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I’ve talked about Quake’s technology elsewhere in this book, However, those chap- 
ters focused on specific areas, not overall structure. Moreover, Quake  changed in 
significant ways between the writing of those chapters and  the final shipping. Then, 
after shipping, Quake was ported to 3-D hardware.  And the postQuake engine, code- 
named Trinity,  is already in  development  at this writing (Spring 1997), with some 
promising results. So in wrapping up this book, I’ll recap Quake’s  overall structure 
relatively  quickly, then bring you up to date  on  the latest developments. And in the 
spirit of Frederik Pohl’s quote, I’ll point  out that we implemented  and discarded at 
least half a  dozen 3-D engines in the course of developing Quake (and all  of  Quake’s 
code was written from scratch, rather  than using Doom code),  and almost switched 
to another  one in the final month, as I’ll describe later. And even at this early stage, 
Trinity  uses almost no Quake technology. 
In fact, I’ll take this opportunity to coin Carmack’s Law,  as  follows:  Fight code entropy. 
If  you  have a new fundamental assumption, throw away your old code  and rewrite it 
from scratch. Incremental  patching  and modifying seems easier at first, and is the 
normal course of things in software development,  but  ends up being  much  harder 
and  producing bulkier, markedly inferior  code in the  long  run, as  we’ll see when we 
discuss the  net  code for  Quakeworld.  It may seem safer to  modify working code, but 
the nastiest bugs arise from  unexpected side effects and incorrect assumptions, which 
almost always arise in patched-over code,  not in code designed from  the  ground  up. 
Do the  hard work up  front to make your code simple, elegant, great-and just plain 
right-and it’ll pay  off many times  over in the  long  run. 
Before I begin,  I’d like to remind you that all  of the Doom and  Quake material I’m 
presenting in this book is presented  in  the spirit of sharing  information to make our 
corner of the world a better place for everyone. I’d like to thank  John Carmack, 
Quake’s architect and lead  programmer,  and id Software for allowing me to share 
this technology with you, and I  encourage you  to share your own insights by posting 
on  the  Internet  and writing books and articles whenever you  have the opportunity 
and  the right to do so. (Of  course, check with your employer first!) We’ve all ben- 
efited greatly from  the  shared wisdom of people like Knuth, Foley and van Dam,  Jim 
Blinn, Jim Kajiya, and  hundreds of others-are  you ready to take a shot  at making 
your own contribution to the  future? 

Preprocessing  the World 
For the most part, I’ll discuss  Quake’s 3-D engine in this chapter, although I’ll touch 
on  other areas of interest. For 3-D rendering purposes, Quake consists  of two basic 
sorts of objects: the world, which is stored as a single BSP model  and never changes 
shape  or position; and potentially moving objects, called entities, which are drawn in 
several different ways. I’ll discuss each separately. 
The world is constructed  from  a set of brushes, which are n-sided  convex polyhedra 
placed in a level by a  designer using a map  editor, with a selectable texture on  each 
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face. When a level  is completed,  a  preprocessing  program  combines all brushes to 
form  a skin around  the solid areas of the world, so there is no interpenetration of 
polygons, just a  continuous  mesh  delineating solid and empty areas. Once this is 
done,  the  next  step is generating  a BSP tree  for  the level. 
The BSP consists of splitting planes aligned with  polygons, called nodes, and of  leaves, 
which are  the convex subspaces into which  all the  nodes carve space. The  top  node 
carves the world into two subspaces, and divides the  remaining polygons into two 
sets, splitting any polygon that spans the  node  into two pieces. Each subspace is then 
similarly  split by one  node each, and so on until all  polygons  have been used  to create 
nodes. A node’s subspace is the total space occupied by all its children:  the subspace 
that  the  node splits into two parts, and  that its children  continue to subdivide. When 
the only polygon in  a  node’s subspace is the polygon that splits the subspace-the 
polygon whose plane  defines the node-then the two child subspaces are called 
leaves, and  are  not divided any further. 
The BSP tree is built using the polygon that splits the fewest  of the polygons in the 
current node’s subspace  as the heuristic for choosing splitters,  which is not  an optimal 
solution-but an  optimal  solution is NP-complete, and  our heuristic  adds only 10% 
to 15% more polygons  to the level  as a result of  BSP splits.  Polygons are  not split all the 
way into leaves; rather, they are placed on  the  nodes with  which they are  coplanar 
(one set on the front  and  one  on  the back,  which  has the advantage of letting us reuse 
the BSP-walking dot  product  for backface culling as well), thereby  reducing  splitting 
considerably, because polygons are split only by parent  nodes,  not by child  nodes  (as 
would be necessary  if  polygons  were split into leaves). Eliminating polygon  splits, thus 
reducing  the total number of polygons per level, not only shrinks Quake’s memory 
footprint,  but also reduces  the  number of polygons that  need  to be processed by the 
3-D pipeline,  producing  a speedup of about 10% in  Quake’s overall performance. 
Getting proper  front-toback drawing order is a little more complicated with  polygons 
on nodes. As we  walk the BSP tree front-to-back, in  each leaf we mark the polygons 
that  are  at least partially in that leaf, and  then after we’ve recursed  and processed 
everything in front of a node, we then process all the  marked polygons on  that  node, 
after which we recurse  to process the polygons behind  the  node. So putting  the 
polygons on  the  nodes saves memory and improves performance significantly, but 
loses the simple approach of  simply recursing the tree and processing the polygons 
in  each leaf  as we come to  it,  in favor of recursing and marking  in front of a node, 
processing marked polygons on  the  node,  then recursing behind  the  node. 
After the BSP  is built, the  outer surfaces of the level,  which no  one can ever see 
(because levels are sealed spaces),  are  removed, so the  interior of the level, contain- 
ing all the empty space through which a player can move, is completely surrounded 
by a solid region.  This  eliminates  a  great many irrelevant polygons, and  reduces  the 
complexity of the  next  step,  calculating  the potentially visible set. 

