a perfectly 
sorted world, and also the ability  to do additional effects,  such  as  particle  explosions 
and smoke,  because the z-buffer  lets  us  flawlessly sort such  effects into  the world. All in 
all, the use of the z-buffer  vastly  improved the visual quality and flexibility  of the Quake 
engine, and also  simplified the code quite a bit, at an acceptable  memory and perfor- 
mance  cost. 

Leveling and Improving Performance 
As I said  above, in the Quake architecture,  the world  itself  is  drawn  first, without z- 
buffer reads or compares, but filling the z-buffer  with the world  polygons’ z values, 
and  then  the moving  objects are drawn atop  the world,  using  full  z-buffering. Thus 
far,  I’ve  discussed  how  to  draw  moving  objects.  For the rest of this chapter, I’m going 
to talk about  the  other  part of the drawing equation;  that is,  how  to  draw the world 
itself, where the  entire world is stored as a single BSP tree and never  moves. 
As you  may  recall from  Chapter 64, we’re concerned with both raw performance and 
level performance.  That is, we want the drawing code to run as  fast  as  possible, but 
we also  want the difference in drawing speed between the average scene and  the 
slowest-drawing scene to  be as  small  as  possible. 

It does  little good to average 30 frames  per second if1 Opercent of  the  scenes draw p at 5 fps, because  the  jerkiness  in  those  scenes will be extremely obvious  by  com- 
parison  with  the average scene, and  highly  objectionable.  It  would  be  better to 
average I5 f p s  100percent  of  the  time, even though  the average  drawing  speed is 
only halfas much. 

The precalculated PVS was an  important step toward both faster and  more level 
performance, because it  eliminated  the  need to identify visible  polygons, a relatively 
slow step  that  tended  to be at its  worst in the most complex scenes. Nonetheless, in 
some  spots  in  real  game  levels the precalculated PVS contains five times more polygons 
than  are actually  visible; together with the back-to-front HSR approach, this created 
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hot spots in which the  frame  rate  bogged down  visibly  as hundreds of polygons are 
drawn  back-to- front, most of those immediately getting overdrawn by nearer poly- 
gons. Raw performance  in  general was also reduced by the typical 50% overdraw 
resulting  from drawing everything in  the PVS. So, although drawing the PVS back-to- 
front as the  final HSR stage worked and was an  improvement over previous designs, 
it was not ideal. Surely, John  thought, there’s  a  better way to leverage the PVS than 
back-to-front drawing. 
And indeed  there is. 

Sorted Spans 
The ideal  final HSR stage for Quake  would reject all the polygons  in the PVS that  are 
actually  invisible, and draw  only the visible  pixels  of the remaining polygons,  with no 
overdraw, that is,  with  every  pixel  drawn  exactly once, all at  no performance cost, of 
course. One way to do  that  (although certainly not  at zero cost)  would  be  to  draw the 
polygons from front-to-back, maintaining a region  describing the currently occluded 
portions of the screen and clipping each polygon  to that region before drawing it. That 
sounds promising, but it is in fact nothing more or less than the beam tree approach I 
described in Chapter 64, an  approach  that we found to  have considerable  overhead and 
serious  leveling  problems. 
We can do much  better if  we  move the final HSR stage from  the polygon  level to  the 
span level and use a  sorted-spans  approach.  In essence, this approach consists of 
turning  each polygon into  a  set of spans, as  shown in Figure 66.1, and  then  sorting 

