
chapter 68

quake's lighting model

Different Approach to Lighting Polygons
ollege that I discovered computer games. Not Wiz-

cause none of those existed yet-the game that
Trek game, in which you navigated from one 8x8

of starbases, occasionally firing phasers or photon
than it sounds; after each move, the current quad-
atch, along with the current stats-and the output

tball console. A typical game took over an hour, during which
mulating ever happened (Klingons appeared periodically, but
your next move before attacking, and your photon torpedoes

never in doubt), but none of that mattered; noth-
hrill of being in a computer-simulated universe.

Then the college got a PDP-11 with four CRT terminals, and suddenly Star Trek
could redraw in a second instead of a minute. Better yet, I found the source code for
the Star Trek program in the recesses of the new system, the first time I’d ever seen
any real-world code other than my own, and excitedly dove into it. One evening, as I
was looking through the code, a really cute girl at the next terminal asked me for
help getting a program to run. After I had helped her, eager to get to know her
better, I said, ‘Want to see something? This is the actual source for the Star Trek
game!” and proceeded to page through the code, describing each subroutine. We
got to talking, and eventually I worked up the nerve to ask her out. She said sure, and
we ended up having a good time, although things soon fell apart because of her two

1245

or three other boyfriends (I never did get an exact count). The interesting thing,
though, was her response when I finally got around to asking her out. She said, “It’s
about time!” When I asked what she meant, she said, “I’ve been trying to get you to
ask me out all evening-but it took you forever! You didn’t actually think I was inter-
ested in that Star Trek program, did you?”
Actually, yes, I had thought that, because Iwas interested in it. One thing I learned
from that experience, and have had reinforced countless times since, is that we-
you, me, anyone who programs because they love it, who would do it for free if
necessary-are a breed apart. We’re different, and luckily so; while everyone else is
worrying about downsizing, we’re in one of the hottest industries in the world. And,
so far as I can see, the biggest reason we’re in such a good situation isn’t intelligence,
or hard work, or education, although those help; it’s that we actually like this stuff.
It’s important to keep it that way. I’ve seen far too many people start to treat pro-
gramming like a job, forgetting the joy of doing it, and burn out. So keep an eye on
how you feel about the programming you’re doing, and if it’s getting stale, it’s time
to learn something new; there’s plenty of interesting programming of all sorts to be
done. Follow your interests-and don’t forget to have fun!

The Lighting Conundrum
I spent about two years working with John Carmack on Quake’s 3-D graphics engine.
John faced several fundamental design issues while architecting Quake. I’ve written
in earlier chapters about some of those issues, including eliminating non-visible poly-
gons quickly via a precalculated potentially visible set (PVS), and improving
performance by inserting potentially visible polygons into a global edge list and scan-
ning out only the nearest polygon at each pixel.
In this chapter, I’m going to talk about another, equally crucial design issue: how we
developed our lighting approach for the part of the Quake engine that draws the
world itself, the static walls and floors and ceilings. Monsters and players are drawn
using completely different rendering code, with speed the overriding factor. A pri-
mary goal for the world, on the other hand, was to be as precise as possible, getting
everything right so that polygons, textures, and sophisticated lighting would be pegged
in place, with no visible shifting or distortion under all viewing conditions, for maxi-
mum player immersion-all with good performance, of course. As I’ll discuss, the
twin goals of performance and rock-solid, complex lighting proved to be difficult to
achieve with traditional lighting approaches; ultimately, a dramatically different ap-
proach was required.

Gouraud Shading
The traditional way to do realistic lighting in polygon pipelines is Gouraud shading
(also known as smooth shading). Gouraud shading involves generating a lighting value

1246 Chapter 68

at each polygon vertex by applying all relevant world lighting, linearly interpolating
between lighting values down the edges of the polygon, and then linearly interpolat-
ing between the edges of the polygon across each span. If texture mapping is desired
(and all polygons are texture mapped in Quake), then at each pixel in each span,
the pixel’s corresponding texture map location (texel) is determined, and the inter-
polated lighting is applied to the texel to generate a final, lit pixel. Texels are generally
taken from a 32x32 or 64x64 texture that’s tiled repeatedly across the polygon, for
several reasons: performance (a 64x64 texture sits nicely in the 486 or Pentium cache),
database size, and less artwork.
The interpolated lighting can consist of either a color intensity value or three sepa-
rate red, green, and blue values. RGB lighting produces more sophisticated results,
such as colored lights, but is slower and best suited to RGB modes. Games like Quake
that are targeted at palettized 256-color modes generally use intensity lighting; each
pixel is lit by looking up the pixel color in a table, using the texel color and the
lighting intensity as the look-up indices.
Gouraud shading allows for decent lighting effects with a relatively small amount of
calculation and a compact data set that’s a simple extension of the basic polygon
model. However, there are several important drawbacks to Gouraud shading, as well.

