
Can notions of text which were developed without electronic texts in mind
be applied to digital code, and how does literature come into play here?

DIGITAL CODE AND LITERARY TEXT

FLORIAN CRAMER

ABSTRACT. This paper is based on the general (yet disputable) as-
sumption that the theoretical debate of literature in digital networks has
shifted, just as the poetic practices it is shaped after, from perceiving
computer data as an extension and transgression of textuality (as man-
ifest in such notions as “hypertext”, “hyperfiction”, “hyper-/ multime-
dia”) towards paying attention to the very codedness – i.e. textuality – of
digital systems themselves. Several phenomena may serve as empirical
evidence:

• The early focus of conceptualist Net.art on the aesthetics and poli-
tics of code;

• in turn, the impact of Net.art aesthetics on experimental literature /
poetry in the Internet;

• the close discooursive affinity of Net.art to political activism in the
Internet;

• the close aesthetic affinity of Net.art to a the languages and codes of
an older, technically oriented “hacker” culture (of Chaos Computer
Club, 2600, and others);

• a convergence of the three cultures mentioned above – Net.art, net
activism and hacker culture;

• (a) Free/Open Source Software and/or (b) open network protocols
as key discursive, political and aesthetical issues in all these camps;

• finally, the impact of hacker aesthetics, Net.art aesthetics, code aes-
thetics and network protocol aesthetics on contemporary writing in
the Internet. (See the work of mez, Alan Sondheim, Talan Mem-
mott, Ted Warnell and others.)

The question is how “Codeworks” (Alan Sondheim) fit notions of text
that were crafted without digital code – most importantly: machine-
executable digital code – in mind, and vice versa. Is it a coincidence
that, in their poetical appropriation of low-level Internet codes, code-
works ended up aesthetically resembling concrete poetry? And, apart
from aesthetic resemblances, how do computer programs relate to lit-
erature? Is that what is currently being discussed as “Software Art” a
literary genre?

Date: Sept. 27, 2001.
1



DIGITAL CODE AND LITERARY TEXT 2

CODE

Since computers, the Internet and all digital technologies are based on zeros
and ones, they are based on code. Zeros and ones are an alphabet which can
be translated forth and back between other alphabets without information
loss. It does, in my point of view, make no sense to limit the definition of
the alphabet in general to that of the Roman alphabet in particular when
we can the same textual information in this very alphabet, as Morse code,
flag signs or transliterated into zeros and ones. The Internet and comput-
ers run on alphabetic code, whereas, for examples, images and sound can
only be digitally stored when translating them into code, which – unlike the
translation of conventional text into digital bits – is a lossy, that is, not fully
reversible and symmetric translation. Sounds and images are not code by
themselves, but have to be turned into code in order to be computed; where
as any written text already is code. Literature therefore is a privileged sym-
bolic form in digital information systems. It is possible to automatically
search a collection of text files for all occurences of the word “bird”, but
doing the same with birds in a collection of image files or bird songs in a
collection of audio files is incomparably tricky and error-prone, relying on
either artificial intelligence algorithms or manual indexing, both of which
are methods to translate non-semantic writing (pixel code) into semantic
writing (descriptions).

The reverse is true as well: We can perfectly translate digital data and al-
gorithms into non-digital media like print books, as long as we translate
them into signs coded according to the logic of an alphabet. This is what is
done, for example, in programming handbooks or in technical specification
manuals for Internet standards. Today there are two notorious examples of
a forth-and-back translation between print and computers:

(1) The sourcecode of Phil Zimmerman’s cryptography program
“Pretty Good Privacy” (PGP). The PGP algorithms were legally
considered a weapon and therefore became subject to U.S. export
restrictions. To circumvent this ban, Zimmerman published the PGP
sourcecode in a book. Unlike algorithms, literature is covered by
the U.S. First Amendment of free speech. So the book could be
exported outside the United States and, by scanning and retyping,
translated back into an executable program;

(2) the sourcecode of DeCSS, a small program which breaks the cryp-
tography scheme of DVD movies. Since U.S. jurisdiction declared
DeCSS an “illegal circumvention device” according to the new Dig-
ital Millennium Copyright Act (DMCA), the ban equally affected



DIGITAL CODE AND LITERARY TEXT 3

booklets, flyposters and t-shirts on which the DeCSS sourcecode
was printed.