polygon A spans 

Span generation. 
Figure 66.1 
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and clipping the spans  against  each other until  only the visible portions of  visible spans 
are left  to  be  drawn,  as  shown  in  Figure  66.2. This may sound a lot like  z-buffering 
(which is simply too slow for use in drawing the world, although it’s fine for smaller 
moving  objects,  as described earlier),  but  there are crucial differences. 
By contrast with  z-buffering,  only  visible portions of  visible  spans are  scanned out 
pixel by pixel (although all  polygon edges must still be  rasterized). Better yet, the 
sorting that z-buffering does at each pixel becomes a per-span operation with sorted 
spans, and because of the  coherence implicit in a span list, each edge is sorted only 
against some of the spans on the same line and is clipped only to  the few spans that 
it overlaps  horizontally. Although complex scenes  still  take longer to  process than 
simple  scenes, the worst  case  isn’t  as bad as  with the beam tree or back-to-front  ap- 
proaches,  because  there’s no overdraw or scanning of hidden pixels, because 
complexity is limited to  pixel resolution and because  span coherence  tends to  limit 
the worst-case sorting in  any one  area of the  screen. As a bonus, the  output of sorted 
spans is in precisely the  form  that a low-level rasterizer needs, a set of span descrip- 
tors, each consisting  of a start coordinate and a length. 
In short,  the  sorted spans approach meets our original criteria pretty  well; although 
it isn’t  zero-cost,  it’s not horribly expensive,  it  completely eliminates both overdraw 
and pixel scanning of obscured portions of polygons and it tends to  level  worst-case 
performance. We wouldn’t want to rely on sorted spans alone as our hidden-surface 
mechanism, but  the precalculated PVS reduces  the number of  polygons  to a level 
that  sorted spans can handle  quite nicely. 
So we’ve found  the  approach we need; now  it’s just a matter of writing some code 
and we’re on  our way, right? Well,  yes and no. Conceptually, the sorted-spans ap- 
proach is simple, but it’s  surprisingly  difficult  to implement, with a couple of major 
design  choices to  be  made, a subtle mathematical element,  and some tricky gotchas 
that I’ll  have  to defer until Chapter 67. Let’s look at  the design choices first. 

Edges versus Spans 
The first  design choice is whether to sort spans or edges (both of which  fall into  the 
general category of “sorted spans”). Although the results are  the same both ways, a 
list  of  spans  to be drawn, with no overdraw, the  implementations and performance 
implications are  quite  different, because the  sorting and clipping are  performed 
using very different  data structures. 
With span-sorting, spans are  stored in x-sorted, linked list buckets, typically  with one 
bucket per scan line. Each  polygon in turn is rasterized into spans, as  shown in Fig- 
ure 66.1, and each span is sorted and clipped into  the bucket for  the scan line the 
span is on, as  shown in Figure 66.2, so that at any  time each bucket contains the 
nearest spans encountered  thus far, always  with no overlap. This approach involves 
generating all spans for each polygon in turn, with each span immediately being 
sorted,  clipped, and  added to  the  appropriate bucket. 
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polygon A spans 
I I I I I I  

1 x = 22, y = 0, count = o I 
I x = 2 2 , v =  1,count=0 I 
I x=21.v=2,count=1 I 
I x = 20. v = 3. count = 2 I 

