


ne Instructions May Do More Than You Think 
authors’ dinner hosted by PC Tech Jarnal  at Fall 

Comdex,  back in own as a computer editor 
o Pascal, editions 1 through 672 (or 

would  soon  make  him. I was 
r table, and, not surprisingly, 
uters, computer writing, and 

k and enjoying it at  the time, I none- 
nce-fiction  writer  when I grew up.  (I 
lite  company,  especially in the com- 
rson  has  told  me  they plan to  write 

science  fiction  “someday.” Given that probably  fewer than 500-I’m guessing  here- 
original science  fiction and fantasy short stories, and perhaps a few more novels than 
that, are published each  year  in  this  country, I see a few  mid-life  crises coming.) 
At  any rate, I had accumulated a small  collection of rejection slips, and fancied my- 
self something of an old hand in the field. At the  end of the dinner, as the  other 
writers complained half-seriously about how little  they  were  paid for writing for Tech 
Journal, I leaned over  to  Jeff and whispered, ‘You  know, the pay  isn’t so bad here. You 
should see what  they  pay for science fiction-ven to the guys  who  win awards!” 
To which  Jeff replied, “I  know.  I’ve been nominated for two Hugos.” 
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Oh. 
Had I known I was seated next to a real, live science-fiction  writer-an award-nominated 
writer, by  God!-I would  have pumped him for all I was worth, but  the possibility had 
never occurred to me. I was at a dinner  put  on by a  computer magazine, seated next 
to an  editor who had  just finished a book about Turbo Pascal, and, gosh, it was obvi- 
ous that  the  appropriate topic was computers. 
For once,  the moral is not “don’t  judge  a book by its cover.”  Jeff  is in fact what he 
appeared to be at face  value: a  computer writer and editor. However, he is more, too; 
face value  wasn’t full value. You’ll similarly find  that face value isn’t always full value 
in computer  programming, and especially so when working in assembly language, 
where many instructions have talents above and beyond their obvious abilities. 
On the  other  hand,  there  are also a  number of instructions, such as LOOP, that  are 
designed to perform specific functions  but  aren’t always the best instructions  for 
those functions. So don’t  judge  a book by its  cover, either. 
Assembly language for  the x86  family isn’t like  any other language (for which we 
should, without hesitation, offer our profuse thanks). Assembly language reflects 
the design of the processor rather than  the way  we think, so it’s full of multiple 
instructions that  perform similar functions, instructions with odd  and often confus- 
ing side effects, and endless ways to string  together  different  instructions to do much 
the same things, often with  seemingly minuscule differences that can turn  out to be 
surprisingly important. 
To produce the best code, you must decide precisely  what  you need to  accomplish, then 
put together  the  sequence of instructions that accomplishes that end most efficiently, 
regardless of  what the instructions are usually  used  for.  That’s why optimization for the 
PC is an art, and it’s  why the best  assembly  language for the x86  family will almost always 
handily outperform compiled code. With that in mind, let’s look past face value- 
and while  we’re at it, I’ll  toss in a few examples of not  judging a book by its  cover. 
The  point to all  this: You must come to regard the x86  family instructions  for what 
they do,  not what you’re used to thinking they do. Yes, SHL shifts a  pattern left-but 
a look-up table can do  the same thing,  and can often do it faster. ADD can indeed 
add two operands, but it  can’t put  the result in  a  third register; LEA can. The instruc- 
tion set is your raw material for writing high-performance  code. By limiting yourself 
to thinking only in certain well-established ways about  the various instructions, you’re 
putting yourself at a substantial disadvantage every time you  sit  down to program. 
In  short,  the x86  family can do much  more  than you  think-if  you’ll use everything 
it has to offer. Give it  a shot! 