That code is speech is a fact stressed again and again by programmers
and is also at the heart of Lawrence Lessig’s legal theory of the Internet
([Les00]). It is, strictly speaking, sloppy terminology to speak of “digital
media”. There actually is no such thing as digital media, but only digital
information. Digital information becomes “media” only by the virtue of
analog output; computer screens, loudspeakers, printers are analog output
devices interfaced to the computer via digital-to-analog conversion hard-
ware like video and sound cards or serial interfaces.1

An average contemporary personal computer uses magnetic disks (floppy
and hard disks), optical disks (CD-ROM and DVD-ROM) and chip mem-
ory (RAM) as its storage media, and electricity or fiber optics as its trans-
mission media. Theoretically, one could build a computer with a printer
and a scanner which uses books and alphabetic text as its storage media.2

Alan Turing showed that no electronics are needed to build a computer; the
Boston Computer Museum even features a mechanical computer built from
wooden sticks.

Juxtapositions of “the book” and “the computer” are quite misleading, be-
cause they confuse the storage and analog output media (paper versus a
variety of optical, magnetical and electronical technologies) with the in-
formation (alphabetical text versus binary code). It further ignores, by the
way, the richness of storage and transmission media in traditional literature
which, aside from the book, include oral transmission and mental storage,
audio records and tapes, the radio and television, to name only a few.

If there is, strictly speaking, no such thing as digital media, there also is,
strictly speaking, no such thing as digital images or digital sound. What
we refer to as a “digital image” is a piece of code containing the machine
instructions to produce the flow of electricity with which an analog screen
or an analog printer is made to display an image.3

1On the reverse end of the chain, keyboards, mice, scanners and cameras are analog-to-
digital converters.

2While such a machine would operate slower than with magnetical or optical media, it
would provide more robust and durable information storage on the other hand.

3Normally, this code is divided into three pieces, one – the so-called sound or image
file – containing the machine-independent and program-independent abstract information,
the second – the so-called display program – containing the instructions to mediate the ab-
stracted information in a machine-independent, yet not program-independent format to the
operating system, the third – the so-called operating system –, mediating the program out-
put to the output machine, whether a screen or a printer. These three code layers however
are nothing but conventions. Theoretically, the “digital image” file could in itself contain



DIGITAL CODE AND LITERARY TEXT 4

Of course it is important whether a sequence of zeros and ones translates,
into, say, an image because that defines its interpretation and semantics.
The point of my (admittedly) formalistic argumentation is not to deny this,
but to underline that

(1) when we speak of “multimedia” or “intermedia” in conjunction with
computers, digital art and literature, we actually don’t speak of dig-
ital systems as themselves, but about translations of digital informa-
tion into analog output and vice versa;

(2) text and literature are highly privileged symbolic systems in these
translation processes because (a) they are already coded and (b)
computers run on a code.

Literature and computers meet first of all where alphabets and code, human
language and machine language intersect, secondly in the interfacing of
analog devices through digital control code. While of course we cannot
think of code without media because we can’t read it without them, the
computer does not really extend literary media themselves. All those output
media – electricity, electrical sound and image transmission etc. – existed
before and without computers and digital information processing.

I therefore have to revise the position I took in several my previous writ-
ings4: If we speak of digital poetry, or computer network poetry, we don’t
have to speak of certain media, and we don’t even have to speak of specific
machines. If computers can be built from broomsticks – and networked
via shoestrings; if any digital data, including executable algorithms, can be
printed in books and from them read back into machines or, alternatively,
executed in the mind of the reader, there is no reason why computer network
poetry couldn’t or shouldn’t be printed as well in books.

Perhaps the term of digital “multimedia” – or better: “intermedia” – would
be more helpful if we redefine it as thethe possibility to losslessly translate
information from one sign system to the other, forth and back, so that the
visible, audible or tacticle representation of the information becomes arbi-
trary. A state not be achieved unless the information is not coded in some
kind of alphabet, whether alphanumerical, binary, hexadecimal or, if you
like, Morse code.

all the code necessary to make itself display on analog end devices, including the code that
is conventionally identified as a boot loader and core operating system.