A and B composited 

I , , , , ,  

visible spans 
A: x = 20, y = 0, count = 0 B: x = 22, y = 0, count = 0 

A : x = 2 0 , y = l , c o u n t = l  B:x=22,y=l ,count=O 

A x = 1 9 , y = 2 , c o u n t = 2  B:x=21,y=2,count=l  

Two sets of spans sorted and clipped against one another: 
Figure 66.2 
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With edge-sorting, edges are  stored  in x-sorted, linked list buckets according to their 
start scan line. Each polygon in  turn is decomposed  into edges, cumulatively build- 
ing a list  of  all the edges in the scene. Once all edges for all  polygons in the view 
frustum have been  added to the  edge list, the whole  list is scanned out in a single 
top-to-bottom, left-to-right pass. An active edge list  (AEL)  is maintained. With each 
step to a new  scan line, edges that end  on that scan line are removed from the AEL, 
active edges are  stepped to their new x  coordinates, edges starting on  the new  scan 
line are added to the AEL, and  the edges are  sorted by current x  coordinate. 
For each scan line,  a z-sorted active  polygon  list  (APL) is maintained. The x-sorted 
AEL is stepped  through in order. As each new edge is encountered  (that is, as each 
polygon starts or  ends as we move left to right),  the associated polygon is activated 
and sorted into  the APL,  as  shown in Figure 66.3, or deactivated and removed from 
the APL,  as  shown in Figure 66.4, for  a  leading or trailing edge, respectively. If the 
nearest polygon has changed (that is, if the new  polygon is nearest, or if the  nearest 
polygon just  ended) , a  span is emitted  for  the polygon that  just  stopped  being  the 
nearest, starting at  the  point where the polygon first because nearest and  ending  at 
the  x  coordinate of the  current edge, and  the  current  x  coordinate is recorded in 
the polygon that is  now the nearest. This saved coordinate  later serves  as the  start of 
the span emitted when the new nearest polygon  ceases to be in front. 
Don’t  worry if you didn’t follow  all  of that;  the above  is just a quick overview  of edge- 
sorting to help make the rest of this chapter  a little clearer. My thorough discussion 
of the topic will be in Chapter 6’7. 
The spans that  are  generated with edge-sorting are exactly the same spans that ulti- 
mately emerge  from span-sorting; the  difference lies in the  intermediate  data 
structures  that are used to sort  the spans in  the scene. With edge-sorting, the spans 
are  kept implicit in the edges until  the final set of  visible spans is generated, so the 
sorting, clipping, and span emission is done as each edge adds or removes a polygon, 
based on  the span state implied by the  edge and  the set of active  polygons.  With 
span-sorting, spans are immediately made explicit when each polygon is rasterized, 
and those intermediate spans are  then  sorted  and  clipped against other  the spans on 
the scan line to generate  the final spans, so the states of the spans are explicit at all 
times, and all  work  is done directly with spans. 
Both span-sorting and edge-sorting work  well, and  both have been employed suc- 
cessfully in commercial projects. We’ve chosen to use edge-sorting in Quake  partly 
because it seems inherently  more efficient, with excellent horizontal coherence  that 
makes for minimal time spent  sorting,  in contrast with the potentially costly sorting 
into linked lists that span-sorting can involve. A more  important  reason,  though, is 
that with edge-sorting we’re able to share edges between adjacent polygons, and  that 
cuts the work  involved in sorting, clipping, and rasterizing edges nearly in half, while 
also shrinking the world database quite  a bit due to the sharing. 
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Active  Edge List 

I . 
I 

Current  edge;  since it's a 

M into  the  active polygon. 
leading edge,  sort polygon 

+ trail edge polygon M; x = lo0  

Active  Polygon List 

polygon M 

I I 

Polygon M has a nearer z at x=l8 
than  any  polygon in the APL, so put 
polygon M at the top of the APL; it is 
the nearest  surface at this pixel, 
hence  visible.  Emit a span  for 
olygon J, starting at x where J 

gecame  visible and  ending at x=l8. 
x=l8 is the  start  coordinate  for the 
span  that will be  emitted  for polygon M 
when it ends  on this scan line or 
becomes  occluded. 

polygon J 
zatx=18 is 100 

1 
za tx= l8  is 125 

1 
If polygon M had not  been the nearest polygon L 
polygon  at x=l8, it would have  been z at x=l8 is 500 
inserted  into  the APL at the proper z- 
sorted  location, and  nothing  more  would 
have  been  done. 

Activating a polygon when a leading edge is  encountered in the AEL. 
Figure 66.3 

One final advantage of edge-sorting is that  it makes no distinction between convex 
and concave  polygons. That's not  an  important consideration  for most graphics  en- 
gines,  but  in  Quake,  edge  clipping,  transformation,  projection, and sorting have 
become  a major bottleneck, so we're  doing everything we can to get  the polygon and 
edge  counts down, and concave  polygons help  a  lot in that  regard. While it's possible 
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Active  Edge List 
1 I I i 

+ trail edge polygon M; x = lo0  ”+ lead  edge  polygon R; x =110 

t 
I I I 

Current  edge;  since  it‘s a  lead  edge  polygon S; x =111 + 
trailing edge,  remove poly  on 
M from  the  active polygon 9 ist. 

Active Polygon List 

Remove polygon M from  the APL. 
Polygon M is on top of the APL, 
meaning it’s  currently  visible  (the 
nearest polygon as  we  reach  this 
pixel), so we emit  a  span  starting  at 
the coordinate  at  which  polygon M 
became  visible (x=l8), and ending  at 
the  current  coordinate (x=lOO). Mark 
that  polygon J became  visible  at 
x=lOO. 