Memory Addressing and Arithmetic 
Years ago, I saw a clip on  the David Letterman show in which Letterman walked into 
a  store by the  name of “Just Lamps” and asked, “So what do you  sell here?” 
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“Lamps,” he was told. “Just  lamps.  Can’t  you read?” 
“Lamps,” he said. “I see.  And  what else?” 
From that bit of sublime  idiocy we can learn  much  about divining the full  value of an 
instruction. To  wit: 
Quick, what do  the x86’s memory addressing modes do? 
“Calculate memory addresses,” you no  doubt replied. And you’re right, of course. 
But  what else do they do? 
They perform  arithmetic, that’s  what  they do,  and that’s a distinctly different and 
often useful  perspective on memory address calculations. 
For example, suppose you  have an array  base  address  in BX and  an index into  the 
array  in SI. You could add the two registers together to  address  memory,  like  this: 

a d d  b x . s i  
mov a1 , [ b x l  

Or you could let the processor do  the arithmetic for you in a single instruction: 

mov a1  , [ b x + s i ]  

The two approaches  are functionally interchangeable  but not equivalent from a per- 
formance  standpoint, and which is better  depends  on  the particular context. If it’s a 
one-shot memory access,  it’s  best  to let  the processor perform  the  addition; it’s gen- 
erally  faster at  doing this than a separate ADD instruction would be. If  it’s a memory 
access  within a loop, however,  it’s advantageous on  the 8088 CPU to perform  the 
addition outside the  loop, if possible, reducing effective address calculation  time 
inside the  loop, as in the following: 

a d d  b x . s i  

mov a1  , [ b x ]  
i n c  b x  
1 oop LoopTop 

LoopTop: 

Here, MOV  AL,[BX] is two cycles  faster than MOV  AL,[BX+SI]. 
On a 286 or 386,  however, the balance shifts. MOVAL,[BX+SI] takes no longer  than 
MOV  AL,[BX] on these processors  because  effective address calculations  generally 
take no extra time at all. (According to the MASM manual, one extra clock  is  re- 
quired if three memory addressing components, as  in MOVAL,[BX+SI+l], are used. 
I have not  been able  to  confirm  this from Intel publications, but  then I haven’t looked 
all that  hard.) If you’re optimizing for the 286 or 386, then, you can take  advantage 
of the processor’s  ability to  perform  arithmetic as part of  memory address calcula- 
tions without taking a performance hit. 
The 486  is an odd case,  in  which  the  use  of an index  register or the use  of a base  register 
that’s  the  destination of the  previous  instruction may  slow things  down, so it is  generally but 
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not always better  to perform the  addition  outside the loop on the 486. All memory  ad- 
dressing  calculations are free on the  Pentium, however.  I’ll  discuss 486 performance issues 
in  Chapters 12 and 13, and the Pentium in Chapters 19 through 21. 

Math via Memory Addressing 
You’re probably not particularly wowed to  hear  that you can use addressing  modes 
to  perform memory addressing arithmetic  that would  otherwise  have  to be performed 
with separate  arithmetic  instructions. You  may, however, be a  tad  more  interested  to 
hear  that you can also  use addressing  modes  to  perform  arithmetic  that has nothing 
to do with memory addressing, and with a  couple of advantages over arithmetic  in- 
structions, at that. 
How? 
With LEA, the only instruction  that  performs memory addressing  calculations  but 
doesn’t actually  address  memory. LEA accepts a standard memory  addressing operand, 
but does nothing more than store the calculated  memory  offset  in the specified  register, 
which may be any general-purpose register. The  operation of LEA is illustrated in 
Figure 6.1, which also shows the operation of register-teregister ADD, for comparison. 
What does  that give  us? Two things  that ADD doesn’t provide: the ability to  perform 
addition with either two or  three  operands,  and  the ability to  store  the  result in any 
register, not  just in one of the  source  operands. 
Imagine  that we want to  add BX to DI, add two to  the  result, and store  the  result  in 
AX. The obvious solution is this: 

mov a x . b x  
add a x . d i  
add a x . 2  

(It would be more  compact  to  increment AX twice than  to  add two to it, and would 
probably be faster on an 8088, but that’s not what we’re after  at  the  moment.) An 
elegant  alternative  solution is  simply: 