4like in the paper “Warum es zuwenig interessante Computerdichtung gibt.
Neun Thesen” (“ Nine Points on Why there is so little interesting computer net
literature“), http://userpage.fu-berlin.de/~cantsin/homepage/writings/net_
literature/general/karlsruhe_2000//karlsruher_thesen.pdf

http://userpage.fu-berlin.de/~cantsin/homepage/writings/net_literature/general/karlsruhe_2000//karlsruher_thesen.pdf
http://userpage.fu-berlin.de/~cantsin/homepage/writings/net_literature/general/karlsruhe_2000//karlsruher_thesen.pdf


DIGITAL CODE AND LITERARY TEXT 5

L ITERATURE

Synthesis: putting things together.To observe the textual codedness of
digital systems of course implies the danger of generalizing and projecting
one’s observations of digital code onto literature as a whole. Computers
operate on machine language, which is syntactically far less complex than
human language. The alphabet of both machine and human language is in-
terchangeable, so that “text” – if defined as a countable mass of alphabetical
signifiers – remains a valid descriptor for both machine code sequences and
human writing. In syntax and semantics however, machine code and hu-
man writing are not interchangeable. Computer algorithms are, like logical
statements, a formal language and thus only a restrained subset of language
as a whole.

However, I believe it is a common mistake to claim that machine language
would be only readable to machines and hence irrelevant for human art and
literature and, vice versa, literature and art would be unrelated to formal
languages.

It is important to keep in mind that computer code, and computer programs,
are not machine creations and machines talking to themselves, but writings
by humans.5 The programmer-artist Adrian Ward suggests that we put the
assumption of the machine controlling the language upside down:

“I would rather suggest we should be thinking about embed-
ding our own creative subjectivity into automated systems,
rather than naively trying to get a robot to have its ‘own’
creative agenda. A lot of us do this day in, day out. We call
it programming.”6

Perhaps one also could call it composing scores, and it does not seem ac-
cidental to me that musical artists have picked up and grasped computers
much more thoroughly than literary writers. Western music is an outstandig
example of an art which relies upon written formal instruction code. Self-
reflexive injokes such as “B-A-C-H” in Johann Sebastian Bach’s music, the
visual figurations in the score of Erik Satie’s “Sports et divertissements”
and finally the experimental score drawings of John Cage shows that, be-
yond a merely serving the artwork, formal instruction code has an aesthetic

5No computer can reprogram itself; self-programming is only possible within a limited
framework of game rules written by a human programmer. A machine can behave differ-
ently than expected, because the rules didn’t foresee all situations they could create, but no
machine can overwrite its own rules by itself.

6quoted from an E-Mail message to the “Rhizome” mailing list, May 7, 2001



DIGITAL CODE AND LITERARY TEXT 6

dimension and intellectual complexity of its own. In many works, musi-
cal composers have shifted instruction code from classical score notation
to natural human language. A seminal piece, in my opinion, is La Monte
Young’s “Composition No.1 1961” which simply consists of the instruction
“Draw a straight line and follow it.”7 Most Fluxus performance pieces were
written in the same notation style. Later in 1969, the American composer
Alvin Lucier wrote his famous “I am sitting in a room” as a brief spoken
instruction which very precisely tells to perform the piece by playing itself
back and modulating the speech through the room echoes.

In literature, formal instructions is the necessary prerequisite of all permuta-
tional and combinatory poetry.8 Kabbalah and magical spells are important
examples as well. But even in a conventional narrative, there is an implict
formal instruction of how – i.e. in which sequence – to read the text (which
may be followed or not, as opposed to hypertext which offers alternative se-
quences on the one hand, but enforces its implicit instruction on the other).
Grammar itself is an implicit, and very pervasive formal instruction code.

Although formal instruction code is only a subset of language, it is still at
work in all speech and writing.