If polygon M had not  been  on  top  of 
the APL, we wouldn’t  have  done 
anything  except  removing it from 
the APL. 

nearest at x=l8 

polygon J 

polygon L 

Deactivating a polygon when a trailing edge is encountered in the AEL. 
Figure 66.4 

to handle concave  polygons  with span-sorting, that can involve  significant perfor- 
mance penalties. 
Nonetheless, there’s no cut-and-dried answer  as  to  which approach is better. In  the 
end, span-sorting and edge-sorting amount to the same  functionality, and  the choice 
between them is a matter of  whatever  you  feel  most comfortable with. In Chapter 67, 
I’ll go into considerable  detail about edge-sorting,  complete with a full implementation. 
I’m going the  spend  the rest of this chapter laying the  foundation  for  Chapter 67 by 
discussing sorting keys and l / z  calculation. In the process, I’m going  to have  to 
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make a few forward references to aspects of edge-sorting that  I haven’t  yet covered in 
detail; my apologies, but it’s unavoidable, and all should become clear by the  end of 
Chapter 6’7. 

Edge-Sorting Keys 
Now that we know  we’re going to sort edges, using them to emit spans for  the poly- 
gons nearest the viewer, the  question becomes: How can we tell  which  polygons are 
nearest? Ideally,  we’d just store  a  sorting key in each polygon, and whenever a new 
edge came along, we’d compare its surface’s key to the keys  of other currently active 
polygons, and could easily  tell  which  polygon was nearest. 
That sounds too good to be true,  but it is possible.  If, for example, your world data- 
base  is stored as a BSP tree, with  all  polygons clipped into  the BSP leaves, then BSP 
walk order is a valid drawing order. So,  for  example, if you  walk the BSP back-to- 
front, assigning each polygon an incrementally higher key  as  you reach it, polygons 
with higher keys are  guaranteed to be in front of  polygons  with  lower  keys. This is the 
approach  Quake used for  a while, although  a  different  approach is now being used, 
for reasons I’ll explain shortly. 
If  you don’t  happen to have a BSP or similar data  structure handy, or if you  have lots 
of  moving  polygons (BSPs don’t  handle moving  polygons  very efficiently), another 
way to accomplish your objectives  would be to sort all the polygons against one an- 
other before drawing the scene, assigning appropriate keys based on their spatial 
relationships in viewspace. Unfortunately, this is generally an extremely slow  task, 
because every  polygon must be compared to every other polygon. There  are tech- 
niques to improve the  performance of  polygon sorts, but I  don’t know  of anyone 
who’s doing  general polygon sorts of complex scenes in realtime on a PC. 
An alternative is to sort by z distance from  the viewer in screenspace, an  approach 
that dovetails  nicely  with the excellent spatial coherence of edge-sorting. As each 
new edge is encountered  on  a scan line,  the  corresponding polygon’s z distance can 
be calculated and compared to the  other polygons’ distances, and  the polygon can 
be sorted into  the APL accordingly. 
Getting z distances can be tricky,  however. Remember that we need to be  able  to 
calculate z at any arbitrary point  on a polygon, because an  edge may occur  and 
cause its polygon to  be  sorted  into  the APL at any point  on  the screen. We could 
calculate z directly from the screen  x and y coordinates  and  the polygon’s plane 
equation,  but  unfortunately this can’t be done very  quickly, because the z for  a 
plane  doesn’t vary linearly in  screenspace; however, l / z  does vary linearly, so we’ll 
use that instead.  (See Chris Hecker’s 1995 series of columns on texture  mapping 
in Game Developer magazine for a discussion of screenspace linearity and  gradients 
for l /z . )  Another advantage of using l / z  is that its resolution  increases with de- 
creasing  distance,  meaning that by using l / ~ ,  we’ll  have better  depth resolution 
for  nearby  features,  where  it  matters most. 