l e a   a x . [ b x + d i + 2 1  

Likewise, either of the following  would  copy SI plus two to DI 

mov d i   , s i  
add d i . 2  

or: 

l e a   d i  , [ s i + 2 l  

Mind  you, the only components LEA can  add  are BX or BP,  SI or DI, and a  constant 
displacement, so it’s not going  to  replace ADD most of the time. Also, LEA is consid- 
erably slower than ADD on an 8088, although  it is just as fast as ADD on a 286 or 386 
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when  fewer than  three memory addressing components  are used. LEA is 1 cycle 
slower than ADD on a 486 if the sum  of two registers is used to point to  memory, but 
no slower than ADD on a Pentium. On both a 486 and Pentium, LEA can also  be 
slowed  down by addressing interlocks. 

The Wonders of LEA on the 386 
LEA really  comes into its own as a “super-ADD”instruction on the 386,486, and Pentium, 
where it can  take  advantage  of the  enhanced memory  addressing  modes of those pro- 
cessors. (The 486 and Pentium  offer the same  modes as the 386, so I’ll refer only  to the 
386 from now on.)  The 386  can do two very interesting things:  It  can  use any 32-bit 
register (EAX, EBX, and so on) as the memory  addressing  base  register and/or the 
memory  addressing index register, and it can  multiply  any  32-bit  register  used  as an 
index by two, four, or eight in the process of calculating a memory  address, as  shown in 
Figure  6.2.  Let’s  see  what  that’s good for. 
Well, the obvious  advantage is that any two 32-bit  registers, or any  32-bit  register and 
any constant, or any two 32-bit  registers and any constant, can be added together, 
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with the result stored in any  register. This makes the 32-bit LEA much  more gener- 
ally useful than  the  standard 16-bit LEA in the  role of an ADD with an  independent 
destination. 
But what else can LEA do  on a 386, besides add? 
It can multiply any register used as an index. LEA can multiply only by the power-of- 
two values 2,4,  or 8, but that’s useful more  often  than you might  imagine, especially 
when dealing with pointers into tables. Besides, multiplying by 2,4,  or 8 amounts to 
a left shift of 1, 2, or 3 bits, so we can now add  up to two 32-bit registers and a 
constant, and shift (or multiply) one of the registers to some extent-all  with a single 
instruction. For example, 

l e a  edi,TableBase[ecx+edx*4] 

replaces all this 

mov e d i   . e d x  
s h l   e d i  .2 
a d d   e d i   . e c x  
a d d   e d i   . o f f s e t   T a b l e B a s e  

when pointing to an entry in a doubly indexed table. 

Multiplication  with LEA Using Non-Powers of Two 
Are  you impressed yet  with  all that LEA can do on  the 386?  Believe it or  not,  one 
more feature still  awaits  us. LEA can  actually perform a fast  multiply of a 32-bit  register by 
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some values other than powers of two.  You see, the same  32-bit register can be both 
base and index on  the 386, and can be scaled  as the  index while being used un- 
changed as the base. That means that you can,  for example, multiply EBX  by 5 with: 

1 ea   ebx .   [ebx+ebx*41  

Without LEA and scaling, multiplication of  EBX  by 5 would require  either  a rela- 
tively  slow MUL, along with a set-up instruction or two, or  three  separate instructions 
along  the lines of the following 

mov e d x . e b x  
s h l  e b x . 2  
a d d   e b x , e d x  

and would  in either case require  the destruction of the contents of another register. 
Multiplying a 32-bit  value by a non-power-of-two multiplier in just 2 cycles is a pretty 
neat trick, even though it works  only on a 386 or 486. 

The full list of values  that LEA can  multiply  a register by on a 386 or 486 is: 2, 3, p 4, 5, 8, and 9. That  list doesn 't include  every multiplier you might want, but it 
covers some common1y used ones, and the  performance  is hard to beat. 

I'd like to extend my thanks to Duane  Strong of Metagraphics for his help in brain- 
storming uses for  the 386  version of LEA and for  pointing out  the complications of 
486 instruction timings. 
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