Problems with Gouraud Shading
The quality of Gouraud shading depends heavily on the average size of the polygons
being drawn. Linear interpolation is used, so highlights can only occur at vertices,
and color gradients are monotonic across the face of each polygon. This can make
for bland lighting effects if polygons are large, and makes it difficult to do spotlights
and other detailed or dramatic lighting effects. After John brought the initial, primi-
tive Quake engine up using Gouraud shading for lighting, the first thing he tried to
improve lighting quality was adding a single vertex and creating new polygons wher-
ever a spotlight was directly overhead a polygon, with the new vertex added directly
underneath the light, as shown in Figure 68.1. This produced fairly attractive high-
lights, but simultaneously made evident several problems.
A primary problem with Gouraud shading is that it requires the vertices used for
world geometry to serve as lighting sample points as well, even though there isn’t
necessarily a close relationship between lighting and geometry. This artificial cou-
pling often forces the subdivision of a single polygon into several polygons purely for
lighting reasons, as with the spotlights mentioned above; these extra polygons in-
crease the world database size, and the extra transformations and projections that
they induce can harm performance considerably.
Similar problems occur with overlapping lights, and with shadows, where additional
polygons are required in order to approximate lighting detail well. In particular,
good shadow edges need small polygons, because otherwise the gradient between
light and dark gets spread across too wide an area. Worse still, the rate of lighting

Quake’s Lighting Model 1247

r

Wall is a single polygon before adding a
light vertex

Wall becomes four polygons after adding a
light vertex directly beneath a light

Adding an extra vertex directly beneath a light.
Figure 68.1

change across a shadow edge can vary considerably as a function of the geometry the
edge crosses; wider polygons stretch and diffuse the transition between light and
shadow. A related problem is that lighting discontinuities can be very visible at t-
junctions (although ultimately we had to add edges to eliminate tjunctions anyway,
because otherwise dropouts can occur along polygon edges). These problems can
be eased by adding extra edges, but that increases the rasterization load.

Perspective Correctness
Another problem is that Gouraud shading isn’t perspective-correct. With Gouraud
shading, lighting varies linearly across the face of a polygon, in equal increments per
pixel-but unless the polygon is parallel to the screen, the same sort of perspective
correction is needed to step lighting across the polygon properly as is required for
texture mapping. Lack of perspective correction is not as visibly wrong for lighting
as it is for texture mapping, because smooth lighting gradients can tolerate consider-
ably more warping than can the detailed bitmapped images used in texture mapping,
but it nonetheless shows up in several ways.

1 248 Chapter 68

First, the extent of the mismatch between Gouraud shading and perspective lighting
varies with the angle and orientation of the polygon being lit. As a polygon turns to
become more on-edge, for example, the lighting warps more and therefore shifts
relative to the perspective-texture mapped texels it’s shading, an effect I’ll call view-
ing vam’ance. Lighting can similarly shift as a result of clipping, for example if one or
more polygon edges are completely clipped; I’ll refer to this as clipping vam’ance.
These are fairly subtle effects; more pronounced is the rotational variance that occurs
when Gouraud shading any polygon with more than three vertices. Consistent light-
ing for a polygon is fully defined by three lighting values; taking four or more vertices
and interpolating between them, as Gouraud shading does, is basically a hack, and
does not reflect any consistent underlying model. If you view a Gouraud-shaded quad
head-on, then rotate it like a pinwheel, the lighting will shift as the quad turns, as
shown in Figure 68.2. The extent of the lighting shift can be quite drastic, depend-
ing on how different the colors at the vertices are.
It was rotational variance that finally brought the lighting issue to a head for Quake.
We’d look at the floors, which were Gouraud-shaded quads; then we’d pivot, and the
lighting would shimmy and shift, especially where there were spotlights and shadows.
Given the goal of rendering the world as accurately and convincingly as possible, this
was unacceptable.
The obvious solution to rotational variance is to use only triangles, but that brings
with it a new set of problems. It takes twice as many triangles as quads to describe the