It is particularly remarkable about computing that the namespace of exe-
cutable instruction code and nonexecutable code is flat: If, like Inke Arns
proposed (using structuralist terminology), we speak of instruction code as
a “genotext” and non-instruction code as a “phenotext”, then computed lan-
guage differs from spoken language in that both genotext and phenotext are
coded in the same alphabet of bits and bytes, whereas in spoken language,
the genotext of grammar is an implicit, mental code. One cannot tell from a
snippet of digital code whether it is machine-executable or not, a phenotext
or a genotext. In fact every digital code, even a "Project Gutenberg" text of,
say, Homer’s "Odyssee", is potentially executable depending on whether
there’s other code – a compiler, runtime interpreter or the embedded logic
of a microprocessor – capable to process it as machine instructions. Com-
puter code is highly recursive and highly architectural, building upon layers
of layers of code.

Analysis: taking things apart. The fact that one cannot tell from any piece
of code whether it is machine-executable or not provides the principle con-
dition of all E-Mail viruses on the one hand, and of the codeworks of jodi,

7[uEH90], no page numbering
8Some historical examples have been adapted online on my websitehttp://

userpage.fu-berlin.de/~cantsin/permutations

http://userpage.fu-berlin.de/~cantsin/permutations
http://userpage.fu-berlin.de/~cantsin/permutations


DIGITAL CODE AND LITERARY TEXT 7

antiorp/Netochka Nezvanova, mez, Ted Warnell, Alan Sondheim, Kenji Sir-
atori – to name only a few – on the other; work that, unlike the actual viri,
is fictional in that it aesthetically pretends to be potentially viral machine
code.9

The codeworks, to use a term coined by Alan Sondheim, of these writers
and programmer-artists are prime examples for a digital poetry which re-
flects the intrisic textuality of the computer. But they do so not by being, to
quote Alan Turing via Raymond Queneau, computer poetry to be read by
computers10, but by playing with the confusions and thresholds of machine
language and human language, and by reflecting the cultural implications of
these overlaps. The “mezangelle” poetry of mez/Mary Ann Breeze, which
mixes programming/network protocol code and non-computer language to
a portmanteau-word hybrid, is an outstanding example of such a poetics.

Compared to earlier poetics of formal instruction, like in La Monte Young’s
Composition 1961, in Fluxus pieces and in permutational poetry, an impor-
tant difference can be observed in the codeworks: The Internet code poets
and artists do not construct or synthesize code, but they use code or code
grammars they found and take them apart. I agree with Friedrich Block and
his “Eight Digits of Digital Poetry”http://www.dichtung-digital.de/
2001/10/17-Block/index-engl.htm that digital poetry should be read
in the history and context of experimental poetry. A poetics of synthesis
was characteristic of combinatory and instruction-based poetry, a poetics of
analysis characterized Dada and its successors. But one hardly finds po-
etry with an analytical approach to formal instruction code in the classical
20th century avant-garde.11 Internet code poetry is being written in a new
– if one likes, post-modernist – condition of machine code abundance and
overload.

The hypothesis that there is no such thing as digital media, but only digital
code which can be stored in and put out on any analog medium, is perfectly
verified by codework poetry. Unlike hypertext and multimedia poets, most
of the artists mentioned here write plain ASCII text. The contradiction be-
tween a complex techno-poetical reflection and low-tech communication is
only a seeming one; quite on the contrary, the low-tech is crucial to the
critical implication of the codework poetics.

9with the “biennale.py” computer virus of the net art groupshttp://www.
0100101110111001.org being the only exception to date.

10[Que61], p.3
11An exception being the the ALGOL computer programming language poetry written

by the Oulipo poets François le Lionnais and Noël Arnaud in the early 1970s, see [MB98],
p.47

http://www.dichtung-digital.de/2001/10/17-Block/index-engl.htm
http://www.dichtung-digital.de/2001/10/17-Block/index-engl.htm
http://www.0100101110111001.org
http://www.0100101110111001.org


DIGITAL CODE AND LITERARY TEXT 8

The development of hyperfiction and multimedia poetry practically paral-
leled the construction of the World Wide Web; hyperfiction authors right-
fully saw themselves as its pioneers. In the course of nineties, they contin-
ued to push the technical limits of both the Internet and multimedia com-
puter technology. But since much digital art and literature became testbed
applications for new browser features and multimedia plugins, it simul-
taneously locked itself into non-open, industry-controlled code formats.12

Whether intentional or not, digital art thus strongly participated in the re-
formatting of the World Wide Web from an open, operating system- and
browser-agnostic information network to a platform dependent on propi-
etary technology.