1 220 Chapter 66 



The obvious way to get  a l / z  value at any arbitrary point  on a polygon  is to calculate 
l / z  at  the vertices, interpolate it down both edges of the polygon, and  interpolate 
between the edges to get  the value at  the  point of interest. Unfortunately, that re- 
quires  doing  a lot of  work along  each  edge,  and worse, requires division to calculate 
the l / z  step per pixel across each span. 
A better solution is to calculate l / z  directly from  the  plane  equation and  the screen 
x and y of the pixel of interest. The equation is 
l / z  = (a/d)x’ - (b/d)y’ + c/d 
where z is the viewspace z coordinate of the point on the plane that projects  to  screen 
coordinate (x’,y’) (the origin for this  calculation  is the center of projection, the point on 
the screen straight ahead of the viewpoint), [a  b c] is the  plane  normal in viewspace, 
and d is the distance from  the viewspace origin to the  plane along the  normal. Divi- 
sion is done only once  per  plane, because a, b, c, and d  are per-plane constants. 
The full l / z  calculation requires two multiplies and two adds, all of which should be 
floating-point to  avoid range  errors. That much floating-point math  sounds  expen- 
sive but really isn’t, especially on  a  Pentium, where a plane’s l / z  value at any point 
can be calculated in as little as  six  cycles in assembly language. 

Where That 1 /Z Equation Comes  From 
For those who are  interested, here’s a quick derivation of the l / z  equation. The 
plane equation  for  a  plane is 
= + b y + c z - d = O  
where x and y are viewspace coordinates,  and a,  b, c, d,  and z are  defined above. If we 
substitute x=x’z and y=-y’z (from  the definition of the perspective projection, with y 
inverted because y increases upward in viewspace but downward in screenspace), 
and  do some rearrangement, we get: 
z = d /  (=”by’+c) 
Inverting and  distributing yields: 
l / z  = ax’/d - by’/d + c/d 
We’ll see l / z  sorting in action in Chapter 67. 

Quake and Z-Sorting 
I mentioned earlier that Quake no longer uses BSP order as the sorting key; in fact, 
it uses l / z  as the key  now. Elegant as the  gradients  are, calculating l / z  from  them is 
clearly  slower than just doing a compare on  a BSP-ordered key, so why  have  we switched 
Quake to l / z ?  
The primary  reason is to reduce the number of  polygons.  Drawing  in  BSP order means 
following  certain  rules, including the rule that polygons  must  be  split if they  cross  BSP 
planes. This splitting increases the  numbers of  polygons and edges considerably. By 
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sorting on l / z ,  we’re able to leave  polygons unsplit but still get  correct drawing 
order, so we have far fewer edges to process and faster drawing  overall, despite  the 
added cost  of l / z  sorting. 
Another advantage of l / z  sorting is that  it solves the  sorting issues I mentioned  at 
the  start involving  moving models that  are themselves  small BSP trees. Sorting in 
world BSP order wouldn’t work here, because these models are  separate BSPs, and 
there’s no easy  way to work them  into  the world BSP’s sequence  order. We don’t want 
to use z-buffering for  these models because they’re often large objects such as doors, 
and we don’t want to lose the overdraw-reduction benefits that closed doors provide 
when drawn through  the  edge list.  With sorted spans, the edges of  moving BSP mod- 
els are simply placed in  the  edge list (first  clipping polygons so they don’t cross  any 
solid  world surfaces, to  avoid complications associated  with interpenetration),  along 
with  all the world edges, and l / z  sorting takes care of the rest. 

Decisions Deferred 
There is, without  a  doubt,  an awful lot of information  in  the  preceding pages, and it 
may not all connect  together yet  in  your mind. The code and accompanying expla- 
nation in the  next  chapter should help; if you  want to peek ahead,  the  code is available 
on the CD-ROM  as  DDJZSORT.ZIP in  the  directory  for  Chapter 67. You  may also 
want  to  take a look at Foley and van  Dam’s Computer Graphics or Rogers’ Procedural 
Elements fm Computer Graphics. 
As I write this, it’s unclear  whether  Quake will end  up sorting edges by BSP order  or 
l / z .  Actually, there’s no guarantee  that  sorted  spans  in any form will be  the  final 
design. Sometimes it seems  like we change  graphics  engines as often as they  play 
Elvis on  the ‘50s oldies stations (but,  one would hope, with more aesthetically pleas- 
ing results!) and  no  doubt we’ll  be considering  the alternatives right up until  the day 
we ship. 
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