0 1

0 1

Rotated 0 degrees Rotated 90 degrees

How Gouraud shading varies with polygon screen orientation.
Figure 68.2

Quake’s Lighting Model 1249

same scene, increasing the size of the world database and requiring extra rasterization,
at a performance cost. Triangles still don’t provide perspective lighting; their light-
ing is rotationally invariant, but it’s still wrong-just wrong in a more consistant way.
Gouraud-shaded triangles still result in odd lighting patterns, and require lots of
triangles to support shadowing and other lighting detail. Finally, triangles don’t solve
clipping or viewing variance.
Yet another problem is that while it may work well to add extra geometry so that
spotlights and shadows show up well, that’s feasible only for static lighting. Dynamic
lighting-light cast by sources that move-has to work with whatever geometry the
world has to offer, because its needs are constantly changing.
These issues led us to conclude that if we were going to use Gouraud shading, we
would have to build Quake levels from many small triangles, with sufficiently finely
detailed geometry so that complex lighting could be supported and the inaccuracies
of Gouraud shading wouldn’t be too noticeable. Unfortunately, that line of thinking
brought us back to the problem of a much larger world database and a much heavier
rasterization load (all the worse because Gouraud shading requires an additional
interpolant, slowing the inner rasterization loop), so that not only would the world still
be less than totally solid, because of the limitations of Gouraud shading, but the engine
would also be too slow to support the complex worlds we had hoped for in Quake.

The Quest for Alternative Lighting
None of which is to say that Gouraud shading isn’t useful in general. Descent uses it
to excellent effect, and in fact Quake uses Gouraud shading for moving entities,
because these consist of small triangles and are always in motion, which helps hide
the relatively small lighting errors. However, Gouraud shading didn’t seem capable
of meeting our design goals for rendering quality and speed for drawing the world as
a whole, so it was time to look for alternatives.
There are many alternative lighting approaches, most of them higher-quality than
Gouraud, starting with Phong shading, in which the surface normal is interpolated
across the polygon’s surface, and going all the way up to ray-tracing lighting tech-
niques in which full illumination calculations are performed for all direct and
reflected paths from each light source for each pixel. What all these approaches
have in common is that they’re slower than Gouraud shading, too slow for our pur-
poses in Quake. For weeks, we kicked around and rejected various possibilities and
continued working with Gouraud shading for lack of a better alternative-until the
day John came into work and said, “You know, I have an idea ”

Decoupling Lighting from Rasterization
John’s idea came to him while was looking at a wall that had been carved into several
pieces because of a spotlight, with an ugly lighting glitch due to a t-junction. He

1 250 Chapter 68

thought to himself that if only there were some way to treat it as one surface, it would
look better and draw faster-and then he realized that there was a way to do that.
The insight was to split lighting and rasterization into two separate steps. In a normal
Gouraud-based rasterizer, there’s first an off-line preprocessing step when the world
database is built, during which polygons are added to support additional lighting
detail as needed, and lighting values are calculated at the vertices of all polygons. At
runtime, the lighting values are modified if dynamic lighting is required, and then
the polygons are drawn with Gouraud shading.
Quake’s approach, which I’ll call surface-based lighting, preprocesses differently,
and adds an extra rendering step. Duri,ng off-line preprocessing, a grid, called a
light map, is calculated for each polygon in the world, with a lighting value every 16
texels horizontally and vertically. This lighting is done by casting light from all the
nearby lights in the world to each of the grid points on the polygon, and summing
the results for each grid point. The Quake preprocessor filters the values, so shadow
edges don’t have a stair-step appearance (a technique suggested by Billy Zelsnack) ;
additional preprocessing could be done, for example Phong shading to make sur-
faces appear smoothly curved. Then, at runtime, the polygon’s texture is tiled into a
buffer, with each texel lit according to the weighted average intensities of the four
nearest light map points, as shown in Figure 68.3. If dynamic lighting is needed, the
light map is modified accordingly before the buffer, which I’ll call a surface, is built.
Then the polygon is drawn with perspective texture mapping, with the surface serv-
ing as the input texture, and with no lighting performed during the texture mapping.
So what does surface-based lighting buy us? First and foremost, it provides consis-
tent, perspective-correct lighting, eliminating all rotational, viewing, and clipping
variance, because lighting is done in surface space rather than in screen space. By
lighting in surface space, we bind the lighting to the texels in an invariant way, and
then the lighting gets a free ride through the perspective texture mapper and ends
up perfectly matched to the texels. Surface-based lighting also supports good, al-
though not perfect, detail for overlapping lights and shadows. The 16-texel grid has
a resolution of two feet in the Quake frame of reference, and this relatively fine
resolution, together with the filtering performed when the light map is built, is suf-
ficient to support complex shadows with smoothly fading edges. Additionally,
surface-based lighting eliminates lighting glitches at t-junctions, because lighting is
unrelated to vertices. In short, surface-based lighting meets all of Quake’s visual quality
goals, which leaves only one question: How does it perform?