By readjusting the reader’s attention from software surfaces which pre-
tended not to be code back to the code itself, codeworks have apparent
aesthetical and political affinities to hacker cultures. While hacker cultures
are far more diverse than the singular term “hacker” suggests13, hackers
could as well be distinguished between those who put things together – like
Free Software and demo programmers – and those who take things apart –
like crackers of serial numbers and communication network hackers from
YIPL/TAP, Phrack, 2600 and Chaos Computer Club schools. Code poets
have factually adopted many poetical forms that were originally developed
by various hacker subcultures from the 1970s to the early 1990s, including
ASCII Art, code slang (like “7331 wAr3z d00d” for “leet [=elite] wares
dood”) and poetry in programming languages (such as Perl poetry), or they
even belong to both the “hacker” and the “art” camp14

From its beginning on, conceptualist net.art engaged in a critical politics of
the Internet and its code, and continues to be closely affiliated with critical
discourse on net politics in such forums as the “Nettime” mailing list. In
its aesthetics, poetics and politics, codework poetry departs from net.art
rather than from hyperfiction and its historical roots in the Brown University
literature program.

How does digital code relate to literary text? If one discusses the poet-
ics of digital code in terms of the poetics of literary text – instead of dis-
cussing literary text in terms of digital code –, one may consider both of
them interrelated without having to subscribe, as John Cayley suggested

12like Shockwave, QuickTime and Flash
13Boris Gröndahl’s (German) Telepolis article “The Script Kiddies Are Not Al-

right” summarizes the multiple, sometimes even antagonistic camps associated with the
term “hacker”, http://www.heise.de/tp/deutsch/html/result.xhtml?url=/tp/
deutsch/inhalt/te/9266/1.html

14like Walter van der Cruijsen fromhttp://www.desk.orgdesk.org and the ASCII Art
Ensemble.

http://www.heise.de/tp/deutsch/html/result.xhtml?url=/tp/deutsch/inhalt/te/9266/1.html
http://www.heise.de/tp/deutsch/html/result.xhtml?url=/tp/deutsch/inhalt/te/9266/1.html
http://www.desk.org


DIGITAL CODE AND LITERARY TEXT 9

in his abstract to the German “p0es1s” conference15, to Friedrich Kit-
tler’s techno-determinist media theory; a theory which, despite all of its
intellectual freshness seem to fall into the metaphysical trap Derrida de-
scribed in “Écriture et différence”: By replacing one metaphysicial cen-
ter (in Kittler’s case: “Geist”/spirit, “Geistesgeschichte”/intellectual history
and “Geisteswissenschaft”/humanities) with another one – technology, his-
tory of technology and technological discourse analysis – it writes on meta-
physics under a different label, contrary to its own claim to have rid itself
from it.

The subtitle of this text writes an open question: “Can notions of text which
were developed without electronic texts in mind be applied to digital code,
and how does literature come into play here?” For the time being, I would
like to answer this question at best provisionally: While all literature should
teach us to read and deal with the textuality of computers and digital poetry,
computers and digital poetry might teach us to pay more attention to codes
and control structures coded into all language. In more general terms, pro-
gram code contaminates in itself two concepts which are traditionally jux-
taposed and unresolved in modern linguistics: the structure, as conceived
of in formalism and structuralism, and the performative, as developed by
speech act theory.

REFERENCES

[Les00] Lawrence Lessig.Code and Other Laws of Cyberspace. Basic Books, New York,
2000. 3

[MB98] Harry Mathews and Alastair Brotchie, editors.Oulipo Compendium. Atlas Press,
London, 1998. 7

[Que61] Raymond Queneau.Cent mille milliards de poèmes. Gallimard, Paris, 1961. 7
[uEH90] Galerie und Edition Hundertmark. George Maciunas und Fluxus-Editionen,

1990. 6

15http://www.p0es1s.net/poetics/symposion2001/a_cayley.html

http://www.p0es1s.net/poetics/symposion2001/a_cayley.html

	Code
	Literature
	Synthesis: putting things together
	Analysis: taking things apart

	References