Quake: A Post-Mortem and a  Glimpse into the  Future 1277 



The Potentially Visible Set (PVS) 
After the BSP tree is built, the potentially visible set (PVS) for each leaf  is calculated. 
The PVS for a leaf  consists  of  all the leaves that can  be  seen from anywhere  in that leaf, 
and is used  to reduce to a near-minimum the polygons that have  to be considered for 
drawing  from a given  viewpoint, as well as the entities that have to  be updated over the 
network (for multiplayer games) and drawn. Calculating the PVS  is expensive; Quake 
levels take 10 to 30 minutes to process on a four-processor Alpha, and even  with 
speedup tweaks to the BSPer (the most effective  of  which was replacing many  calls to 
malloc() with  stack-based  structures-beware  of malloc() in performance-sensitive 
code),  Quake 2 levels are taking up to an  hour to process. (Note, however, that  that 
includes BSPing, PVS calculations, and radiosity lighting, which I’ll discuss later.) 
Some  good news, though, is that in the nearly two years since we got the Alpha, 
Pentium Pros have become as  fast  as that  generation of Alphas, so it is now  possible 
to calculate the PVS on  an affordable machine. On  the  other  hand, even 10 minutes 
of  BSPing does  hurt designer productivity. John has always been a big advocate of 
moving code  out of the  runtime  program  into utilities, and of preprocessing for 
performance  and  runtime simplicity, but even he thinks that in Quake, we  may have 
pushed that to the point where it interfered too much with  workflow. The real problem, 
of course, is that even a huge  amount of money  can’t buy orders of magnitude  more 
performance than commodity computers; we are getting an eight-R10000 SGI compute 
server, but that’s  only about twice as fast as an off-the-shelf  four-processor Pentium Pro. 
The size  of the PVS for  each leaf is manageable because it is stored as a  bit vector, 
with a 1-bit for the position in the overall  leaf array of each leaf that’s visible from  the 
current leaf. Most  leaves are invisible from any one leaf, so the PVS for  each leaf 
consists  mostly  of zeros, and compacts nicely  with run-length  encoding. 
There  are two further interesting points about  the PVS. First, the  Quake PVS does 
not exclude quite as  many  leaves from  potential visibility  as it  could, because the 
surfaces that precisely describe leaf-to-leaf  visibility are quadratic surfaces; in the 
interests of speed  and simplicity, planar surfaces with some slope are used instead. 
Second,  the PVS describes visibility from anywhere in  a leaf, rather  than  from a spe- 
cific  viewpoint;  this can cause two or  three times  as  many  polygons  as are actually 
visible to be considered. John has been  researching the possibility  of an EVS-an 
exactly visible set-and has concluded  that  a 6-D BSP  with hyperbolic separating planes 
could  do  the  job;  the  problem now is that  he doesn’t know  how  to get the  math to 
work, at least at any reasonable speed. 
An interesting extension of the PVS is what John calls the potentially hearable set (PHs)- 
all the leaves  visible from  a given leaf, plus all the leaves  visible from those leaves-in 
other words, both  the directly visible  leaves and  the  one-bounce visible  leaves. Of 
course, this is not exactly the hearable space, because sounds could echo  or carry 
further than  that, but it does serve quite nicely  as a potentially relevant  space-the set 
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of  leaves that have any interest to the player. In  Quake, all sounds  that  happen any- 
where  in  the world are  sent  to  the  client,  and  are  heard, even through walls, if they’re 
close enough;  an explosion around  the  corner could be well within hearing  and very 
important to hear, so the PVS can’t  be used to reject  that sound,  but  unfortunately 
an explosion on  the  other side of a solid wall will sound exactly the same. Not only is 
it confusing  hearing  sounds through walls, but in  a  modem  game, the bandwidth 
required to send all the  sounds  in  a level can slow things down considerably. In a 
recent version of Quakeworld,  a specifically multiplayer variant of Quake I’ll d’ lSCUSS 

later, John uses the PHS to determine which sounds  to  bother  sending,  and  the 
resulting  bandwidth  improvement has made it possible to bump  the maximum num- 
ber of  players from 16 to 32. Better yet, a  sound  on  the  other side of a solid wall won’t 
be  heard unless there’s  an  opening  that  permits  the  sound to come through.  (In  the 
future,  John will use the PVS to determine fully audible  sounds, and  the PHS to 
determine  muted  sounds.) Also, the PHS can  be used for events like explosions  that 
might not have their  center  in  the PVS, but have portions  that  reach  into  the PVS. In 
general,  the PHS is useful as an  approximation of the space in which the  client  might 
need  to be notified of events. 
The final preprocessing  step is light map  generation. Each light is traced out  into 
the world to see what polygons it strikes, and  the cumulative effect of all lights on 
each  surface is stored as a  light map, a  sampling of light values on a lf5texel grid.  In 
Quake 2, radiosity lighting-a considerably more expensive process, but  one  that 
produces highly realistic lighting-is performed,  but I’ll save that  for later. 

Passages:  The  Last-Minute Change  that  Didn’t  Happen 
Earlier, I mentioned  that we almost changed 3-D engines again in  the last month of 
Quake’s development.  Here’s what happened:  One of the alternatives to  the PVS  is 
.the use of portals, where the focus is on  the places where polygons don’t exist along 
leaffaces, rather  than  the  more usual focus on the polygons  themselves. These “empty” 
places are themselves polygons, called portals,  that  describe all the places that visibil- 
ity can pass from  one leaf to  another.  Portals  are  used by the PVS generator to 
determine visibility, and  are used in other 3-D engines as the primary mechanism  for 
determining leaf or  sector visibility. For example,  portals  can  be  projected  to 
screenspace, then used as a 2-D clipping  region to restrict drawing of more distant 
polygons to only those that are visible through  the portal. Or, as in Quake’s  preprocessor, 
visibility boundary  planes can be constructed  from  one  portal to the  next,  and 3-D 
clipping  to  those  planes  can  be used to determine visible polygons or leaves.  Used 
either way, portals  can support  more  changeable worlds than  the PVS, because,  un- 
like the PVS, the portals themselves can easily be changed on the fly. 
The  problem with portal-based visibility  is that it tends to perform  at its  worst in 
complex scenes, which can have  many,  many portals. Since those  are  the most ex- 
pensive scenes to draw, as well, portals  tend to worsen the worst  case.  However, late 
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in Quake’s development,  John realized that the  approach of storing portals them- 
selves in the world database could readily be improved upon. (To be clear, Quake 
wasn’t using portals at  that  point,  and  didn’t  end up using them.) Since the afore- 
mentioned sets  of 3-D visibility clipping planes between portals-which he  named 
pussuge+were what  actually got used for visibility,  if he stored those, instead of gen- 
erating  them dynamically from  the portals, he would be able to do visibility much 
faster than with standard portals. This would give a significantly tighter polygon set 
than  the PVS, because it would  be based on visibility through  the passages from  the 
viewpoint, rather  than  the PVS’s approach of  visibility from anywhere in the leaf, 
and  that would be a considerable help, because the level designers were running 
right up against performance limits, partly because of the PVS’s relatively loose poly- 
gon set. John immediately decided  that passages-based  visibility was a sufficiently 
superior approach  that if it  worked  out, he would  switch Quake to it, even at  that late 
stage, and within a weekend, he  had  implemented  it  and  had  it working-only to 
find  that, like portals, it  improved best cases but worsened worst  cases, and overall 
wasn’t a win for Quake. In  truth, given  how  close we were to shipping, John was  as 
much  thankful as disappointed  that passages didn’t work out,  but  the possibilities 
were too great for us not to have taken a shot at it. 
So why even bother  mentioning this? Partly to show that not every interesting  idea 
pans  out; I tend to  discuss those that did pan  out,  and it’s instructive to point  out  that 
many ideas don’t.  That doesn’t  mean you shouldn’t try promising ideas, though. 
First, some do  pan  out,  and you’ll never know  which unless you try. Second, an idea 
that  doesn’t work out in one case can still be filed away for another case.  It’s quite 
likely that passages will be useful in  a  different  context in a future engine. 
The  more  approaches you  try, the larger your toolkit and  the  broader your under- 
standing will be when you  tackle your next project. 

Drawing the World 
Everything described so far is a preprocessing step. When Quake is actually running, 
the world  is drawn as  follows:  First, the PVS for  the view leaf is decompressed,  and 
each leaf flagged as  visible is marked as being in the  current frame’s PVS. (The mark- 
ing is done by storing the  current frame’s number in the leaf; this avoids having to 
clear the PVS marking each frame.) All the  parent  nodes of each leaf in the PVS are 
also marked; this information  could have been  stored as additional PVS flags, but to 
save space is bubbled up  the BSP from each visible leaf. 
After the PVS is marked,  the BSP is walked front-to-back. At each  node,  the  bound- 
ing  box of the node’s subspace is clipped against the view frustum; if the  bounding 
box is  fully clipped, then that node  and all its children  are ignored. Likewise, if the 
node is not in the PVS for  the  current viewpoint leaf, the  node  and all its children 
are ignored. If the  bounding box is partially clipped or  not clipped  at all, that infor- 
mation is passed to the children so that any unnecessary clip tests can be avoided. 
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The  children  in  front of the  node  are  then processed recursively. When a leaf is 
reached, polygons that  touch  that leaf are  marked as potentially drawable. When 
recursion  in front of a node is finished, all polygons on  the  front side of the  node 
that  are  marked as potentially drawable are  added to the  edge list, and  then  the 
children on  the back side of that  node  are similarly processed recursively. 
The  edge list is a special, intermediate  step between polygons and drawing. Each 
polygon is clipped,  transformed,  and  projected,  and its non-horizontal  edges are 
added to a global list of potentially drawable edges. After all the potentially drawable 
edges  in the world have been  added,  the global edge list is scanned  out all at  once, 
and all the visible spans (the  nearest spans, as determined by sorting  on BSP-walk 
order) in  the world are  emitted  into  span lists linked off the respective surface  de- 
scriptors  (for now,  you can  think of a  surface as being  the same  as a  polygon). Taken 
together, these spans cover every pixel on the screen once  and only once, resulting 
in  zero overdraw; surfaces that  are completely hidden by nearer surfaces generate 
no spans at all. The spans are then drawn; all the spans for one surface are drawn, and 
then all the spans for the next, so that there’s texture coherency between spans, which  is 
very helpful  for  processor  cache  coherency, and also to  reduce  setup  overhead. 
The primary purpose of the edge list is to make  Quake’s performance as  level-that  is,  as 
consistent-as  possible. Compared  to simply  drawing  all  potentially  drawable  polygons 
front-to-back, the  edge list certainly slows down the best case, that is,  when there’s no 
overdraw.  However,  by eliminating overdraw, the worst  case  is helped considerably; in 
Quake, there’s a ratio of perhaps 4:l between  worst and best case  drawing time, versus 
the 1 O : l  or  more  that  can  happen with straight polygon drawing. Leveling is  very 
important, because cases where  a  game slows  down to  the  point of being unplayable 
dictate game and level design, and the fewer constraints placed on design, the better. 

A corollary is that best  case  performance can  be  seductively misleading;  itk a 
great  feeling  to  see a scene running at 30 or even 60 frames  per  second,  but  ifthe 
bulk of the  game runs at ISfPs,  those best cases are just going  to  make  the rest of 
the  game  look worse. 

The  edge list  is an atypical technology for  John; it’s an  extra stage in the  engine, it’s 
complex,  and  it  doesn’t scale well. A Quake level might have a maximum of 500 
potentially drawable polygons that  get  placed  into  the  edge list, and  that  runs  fine, 
but if you were to try to put 5,000 polygons into  the  edge list, it would  quickly bog 
down due to edge  sorting, link following, and dataset size. Different  data  structures 
(like using a  tree to store the edges rather  than a  linear  linked list) would help  to 
some degree,  but basically the  edge list has  a relatively  small  window of applicability; 
it was appropriate technology for  the  degree of complexity possible in a  Pentium- 
based game (and even then, only with the  reduction  in polygons made possible by 
the PVS) , but will probably be poorly suited  to more complex scenes. It served well 
in the Quake  engine,  but  remains  an  inelegant  solution,  and,  in  the  end, it feels like 
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there’s something  better we didn’t hit on. However, as John says, “I’m pragmatic 
above  all else’’-and the  edge list did the  job. 

Rasterization 
Once  the visible spans are  scanned  out of the  edge list,  they must still be  drawn, with 
perspective-correct texture  mapping and lighting. This involves hundreds of lines of 
heavily optimized assembly language, but is fundamentally pretty simple. In  order to 
draw the spans for  a given surface, the screenspace equations  for l/z, s/z, and t/z 
(where s and t are  the texture  coordinates and z is distance) are calculated for the 
surface. Then  for  each span, these values are calculated for the points at  each  end of 
the span, the reciprocal of l / z  is calculated with a divide, and s and t are  then calcu- 
lated as (s/z)*z and (t/z) *z.  If the  span is longer  than 16 pixels, s and t are likewise 
calculated every 16 pixels along  the span. Then  each stretch of up to 16 pixels  is 
drawn by linearly interpolating between these correctly calculated points. This intro- 
duces  some slight error, but this is almost never visible, and even then is only a small 
ripple, well worth the  performance  improvement  gained by doing  the perspective- 
correct  math only once every 16 pixels. To speed things up a little more,  the FDIV to 
calculate the reciprocal of l / z  is overlapped with drawing 16 pixels, taking advan- 
tage of the Pentiurn’s ability to  perform floating-point  in  parallel with integer 
instructions, so the FDIV effectively  takes  only one cycle. 

Lighting 
Lighting is less simple to explain. The traditional way of doing polygon lighting is to 
calculate the correct light at  the vertices and linearly interpolate between those points 
(Gouraud  shading),  but this has several disadvantages; in particular, it makes it hard 
to get detailed lighting without creating  a  lot of extra polygons, the lighting isn’t 
perspective correct, and  the lighting varies  with  viewing angle  for polygons other 
than triangles. To address these problems, Quake uses surface-based lighting instead. 
In this approach, when it’s time to draw a surface (a world polygon),  that polygon’s 
texture is tiled into a  memory buffer. At the same time, the texture is lit according to 
the surface’s  light map, as calculated during preprocessing.  Lighting  values are linearly 
interpolated  between the light map’s lGtexel  grid  points, so the lighting  effects are smooth, 
but slightly blurry. Then,  the polygon is drawn to the screen using the perspective- 
correct  texture  mapping described above, with the prelit surface buffer being  the 
source texture, rather  than  the original texture tile. No additional lighting is per- 
formed  during texture mapping; all lighting is done when the surface buffer is created. 
Certainly it takes longer to build a surface buffer and  then texture  map from it than 
it does to do lighting and texture  mapping in a single pass.  However, surface buffers 
are  cached  for reuse, so only the texture  mapping stage is  usually needed.  Quake 
surfaces tend to be big, so texture  mapping is slowed by cache misses;  however, the 
Quake approach doesn’t need to interpolate lighting on a pixel-by-pixel  basis,  which 
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helps  speed  things up,  and it doesn’t  require  additional polygons to provide sophis- 
ticated lighting. On balance, the  performance of surface-based drawing is roughly 
comparable to tiled, Gouraud-shaded texture mapping-and  it  looks  much better, be- 
ing perspective correct, rotationally invariant, and highly detailed. Surface-based  drawing 
also has the potential to support some  interesting effects, because anything  that  can 
be drawn into  the  surface  buffer  can be cached as  well, and is automatically drawn in 
correct perspective. For instance,  paint  splattered on a wall could  be handled by 
drawing the splatter image  as a  sprite into  the  appropriate  surface buffer, so that 
drawing the  surface would  draw the splatter as  well. 

Dynamic  Lighting 
Here we come  to a feature  added  to  Quake  after last year’s Computer Game 
Developer’s Conference (CGDC) . At that  time,  Quake  did not  support dynamic light- 
ing;  that is, explosions and such didn’t  produce  temporary  lighting effects. We hadn’t 
thought dynamic lighting would add  enough  to  the game to  be  worth  the  trouble; 
however, at CGDC Billy Zelsnack  showed  us a demo of his latest 3-D engine, which 
was far  from  finished  at  the  time,  but  did have impressive dynamic lighting effects. 
This caused us to move  dynamic lighting up  the priority list, and when I got back to 
id,  I  spent several days  making the surface-building code as fast as possible (winding 
up  at 2.25 cycles per texel in the  inner  loop) in  anticipation of adding dynamic 
lighting, which  would  of course cause dynamically lit surfaces to constantly be re- 
built as the lighting  changed. (A significant drawback of dynamic lighting is that  it 
makes surface  caching worthless for dynamically lit surfaces, but if most of the sur- 
faces in  a  scene are  not dynamically lit at any one time, it works out  fine.)  There 
things stayed for several weeks, while more critical work  was done,  and it was uncer- 
tain whether dynamic lighting would, in  fact, make it into Quake. 
Then,  one Saturday, John suggested that I take a  shot  at  adding  the high-level dy- 
namic  lighting  code, the  code  that would take the dynamic light  sources and project 
their  sphere of illumination into  the world, and which  would then  add  the dynamic 
contributions  into  the  appropriate  light maps and rebuild the affected surfaces. I 
said I would  as soon as I finished up  the stuff I was working on,  but  it might  be  a day 
or two. A little while later, he said, “I bet I can  get dynamic lighting working in less 
than  an  hour,”  and dove into  the  code.  One  hour  and  nine minutes later, we had 
dynamic lighting, and it’s  now hard to imagine  Quake  without it. (It sure is easier to 
imagine the impact of features  and  implement  them  once you’ve seen  them done by 
someone else!) 
One  interesting  point  about Quake’s dynamic lighting is  how inaccurate  it is. It is 
basically a  linear  projection,  accounting  properly  for  neither  surface  angle  nor light- 
ing falloff with distance-and yet that’s  almost  impossible to notice  unless you 
specifically look for it, and has no negative impact on gameplay  whatsoever.  Motion 
and fast action  can surely cover for  a  multitude of graphics sins. 
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It’s well worth pointing out that because Quake’s lighting is perspective correct and 
independent of  vertices, and because the rasterizer is both subpixel and subtexel 
correct,  Quake worlds are visually  very solid and stable. This was an  important design 
goal from  the  start,  both as a point of technical pride and because it greatly improves 
the player’s sense of immersion. 

Entities 
So far, all we’ve drawn  is the static, unchanging  (apart  from dynamic  lighting) world. 
That’s an  important  foundation,  but it’s certainly not a game; now we need to add 
moving objects. These objects fall into  four very different categories: BSP models, 
polygon models, sprites, and particles. 

BSP Models 
BSP models are  just like the world, except  that they can move. Examples  include 
doors, moving bridges, and  health  and  ammo boxes. The way these are  rendered is 
by clipping their polygons into  the world BSP tree, so each polygon fragment is in 
only one leaf. Then these fragments  are  added to the  edge list, just like  world  poly- 
gons, and scanned out, along with the rest  of the world, when the edge list  is processed. 
The only  trick here is front-to-back ordering. Each BSP model polygon fragment is 
given the BSP sorting order of the leaf in which it resides, allowing it to sort properly 
versus the world  polygons. If two or  more polygons from  different BSP models are in 
the same leaf,  however, BSP ordering is no  longer useful, so we then sort those poly- 
gons by l / z ,  calculated from  the polygons’ plane  equations. 
Interesting  note: We originally tried to sort all  world  polygons on l / z  as  well, the 
reason being  that we could  then avoid splitting polygons except  when they  actually 
intersected, rather  than having to split them  along  the lines of parent nodes. This 
would result in fewer edges, and faster edge list processing and rasterization. Unfor- 
tunately, we found  that precision errors  and special cases such as  seamlessly abutting 
objects made  it difficult to get global l / z  sorting to work completely reliably, and  the 
code  that we had to add to work around these problems slowed things up to the 
point where we were getting no extra performance for all the extra  code complexity. 
This is not to say that l / z  sorting can’t work  (especially in something like a flight sim, 
where objects never abut),  but BSP sorting order can be a  wonderful  thing, partly 
because it always  works perfectly, and partly because it’s simpler and faster to sort on 
integer node  and leaf orders  than  on floating-point l / z  values. 
BSP models take some  extra time because of the cost  of clipping them  into  the world 
BSP tree, but  render  just as  fast  as the rest of the world, again with no overdraw, so 
closed doors,  for  example, block drawing of whatever’s on  the  other side (although 
it’s  still  necessary to transform, project, and  add to the  edge list the polygons the 
door occludes, because they’re still in the PVS-they’re potentially visible if the  door 
opens). This makes BSP models most suitable for fairly simple structures, such as 
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boxes, which have relatively few polygons to clip, and cause relatively few edges to be 
added  to  the  edge list. 

Polygon Models and Z-Buffering 
Polygon models, such as monsters, weapons, and projectiles, consist of a  triangle 
mesh  with front  and back skins stretched over the  model. For speed,  the triangles 
are drawn  with affine texture  mapping; the triangles are small enough,  and  the mod- 
els are generally distant enough,  that affine distortion isn’t visible. (However, it is 
visible on  the player’s weapon; this caused a lot of extra work for  the artists, and we 
will probably implement  a perspective-correct polygon-model rasterizer in  Quake 2 
for this specific purpose.)  The triangles are also Gouraud  shaded; interestingly, the 
light vector used to  shade  the  models is  always from  the same direction,  and has no 
relation  to any actual lights in the world (although  it  does vary in intensity, along 
with the model’s ambient  lighting, to match the brightness of the  spot  the player is 
standing above in the  world). Even this highly inaccurate  lighting works  well, though; 
the  Gouraud  shading makes models  look  much more three-dimensional, and vary- 
ing  the  lighting  in even so crude a way  allows hiding  in shadows and illumination by 
explosions and muzzle flashes. 
One issue with polygon models was  how to handle occlusion issues; that is,  what 
parts of models were visible, and what surfaces they were in front of. We couldn’t  add 
models  to  the  edge list, because the  hundreds of polygons per  model would  over- 
whelm the  edge list. Our initial occlusion solution was to sort polygon-model polygons 
into  the world BSP, drawing the  portions  in  each leaf at  the  right points as  we drew 
the world in BSP order.  That worked reasonably well  with respect to the world (not 
perfectly, though, because it would have been  too expensive to clip all the polygon- 
model polygons into  the world, so there was some occlusion error),  but  didn’t  handle 
the case  of sorting polygon models  in the same leaf against each  other, and also 
didn’t  help  the polygons in  a given polygon model  sort  properly against each  other. 
The solution to this turned  out to be z-buffering. After all the spans  in the world are 
drawn, the z-buffer is filled in  for  those spans. This is a write-only operation,  and 
involves no comparisons or overdraw (remember,  the spans cover  every pixel on  the 
screen exactly once), so it’s not  that expensive-the performance cost is about 10%. 
Then polygon models  are drawn  with z-buffering; this involves a z-compare at  each 
polygon-model pixel, but  no complicated  clipping or sorting-and occlusion is ex- 
actly right  in all respects. Polygon models tend to occupy a small portion of the 
screen, so the cost of z-buffering is not  that  high, anyway. 
Opinions vary as to the desirability of  z-buffers; some  people who  favor more analyti- 
cal approaches to hidden surface removal claim that  John has  been  seduced by the 
z-buffer. Maybe so, but there’s  a  lot there to be seduced by, and  that will be all the 
more  true as hardware rendering becomes the  norm.  The  addition of  particles- 
thousands of  tiny colored rectangles-to Quake  illustrated just how seductive the 
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z-buffer can be; it would  have been very difficult to get all those rectangles to draw 
properly using any other occlusion technique. Certainly z-buffering by itself can’t 
perform well enough to serve for all hidden surface removal; that’s why  we have the 
PVS and  the  edge list (although for hardware rendering  the PVS would suffice), but 
z-buffering pretty much  means  that if you can figure out how  to  draw an effect, you 
can readily insert  it  into the world  with proper occlusion, and that’s a powerful capa- 
bility indeed. 
Supporting scenes with a  dozen or  more models of 300 to 500 polygons each was a 
major performance challenge in  Quake,  and  the polygon-model drawing code was 
being optimized right up until the last  week before it shipped. One  help in allowing 
more models per scene was the PVS;  we only  drew those models that were in the PVS, 
meaning  that levels could have a hundred  or  more models without requiring  a lot of 
work  to eliminate most  of those that were occluded. (Note that this is not  unique to 
the PVS; whatever  high-level culling scheme we had  ended  up using for world  poly- 
gons would have provided  the  same  benefit  for polygon models.) Also, model 
bounding boxes were used to trivially clip those that weren’t in the view pyramid, 
and to identify those that were unclipped, s o  they could be sent  through a special 
fast path. The biggest breakthrough,  though, was a very different  sort of rasterizer 
that John came up with for relatively distant models. 

The Subdivision Rasterizer 
This rasterizer, which we call the subdivision rasterizer, first draws  all the vertices in the 
model. Then it takes each front-facing triangle, and  determines if it has a side that’s 
at least two pixels long. If it  does, we split that side into two pieces at  the pixel nearest 
to the middle (using  adds and shifts  to average the  endpoints of that  side), draw the 
vertex at the split point,  and process each of the two split triangles recursively, until 
we get down to triangles that have  only one-pixel sides and  hence have nothing left 
to draw. This approach is hideously slow and quite ugly (due to inaccuracies from 
integer  quantization)  for 100-pixel  triangles-but  it’s  very  fast  for,  say,  five-pixel  tri- 
angles, and is indistinguishable from  more  accurate rasterization when  a  model is 25 
or 50 feet away. Better yet, the subdivider is  ridiculously simple-a  few dozen lines of 
code, far simpler than  the affine rasterizer-and was implemented in an evening, 
immediately making the drawing of distant models about  three times  as fast, a very 
good  return for  a bit of conceptual work. The affine rasterizer got fairly  close  to the 
same  performance with further optimization-in the  range of 10% to 50% slower- 
but that took weeks  of difficult programming. 
We switch between the two rasterizers based on  the model’s distance and average 
triangle size, and in almost any scene,  most models are far enough away so subdivi- 
sion rasterization is used. There  are  undoubtedly faster ways yet to rasterize distant 
models adequately well, but  the subdivider was clearly a win, and is a  good  example 
of  how thinking in a radically different  direction can pay  off handsomely. 
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Sprites 
We had  hoped to be able to eliminate  sprites completely, making Quake 100% 3-D, 
but sprites-although sometimes very  visibly  2-D-were used for  a few purposes, most 
noticeably the cores of explosions. As of  CGDC last year, explosions consisted of an 
exploding spray of particles (discussed below),  but there  just wasn’t enough visual 
punch with that  representation;  adding  a series of sprites  animating  an explosion 
did  the trick. (In  hindsight, we probably should have made  the explosions polygon 
models rather  than sprites; it would  have looked about as good, and the few sprites 
we used  didn’t  justify  the  considerable  amount of code  and  programming time re- 
quired to support  them.) Drawing a  sprite is similar to drawing a  normal polygon, 
complete with perspective correction,  although of course the  inner  loop must  detect 
and skip over transparent pixels, and must also perform z-buffering. 

Particles 
The last drawing entity type  is particles. Each particle is a solid-colored rectangle, 
scaled by distance  from the viewer and drawn  with z-buffering. There can be up to 
2,000 particles in  a  scene,  and they are used  for  rocket trails, explosions, and  the 
like. In one sense, particles are very primitive technology, but they allow effects that 
would be extremely difficult to do well  with the  other types  of entities, and they work 
well in  tandem with other entities, as, for  example, providing a trail of fire behind a 
polygon-model lava ball that flies into  the air, or  generating an expanding  cloud 
around a  sprite explosion core. 

How We Spent Our Summer Vacation: 
After  Shipping Quake 
Since shipping  Quake  in  the  summer of 1996, we’ve extended  it in several ways: 
We’ve worked  with Rendition to port  it  to  the Verite accelerator  chip, we’ve ported it 
to OpenGL, we’ve ported it to Win32, we’ve done  Quakeworld,  and we’ve added 
features  for  Quake 2. I’ll discuss each of these briefly. 

Verite Quake 
Verite Quake  (VQuake) was the first hardware-accelerated version of Quake.  It looks 
extremely good,  due to bilinear texture filtering, which eliminates most pixel aliasing, 
and because it provides good  performance  at  higher  resolutions such as 512x384 
and 640x480. Implementing VQuake proved to be an  interesting task, for two rea- 
sons: The Verite chip’s fill rate was marginal  for Quake’s needs,  and Verite contains 
a  programmable RISC chip,  enabling  more  sophisticated processing than most 3-D 
accelerators. The  need to squeeze as much  performance as possible out of Verite 
ruled  out  the use of a  standard API such as Direct 3D or  OpenGL; instead, VQuake 
uses Rendition’s  proprietary API, Speedy3D, with the  addition of some special calls 
and custom Verite code. 
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Interestingly, VQuake is very similar to software Quake;  in  order to  allow  Verite to 
handle  the high pixel processing loads of high-res, VQuake uses an  edge list and 
builds span lists on  the CPU, just as in software Quake,  then Verite DMAs the  span 
descriptors to onboard memory and draws them. (This was only  possible because 
Verite  is  fully programmable; most accelerators wouldn’t be able to support this ar- 
chitecture.) Similarly, the CPU builds lit, tiled surfaces in system R A M ,  then Verite 
DMAs them to an  onboard surface cache,  from which  they are  texture-mapped.  In 
short, VQuake is  very much like normal  Quake,  except  that  the drawing of the spans 
is done by a specialized processor. 
This approach works  well, but some of the drawbacks  of a surface cache become 
more noticeable when hardware is involved.  First, the DMAing is an extra  step that’s 
not necessary in software,  slowing things down. Second, onboard memory is a rela- 
tively limited resource (4 MB total),  and textures must be 16-bpp (because hardware 
can only do filtering in RGB modes), thus  eating up twice  as much  memory as the 
software  version’s 8-bpp textures-and memory  becomes progressively scarcer at 
higher resolutions, especially  given the  need  for a z-buffer and two 16-bpp pages. 
(Note  that using the  edge list helps here, because it filters out spans from polygons 
that  are in the PVS but fully occluded,  reducing the  number of surfaces that have to 
be  downloaded.) Surface caching in VQuake usually  works just fine, but response 
when  coming  around  corners  into complex scenes or when  spinning can be more 
sluggish than in software Quake. 
An alternative to surface caching would  have been to do two  passes across each  span, 
one tiling the texture, and  the  other  doing  an  alpha  blend using the light map as a 
texture, to light the texture (two-pass alpha  lighting). This approach  produces ex- 
actly the same  results  as the surface cache, without requiring downloading and caching 
of large surfaces, and has the advantage of  very  level performance. However, this 
approach  requires at least twice the fill rate of the surface cache  approach,  and Verite 
didn’t have enough fill rate  for  that at  higher resolutions. It’s  also worth noting that 
two-pass alpha lighting doesn’t have the same  potential  for  procedural  texturing 
that surface caching does. In fact, given MMX and ever-faster  CPUs, and  the ability 
of the CPU and  the accelerator to process in parallel, it will become increasingly 
tempting to use the CPU to build surfaces with procedural  texturing such as bump 
mapping, shimmers, and warps; this sort of procedural  texturing has the potential to 
give accelerated games highly distinctive visuals. So the choice between surface cach- 
ing and two-pass alpha lighting for hardware accelerators depends  on a game’s needs, 
and it seems most likely that  the two approaches will be mixed together, with surface 
caching used for special surfaces, and two-pass alpha lighting used for  most drawing. 

GLQuake 
The second (and, according to current plans, last) port of Quake to a hardware 
accelerator was an  OpenGL version, GLQuake,  a native  Win32 application.  I have 
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no intention of getting  into  the 3-D MI wars currently  raging; the observation I want 
to make here is that GLQuake uses two-pass alpha  lighting, and  runs very  well on fast 
chips such as the SDfx, but  rather slowly on most of the  current  group of accelera- 
tors. The accelerators  coming out this year should all run GLQuake fine, however. 
It’s also worth noting  that we’ll be using two-pass alpha lighting in  the N64 port of 
Quake;  in  fact, it looks like the N64’s hardware is capable of performing  both tex- 
ture-tiling  and  alpha-lighting  in a  single  pass,  which is pretty  much  an  ideal 
hardware-acceleration  architecture: It’s as good  looking and generally faster than 
surface  caching,  without the  need  to  build, download, and cache surfaces, and  much 
better  looking and  about as fast as Gouraud  shading. We hope to see similar capabili- 
ties implemented  in PC accelerators and exposed by  3-D MIS in the  near  future. 
Dynamic lighting is done differently in GLQuake than  in software Quake.  It  could 
have been  implemented by changing  the  light maps, as usual, but  current  OpenGL 
drivers are  not very fast at  downloading  textures  (when the  light maps are  used as in 
GLQuake);  also, it takes  time to identify and change  the affected light maps. Instead, 
GLQuake  simply alpha-blends an  approximate  sphere  around  the  light  source.  This 
requires very little calculation and  no  texture downloading, and as a  bonus allows 
dynamic lights to be colored, so a  rocket,  for  example,  can cast a yellowish light. 
Unlike  Quake or VQuake,  GLQuake does not use the edge list and draws  all  polygons in 
the potentially visible set.  Because  OpenGL  drivers are  not currentlyvery fast at selecting 
new textures, GLQuake sorts polygons by texture, so that all polygons that use a 
given texture  are drawn together. Once  texture selection is faster, it might be worth- 
while to draw back-to-front with  z-fill, because some  hardware  can do z-fill faster  than 
z-compare, or to draw front-to-back, so that z-buffering can  reject as  many pixels as 
possible, saving display-memory writes.  GLQuake also avoids having to do z-buffer 
clearing by splitting the z range  into two parts, and  alternating between the two parts 
from  frame  to  frame;  at  the same time,  the z-compare polarity is switched (from 
greater-than-or-equal to less-than-or-equal) , so that  the previous frame’s z values are 
always considered  more  distant  than  the  current frame’s. 
GLQuake was  very  easy to  develop,  taking only a  weekend  to  get up  and  running, 
and  that leads to  another  important point:  OpenGL is also an excellentAP1 on which 
to build tools. QuakeEd, the tool we use to build levels, is written for  OpenGL  run- 
ning  on Win32, and when John  needed a 3-D texture  editing tool for modifymg 
model skins, he was able  to write it  in one  night by building  it on  OpenGL. After we 
finished  Quake, we realized that  about half our  code  and half our time was spent  on 
toals, rather  than  on  the game engine itself, and  the artists’ and level designers’ 
productivity is heavily dependent  on  the tools they have to  use;  considering all that, 
we’d be foolish not  to use OpenGL, which is  very  well suited to such tasks. 
One  good illustration of  how much easier a  good 3-D AF’I can make development is 
how  quickly John was able to add two eye-candy features to GLQuake:  dynamic shad- 
ows and reflections. Dynamic  shadows were implemented by projecting a model’s 
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silhouette onto  the  ground plane, then alpha-blending that  silhouette  into the world. 
This doesn’t always  work  properly-for example, if the player is standing at  the  edge 
of a cliff, the shadow sticks out in the air-but it was added in a few hours, and most 
of the time looks terrific. Implementing  it properly will take only a day or two more 
and  should  run adequately fast; it’s a simple matter of projecting the silhouette  into 
the world, and  onto  the surfaces it encounters. 
Reflections are a bit more complex, but again were implemented  in  a day. A special 
texture is designated as a mirror surface; when this is encountered while drawing, a 
hole is left. Then  the z-range is changed so that everything drawn next is considered 
more distant than  the scene just drawn, and a second scene is drawn, this time from 
the reflected viewpoint behind  the mirror; this causes the  mirror to be behind any 
nearer objects in the  true scene. The only  drawback to this approach  (apart  from  the 
extra processing time to  draw two scenes) is that because of the z-range change,  the 
mirror must be against a sealed wall,  with nothing in the PVS behind it, to ensure 
that  a  hole is left into which the reflection can be drawn. (Note  that  an  OpenGL 
stencil  buffer  would be ideal here, but while OpenGL accelerators  can  be  relied upon to 
support z-buffering and alpha-blending  in hardware, the same is not yet true of sten- 
cil buffers.) As a final step, a  marbled  texture is blended  into  the  mirror surface, to 
make the surface itself  less than perfectly reflective and visible enough to seem real. 
Both  alpha-blending and z-buffering are relatively  new  to PC games, but  are stan- 
dard  equipment  on accelerators, and it’s a  lot of fun seeing what sorts of  previously 
very difficult effects can now be up  and working in a  matter of hours. 

WinQuake 
I’m  not going to spend  much time on  the Win32 port of Quake;  most of  what I 
learned  doing this consists of tedious details that are doubtless well covered else- 
where, and frankly it wasn’t a particularly interesting task and was harder  than I 
expected, and I’m pretty much  tired of the whole thing. However, I will  say that 
Win32 is clearly the  future, especially  now that NT is coming on strong, and like it or 
not, you had best learn to  write games  for Win32. Also, Internet gaming is becoming 
ever more  important,  and Win32’s built-in TCP/IP support is a big advantage over 
DOS; that  alone was enough to convince us we had to port  Quake. As a last  com- 
ment, I’d say that it is nice to  have  Windows take care of  device configuration and 
interfacing-now if only we could  get  manufacturers to write drivers for those de- 
vices that actually worked reliably! This will come as no surprise to veteran Windows 
programmers, who have suffered through years  of  buggy 2-D Windows drivers, but if 
you’re new to Windows programming, be prepared to run  into  and learn to work 
around-or  at  least document in your readme  files-driver bugs on a  regular basis. 
Still, when you get down to it, the  future of gaming is a networked Win32 world, and 
that’s that, so if  you haven’t already moved to Win32, I’d say it’s time. 
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Qua keWorld 
Quakeworld is a native Win32 multiplayer-only version of Quake, and was done as a 
learning  experience;  it is not a  commercial product,  but is freely distributed on  the 
Internet. The idea behind it was to try to improve the multiplayer experience, especially 
for people linked by modem, by reducing actual and perceived  latency.  Before I discuss 
Quakeworld, however, I should discuss the evolution of Quake’s multiplayer code. 
From the  beginning,  Quake was conceived as a client-server app, specifically so that 
it would be possible to have persistent servers always running  on  the  Internet,  inde- 
pendent of whether  anyone was playing on  them  at any particular  time, as a  step 
toward the long-term goal of persistent worlds. Also, client-server architectures  tend 
to be  more flexible and robust than peer-to-peer, and  it is much easier to have  play- 
ers  come  and  go  at will  with client-server. Quake is client-server from  the  ground  up, 
and even in single-player mode, messages are passed through buffers between the 
client  code and  the server code; it’s quite likely that  the  client  and server would have 
been two processes, in  fact, were it  not  for  the  need  to  support DOS. Client-server 
turned  out to be  the  right decision, because Quake’s ability to support persistent, 
come-and-go-as-you-please Internet servers with up to 16 people  has  been  instru- 
mental  in the game’s high visibility in the press, and its lasting popularity. 
However, client-server is not without  a cost, because, in its pure  form, latency for 
clients consists of the  round  trip  from  the client to the server and back. (In Quake, 
orientation  changes instantly on  the client,  short-circuiting the trip to the server, but 
all other events, such as motion and firing,  must make the  round  trip  before they 
happen  on  the client.)  In  peer-to-peer games, maximum latency can  be just  the cost 
of the one-way trip, because each  client is running a  simulation of the game, and 
each  peer sees its own actions instantly. What all this means is that latency is the 
downside of client-server, but in many other respects client-server is  very attractive. 
So the big task  with client-server is to  reduce latency. 
As of the release of QTestl,  the first and last prerelease of Quake,  John  had  smoothed 
net play considerably by actually keeping  the client’s virtual time a  bit  earlier than 
the time of the last server packet, and  interpolating events between the last two pack- 
ets to the client’s virtual time. This meant  that events didn’t  snap  to whatever packet 
had arrived last, and  got  rid of considerable jerking  and stuttering.  Unfortunately,  it 
actually increased latency, because of the  retarding of time needed to make the in- 
terpolation possible. This illustrates a common tradeoff, which is that  reduced latency 
often makes for  rougher play. 

Reduced latency  also o f en  makes for  more frustrating  play. It’s actually  not hard p to reduce the  latency  perceived  by  the  player, but many of the  approaches that 
reduce latency introduce the  potential for paradoxes  that  can  be quite  distracting 
and annoying. For example, a player  may  see a rocket go by, and think they’ve 
dodged it, only toJind themselves exploding a second later as the d@erence of opinion 
between his  simulation and the  other  simulation  is resolved to  his detriment. 

Quake: A Post-Mortem and a Glimpse into the  Future 1291 



Worse, QTestl was prone to frequent hitching over  all but the best connections, because 
it was built around reliable packet delivery (TCP) provided by the operating system. 
Whenever  a packet didn’t arrive, there was a long pause waiting for the retransmis- 
sion. After QTestl, John realized that this was a fundamentally wrong assumption, 
and  changed  the  code to use unreliable packet delivery (UDP),  sending  the relevant 
portion of the full state every time (possible only because the PVS can be used to cull 
most events in a level), and letting the game logic  itself deal with packets that  didn’t 
arrive. A reliable sideband was used as  well, but only for events like scores, not  for 
gameplay state. However, this was a  good  example of  Carmack’s Law: John did not 
rewrite the  net  code to reflect this new fundamental assumption, and wound up with 
8,000 lines of  messy code  that took right up until  Quake  shipped to debug. For 
Quakeworld,  John did rewrite the  net  code  from scratch around  the assumption of 
unreliable packet delivery, and it  wound up as just 1,500 lines of clean, bug-free code. 
In  the  long  run, it’s cheaper to rewrite than to patch and modify! 
So as  of shipping Quake, multiplayer performance was quite  smooth,  but latencywas 
still a major issue, often in the 250 to 400 ms range  for  modem players. Quakeworld 
attacked this in two  ways. First, it reduced latency by around 50 to 100  ms  with a 
server change.  The  Quake server runs 10 or 20 times a  second,  batching up inputs  in 
between ticks, and  sending  out results after the tick. By contrast, Quakeworld serv- 
ers run immediately whenever  a client sends input, knocking up to 50 or 100 ms  off 
response time, although  at  the cost of a  greater server processing load. (A similar 
anti-latency idea  that wasn’t implemented in Quakeworld is having a separate thread 
that can send  input off to the server as soon as it happens, instead of incurring  up to 
a  frame of latency.) 
The  second way in which Quakeworld attacks latency is  by not interpolating. The 
player  is  actually predicted well ahead of the latest server packet (after all, the client 
has all the information needed to move the player, unless an outside  force  inter- 
venes), giving  very responsive control. The rest of the world  is drawn as  of the latest 
server packet; this is jerkier  than  Quake, again showing that smoothness is often a 
tradeoff for latency. The player’s prediction may,  of course, result in  a minor para- 
dox; for  example, if an explosion turns out  to have knocked the player  sideways, the 
player’s location may suddenly jump without warning as the server packet arrives 
with the correct  location. In  the latest version  of Quakeworld,  the  other players are 
predicted as  well,  with consequently more  frequent paradoxes, but smoother, more 
convincing motion. Platforms and  doors  are still not predicted, and consequently 
are still pretty jerky. It is, of course, possible to predict  more and  more objects into 
the future; it’s a tradeoff of smoothness and perceived low latency for the frustration 
of paradoxes-and that’s the way it’s going to stay until  most  people are  connected 
to the  Internet by something  better  than  modems. 

1 292 Chapter 70 



Quake 2 
I  can’t talk in  detail about Quake 2 as a  game, but I  can  describe some interesting 
technology features. The Quake 2 rendering  engine isn’t going  to  change  that  much 
from Quake; the improvements are largely in areas such as physics,  gameplay,  artwork, 
and overall  design. The most interesting graphics change is in the preprocessing, where 
John has added  support for radiosity lighting; that is, the ability to put a light source into 
the world and have the light bounced  around  the world  realistically. This is sometimes 
terrific-it  makes for great glowing light around lava and hanging light panels-but  in 
other cases  it’s  less spectacular than the effects that designers can get by placing  lots of 
direct-illumination light sources in a room, so the two methods can be used as needed. 
Also, radiosity is very computationally expensive, approximately as  expensive  as  BSPing. 
Most  of the radiosity demos I’ve seen have been  in  one  or two rooms, and  the  order 
of the  problem  goes  up  tremendously  on whole  Quake  levels. Here’s another case 
where the PVS is essential; without it, radiosity processing time would be 0 (polygons2), 
but with the PVS it’s 0 (po1ygons”average-potentially-visible-polygons) , which  is  over 
an  order of magnitude less (and increases approximately linearly, rather  than as a 
squared  function, with greater-level complexity). 
Also, the moving sky texture will probably be gone  or will change.  One likely replace- 
ment is an  enclosing  texture-mapped box around  the world, at  a virtually infinite 
distance; this will allow open vistas, much like Doom,  a welcome change  from  the 
claustrophobic  feel of Quake. 
Another likely change  in  Quake 2 is a shift from  interpreted Quake-C code  for game 
logic to compiled DLLs. Part of the incentive here is performance-interpretation 
isn’t  cheap-and part is debugging, because the standard debugger can be used  with 
DLLs. The drawback, of course, is portability; Quake-C program files are completely 
portable to any platform  Quake runs  on, with no modification or recompilation, but 
DLLs compiled  for Win32 require  a  real  porting  effort to run anywhere else. Our 
thinking  here is that  there  are almost no non-console  platforms other  than  the PC 
that  matter  that  much  anymore,  and  for  those few that do (notably the Mac and 
Linux),  the DLLs can be ported  along with the  core  engine  code.  It  just  doesn’t 
make sense for easy portability to tiny markets to impose a significant development 
and  performance cost on  the  one  huge market. Consoles will  always require  serious 
porting  effort anyway, so going to Win32-specific  DLLs for  the PC version won’t make 
much  difference  in the ease of doing console  ports. 
Finally, Internet  support will improve in Quake 2. Some  of the  Quakeworld latency 
improvements will doubtless  be added,  but  more  important,  there will be  a new 
interface, especially for  monitoring  and  joining  net games, in the  form of an HTML 
page. John has always been  interested  in moving  as much  code as possible out of the 
game  core,  and  letting  the browser take care of most of the UI makes it possible to 
eliminate  menuing and such from the Quake 2 engine.  Think of being  able to browse 
hundreds of Quake servers from a single Web page (much as  you can today with 
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QSpy, but with the advantage of a  standard, familiar interface and easy extensibility), 
and I  think you’ll see why John considers this the game  interface of the  future. 
By the way, Quake 2 is currently  being developed as a native  Win32 app only; no DOS 
version  is planned. 

Looking Forward 
In my address to the  Computer Game Developer’s Conference  in 1996, I said that  it 
wasn’t a  bad time to start up a  game  company  aimed at hardware-only rasterization, 
and trying to make  a  game  that leapfrogged the competition. It looks like I was 
probably a year  early, because hardware took longer to ship than I  expected, al- 
though  there was a  good living to be made writing games  that hardware vendors 
could  bundle with their boards. Now, though, it clearly is time. By Christmas 1997, 
there will be several million fast accelerators out  there,  and by Christmas 1998, there 
will be tens of millions. At the same  time, vastly more  people  are  getting access  to the 
Internet,  and it’s from  the convergence of these two trends  that  I  think the technol- 
ogy for the  next  generation of breakthrough real-time games will emerge. 
John is already working on id’s next graphics engine,  code-named Trinity and tar- 
geted around Christmas of  1998.  Trinity  is not only a hardware-only engine, its  baseline 
system  is a  Pentium  Pro 200-plus  with MMX, 32 MB, and  an accelerator capable of at 
least 50 megapixels and 300 K triangles per second with alpha  blending  and z-buffer- 
ing. The goals  of  Trinity are quite  different  from those of Quake. Quake’s primary 
technical goals  were  to do high-quality,  well-lit, complex indoor scenes with 6 de- 
grees of freedom,  and to support client-server Internet play. That was a  good start, 
but only that. Trinity’s goals are to have much less-constrained, better-connected 
worlds than Quake. Imagine seeing through  open landscape from  one server to the 
next, and seeing the action on adjacent servers in  detail, in real time, and you’ll  have 
an idea of where things are  heading  in  the  near  future. 
A huge graphics challenge for the  next  generation of games is level  of detail (LOD) 
management. If we’re  to  have larger, more  open worlds, there will inevitably be more 
geometry visible at  one time. At the same time, the push for greater detail that’s 
been in progress for the past four years or so will continue;  people will start expect- 
ing to see real cracks and  bumps when they get close to a wall, not  just a  picture of 
cracks and  bumps painted on a flat wall. Without LOD, these two trends are in direct 
opposition; there’s no way you can make the world larger and make all  its surfaces 
more  detailed  at the same time, without bringing the  renderer to its knees. 
The solution is to  draw nearer surfaces with more detail than farther surfaces. In itself, 
that’s not so hard,  but doing it without popping and snapping being visible as you  move 
about is quite  a challenge. John has implemented fractal landscapes with constantly 
adjustable level  of detail, and has made it so new  vertices appear as needed  and 
gradually morph to their final positions, so there is no  popping. Trinity is already 
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capable of displaying oval pillars that have four sides when  viewed from  a  distance, 
and  add vertices and polygons smoothly as  you get closer, such that  the change is 
never visible, and  the pillars look oval at all times. 
Similarly, polygon models, which maxed out  at  about 5,000 polygon-model polygons 
total-for  all  models-per scene  in  Quake, will probably reach 6,000 or 7,000 per 
scene in Quake 2 in the absence of LOD. Trinity will surely have  many more moving 
objects, and those objects will look far more detailed when viewed up close, so LOD 
for moving polygon models will definitely be needed. 
One  interesting side effect of morphing vertices as part of LOD is that  Gouraud 
shading  doesn’t work  very  well  with this approach.  The  problem is that  adding a new 
vertex causes a major shift in  Gouraud  shading, which  is, after all, based on lighting 
at vertices. Consequently, two-pass alpha  lighting and surface  caching  seem  to be 
much  better matches  for smoothly changing LOD. 
Some people worry that  the widespread use of hardware  acceleration will mean  that 
3-D programs will all look the same, and  that  there will no longer be much  challenge 
in 3-D programming. I hope  that this brief discussion of the tightly interconnected, 
highly detailed worlds toward which we’re rapidly heading will help you realize that 
both  the challenge and  the  potential of 3-D programming  are  in fact greater  than 
they’ve ever been.  The trick is that  rather  than  getting stuck in the  rut of established 
techniques, you must constantly strive to “do  better with  less, in  a  different way”; 
keep  learning  and  changing  and trying new  approaches-and working your rear 
end off-and odds  are you’ll be part of the wave  of the  future. 
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