Size and Speed
As it turns out, the raw speed of surface-based lighting is pretty good. Although an
extra step is required to build the surface, moving lighting and tiling into a separate
loop from texture mapping allows each of the two loops to be optimized very effec-
tively, with almost all variables kept in registers. The surface-building inner loop is

Quake’s Lighting Model 1 25 1

Light map
0 32 64 96 128
0 0 0 0 0
32 64 96 128 160

0 0 0 0 0
64 96 128 160 192
0 0 0 0 0

Texture tile

0 0 0 0 0
96 128 160 192 224

0 0 0 0 0
128 160 192 224 255

/
The texture is tiled across the surface,
with each texel lit according to the
weighted averages of the four nearest
light map values. (The black dots on
the surface show where the light map
points fall for illustrative purposes,
and are not actually drawn.)

I
Surtace

nd lighting the texels from the light map.
Figure 68.3

1 252 Chapter 68

1252 Chapter 68

1252 Chapter

68

68

particularly efficient, because it consists of nothing more than interpolating inten-
sity, combining it with a texel and using the result to look up a lit texel color, and
storing the results with a dword write every four texels. In assembly language, we got
this code down to 2.25 cycles per lit texel in Quake. Similarly, the texture-mapping
inner loop, which overlaps an FDIV for floating-point perspective correction with
integer pixel drawing in 16-pixel bursts, has been squeezed down to 7.5 cycles per
pixel on a Pentium, so the combined inner loop times for building and drawing a
surface is roughly in the neighborhood of 10 cycles per pixel. It’s certainly possible
to write a Gouraud-shaded perspectivecorrect texture mapper that’s somewhat faster
than 10 cycles, but 10 cycles/pixel is fast enough to do 40 frames/second at 640x400
on a Pentium/100, so the cycle counts of surface-based lighting are acceptable. It’s
worth noting that it’s possible to write a one-pass texture mapper that does approxi-
mately perspective-correct lighting. However, I have yet to hear of or devise such an
inner loop that isn’t complicated and full of special cases, which makes it hard to
optimize; worse, this approach doesn’t work well with the procedural and post-pro-
cessing techniques I’ll discuss shortly.
Moreover, surface-based lighting tends to spend more of its time in inner loops,
because polygons can have any number of sides and don’t need to be split into multiple
smaller polygons for lighting purposes; this reduces the amount of transformation
and projection that are required, and makes polygon spans longer. So the perfor-
mance of surface-based lighting stacks up very well indeed-except for caching.
I mentioned earlier that a 64x64 texture tile fits nicely in the processor cache. A
typical surface doesn’t. Every texel in every surface is unique, so even at 320x200
resolution, something on the rough order of 64,000 texels must be read in order to
draw a single scene. (The number actually varies quite a bit, as discussed below, but
64,000 is in the ballpark.) This means that on a Pentium, we’re guaranteed to miss
the cache once every 32 texels, and the number can be considerably worse than that
if the texture access patterns are such that we don’t use every texel in a given cache
line before that data gets thrown out of the cache. Then, too, when a surface is built,
the surface buffer won’t be in the cache, so the writes will be uncached writes that
have to go to main memory, then get read back from main memory at texture map-
ping time, potentially slowing things further still. All this together makes the
combination of surface building and unlit texture mapping a potential performance
problem, but that never posed a problem during the development of Quake, thanks
to surface caching.

Surface Caching
When he thought of surface-based lighting, John immediately realized that surface build-
ing would be relatively expensive. (In fact, he assumed it would be considerably more
expensive than it actually turned out to be with full assembly-language optimization.)

Quake‘s Lighting Model 1253

Consequently, his design included the concept of caching surfaces, so that if the same
surface were visible in the next frame, it could be reused without having to be rebuilt.
With surface rebuilding needed only rarely, thanks to surface caching, Quake's
rasterization speed is generally the speed of the unlit, perspective-correct texture-
mapping inner loop, which suffers from more cache misses than Gouraud-shaded,
tiled texture mapping, but doesn't have the overhead of Gouraud shading, and allows
the use of larger polygons. In the worst case, where everything in a frame is a new
surface, the speed of the surface-caching approach is somewhat slower than Gouraud
shading, but generally surface caching provides equal or better performance, so once
surface caching was implemented in Quake, performance was no longer a prob-
lem-but size became a concern.
The amount of memory required for surface caching looked forbidding at first. Surfaces
are large relative to texture tiles, because every texel of every surface is unique. Also,
a surface can contain many texels relative to the number of pixels actually drawn on
the screen, because due to perspective foreshortening, distant polygons have only a
few pixels relative to the surface size in texels. Surfaces associated with partly hidden
polygons must be fully built, even though only part of the polygon is visible, and if
polygons are drawn back to front with overdraw, some polygons won't even be vis-
ible, but will still require surface building and caching. What all this meant was that
the surface cache initially looked to be very large, on the order of several megabytes,
even at 32Ox200"too much for a game intended to run on an 8 MB machine.

Mipmapping To The Rescue
Two factors combined to solve this problem. First, polygons are drawn through an
edge list with no overdraw, as I discussed a few chapters back, so no surface is ever
built unless at least part of it is visible. Second, surfaces are built at four mipmap
levels, depending on distance, with each mipmap level having one-quarter as many
texels as the preceding level, as shown in Figure 68.4.
For those whose heads haven't been basted in 3-D technology for the past several
years, mipmuppingis 3-D graphics jargon for a process that normalizes the number of
texels in a surface to be approximately equal to the number of pixels, reducing calcula-
tion time for distant surfaces containing only a few pixels. The mipmap level for a given
surface is selected to result in a texe1:pixel ratio approximately between 1:l and 1:2,
so texels map roughly to pixels, and more distant surfaces are correspondingly smaller.
As a result, the number of surface texels required to draw a scene at 320x200 is on
the rough order of 64,000; the number is actually somewhat higher, because of por-
tions of surfaces that are obscured and viewspace-tilted polygons, which have high
texel-to-pixel ratios along one axis, but not a whole lot higher. Thanks to mipmapping
and the edge list, 600K has proven to be plenty for the surface cache at 320x200,
even in the most complex scenes, and at 640x480, a little more than 1 MB suffices.

1254 Chapter 68

o o o e e e
Mipmap level 0 texels

\ I /
0 e Corresponding mipmap

level 1 texels

How mipmapping reduces surface caching requirements.
Figure 68.4

All mipmapped texture tiles are generated as a preprocessing step, and loaded from
disk at runtime. One interesting point is that a key to making mipmapping look good
turned out to be box-filtering down from one level to the next by averaging four adjacent
pixels, then using error diffusion dithering to generate the mipmapped texels.
Also, mipmapping is done on a per-surface basis; the mipmap level for a whole sur-
face is selected based on the distance from the viewer of the nearest vertex. This led
us to limit surface size to a maximum of 256x256. Otherwise, surfaces such as floors
would extend for thousands of texels, all at the mipmap level of the nearest vertex,
and would require huge amounts of surface cache space while displaying a great
deal of aliasing in distant regions due to a high texe1:pixel ratio.

Two Final Notes on Surface Caching
Dynamic lighting has a significant impact on the performance of surface caching,
because whenever the lighting on a surface changes, the surface has to be rebuilt. In
the worst case, where the lighting changes on every visible surface, the surface cache
provides no benefit, and rendering runs at the combined speed of surface building
and texture mapping. This worst-case slowdown is tolerable but certainly noticeable,
so it’s best to design games that use surface caching so only some of the surfaces
change lighting at any one time. If necessary, you could alternate surface relighting
so that half of the surfaces change on even frames, and half on odd frames, but
large-scale, constant relighting is not surface caching’s strongest suit.
Finally, Quake barely begins to tap surface caching’s potential. All sorts of proce-
dural texturing and post-processing effects are possible. If a wall is shot, a sprite of
pockmarks could be attached to the wall’s data structure, and the sprite could be
drawn into the surface each time the surface is rebuilt. The same could be done for
splatters, or graffiti, with translucency easily supported. These effects would then be
cached and drawn as part of the surface, so the performance cost would be much

Quake‘s Lighting Model 1255

less than effects done by on-screen overdraw every frame. Basically, the surface is a
handy repository for all sorts of effects, because multiple techniques can be
composited, because it caches the results for reuse without rebuilding, and because
the texels constructed in a surface are automatically drawn in perspective.

1 256 Chapter 68

	previous:
	home:
	next:

