

ne Instructions May Do More Than You Think
authors’ dinner hosted by PC Tech Jarnal at Fall

Comdex, back in own as a computer editor
o Pascal, editions 1 through 672 (or

would soon make him. I was
r table, and, not surprisingly,
uters, computer writing, and

k and enjoying it at the time, I none-
nce-fiction writer when I grew up. (I
lite company, especially in the com-
rson has told me they plan to write

science fiction “someday.” Given that probably fewer than 500-I’m guessing here-
original science fiction and fantasy short stories, and perhaps a few more novels than
that, are published each year in this country, I see a few mid-life crises coming.)
At any rate, I had accumulated a small collection of rejection slips, and fancied my-
self something of an old hand in the field. At the end of the dinner, as the other
writers complained half-seriously about how little they were paid for writing for Tech
Journal, I leaned over to Jeff and whispered, ‘You know, the pay isn’t so bad here. You
should see what they pay for science fiction-ven to the guys who win awards!”
To which Jeff replied, “I know. I’ve been nominated for two Hugos.”

127

how machine instructions may do more than you think

Oh.
Had I known I was seated next to a real, live science-fiction writer-an award-nominated
writer, by God!-I would have pumped him for all I was worth, but the possibility had
never occurred to me. I was at a dinner put on by a computer magazine, seated next
to an editor who had just finished a book about Turbo Pascal, and, gosh, it was obvi-
ous that the appropriate topic was computers.
For once, the moral is not “don’t judge a book by its cover.” Jeff is in fact what he
appeared to be at face value: a computer writer and editor. However, he is more, too;
face value wasn’t full value. You’ll similarly find that face value isn’t always full value
in computer programming, and especially so when working in assembly language,
where many instructions have talents above and beyond their obvious abilities.
On the other hand, there are also a number of instructions, such as LOOP, that are
designed to perform specific functions but aren’t always the best instructions for
those functions. So don’t judge a book by its cover, either.
Assembly language for the x86 family isn’t like any other language (for which we
should, without hesitation, offer our profuse thanks). Assembly language reflects
the design of the processor rather than the way we think, so it’s full of multiple
instructions that perform similar functions, instructions with odd and often confus-
ing side effects, and endless ways to string together different instructions to do much
the same things, often with seemingly minuscule differences that can turn out to be
surprisingly important.
To produce the best code, you must decide precisely what you need to accomplish, then
put together the sequence of instructions that accomplishes that end most efficiently,
regardless of what the instructions are usually used for. That’s why optimization for the
PC is an art, and it’s why the best assembly language for the x86 family will almost always
handily outperform compiled code. With that in mind, let’s look past face value-
and while we’re at it, I’ll toss in a few examples of not judging a book by its cover.
The point to all this: You must come to regard the x86 family instructions for what
they do, not what you’re used to thinking they do. Yes, SHL shifts a pattern left-but
a look-up table can do the same thing, and can often do it faster. ADD can indeed
add two operands, but it can’t put the result in a third register; LEA can. The instruc-
tion set is your raw material for writing high-performance code. By limiting yourself
to thinking only in certain well-established ways about the various instructions, you’re
putting yourself at a substantial disadvantage every time you sit down to program.
In short, the x86 family can do much more than you think-if you’ll use everything
it has to offer. Give it a shot!

Memory Addressing and Arithmetic
Years ago, I saw a clip on the David Letterman show in which Letterman walked into
a store by the name of “Just Lamps” and asked, “So what do you sell here?”

1 28 Chapter 6

“Lamps,” he was told. “Just lamps. Can’t you read?”
“Lamps,” he said. “I see. And what else?”
From that bit of sublime idiocy we can learn much about divining the full value of an
instruction. To wit:
Quick, what do the x86’s memory addressing modes do?
“Calculate memory addresses,” you no doubt replied. And you’re right, of course.
But what else do they do?
They perform arithmetic, that’s what they do, and that’s a distinctly different and
often useful perspective on memory address calculations.
For example, suppose you have an array base address in BX and an index into the
array in SI. You could add the two registers together to address memory, like this:

a d d b x . s i
mov a1 , [b x l

Or you could let the processor do the arithmetic for you in a single instruction:

mov a1 , [b x + s i]

The two approaches are functionally interchangeable but not equivalent from a per-
formance standpoint, and which is better depends on the particular context. If it’s a
one-shot memory access, it’s best to let the processor perform the addition; it’s gen-
erally faster at doing this than a separate ADD instruction would be. If it’s a memory
access within a loop, however, it’s advantageous on the 8088 CPU to perform the
addition outside the loop, if possible, reducing effective address calculation time
inside the loop, as in the following:

a d d b x . s i

mov a1 , [b x]
i n c b x
1 oop LoopTop

LoopTop:

Here, MOV AL,[BX] is two cycles faster than MOV AL,[BX+SI].
On a 286 or 386, however, the balance shifts. MOVAL,[BX+SI] takes no longer than
MOV AL,[BX] on these processors because effective address calculations generally
take no extra time at all. (According to the MASM manual, one extra clock is re-
quired if three memory addressing components, as in MOVAL,[BX+SI+l], are used.
I have not been able to confirm this from Intel publications, but then I haven’t looked
all that hard.) If you’re optimizing for the 286 or 386, then, you can take advantage
of the processor’s ability to perform arithmetic as part of memory address calcula-
tions without taking a performance hit.
The 486 is an odd case, in which the use of an index register or the use of a base register
that’s the destination of the previous instruction may slow things down, so it is generally but

Looking Past Face Value 129

not always better to perform the addition outside the loop on the 486. All memory ad-
dressing calculations are free on the Pentium, however. I’ll discuss 486 performance issues
in Chapters 12 and 13, and the Pentium in Chapters 19 through 21.

Math via Memory Addressing
You’re probably not particularly wowed to hear that you can use addressing modes
to perform memory addressing arithmetic that would otherwise have to be performed
with separate arithmetic instructions. You may, however, be a tad more interested to
hear that you can also use addressing modes to perform arithmetic that has nothing
to do with memory addressing, and with a couple of advantages over arithmetic in-
structions, at that.
How?
With LEA, the only instruction that performs memory addressing calculations but
doesn’t actually address memory. LEA accepts a standard memory addressing operand,
but does nothing more than store the calculated memory offset in the specified register,
which may be any general-purpose register. The operation of LEA is illustrated in
Figure 6.1, which also shows the operation of register-teregister ADD, for comparison.
What does that give us? Two things that ADD doesn’t provide: the ability to perform
addition with either two or three operands, and the ability to store the result in any
register, not just in one of the source operands.
Imagine that we want to add BX to DI, add two to the result, and store the result in
AX. The obvious solution is this:

mov a x . b x
add a x . d i
add a x . 2

(It would be more compact to increment AX twice than to add two to it, and would
probably be faster on an 8088, but that’s not what we’re after at the moment.) An
elegant alternative solution is simply:

l e a a x . [b x + d i + 2 1

Likewise, either of the following would copy SI plus two to DI

mov d i , s i
add d i . 2

or:

l e a d i , [s i + 2 l

Mind you, the only components LEA can add are BX or BP, SI or DI, and a constant
displacement, so it’s not going to replace ADD most of the time. Also, LEA is consid-
erably slower than ADD on an 8088, although it is just as fast as ADD on a 286 or 386

1 30 Chapter 6

when fewer than three memory addressing components are used. LEA is 1 cycle
slower than ADD on a 486 if the sum of two registers is used to point to memory, but
no slower than ADD on a Pentium. On both a 486 and Pentium, LEA can also be
slowed down by addressing interlocks.

The Wonders of LEA on the 386
LEA really comes into its own as a “super-ADD”instruction on the 386,486, and Pentium,
where it can take advantage of the enhanced memory addressing modes of those pro-
cessors. (The 486 and Pentium offer the same modes as the 386, so I’ll refer only to the
386 from now on.) The 386 can do two very interesting things: It can use any 32-bit
register (EAX, EBX, and so on) as the memory addressing base register and/or the
memory addressing index register, and it can multiply any 32-bit register used as an
index by two, four, or eight in the process of calculating a memory address, as shown in
Figure 6.2. Let’s see what that’s good for.
Well, the obvious advantage is that any two 32-bit registers, or any 32-bit register and
any constant, or any two 32-bit registers and any constant, can be added together,

Looking Past Face Value 1 3 1

with the result stored in any register. This makes the 32-bit LEA much more gener-
ally useful than the standard 16-bit LEA in the role of an ADD with an independent
destination.
But what else can LEA do on a 386, besides add?
It can multiply any register used as an index. LEA can multiply only by the power-of-
two values 2,4, or 8, but that’s useful more often than you might imagine, especially
when dealing with pointers into tables. Besides, multiplying by 2,4, or 8 amounts to
a left shift of 1, 2, or 3 bits, so we can now add up to two 32-bit registers and a
constant, and shift (or multiply) one of the registers to some extent-all with a single
instruction. For example,

l e a edi,TableBase[ecx+edx*4]

replaces all this

mov e d i . e d x
s h l e d i .2
a d d e d i . e c x
a d d e d i . o f f s e t T a b l e B a s e

when pointing to an entry in a doubly indexed table.

Multiplication with LEA Using Non-Powers of Two
Are you impressed yet with all that LEA can do on the 386? Believe it or not, one
more feature still awaits us. LEA can actually perform a fast multiply of a 32-bit register by

132 Chapter 6

some values other than powers of two. You see, the same 32-bit register can be both
base and index on the 386, and can be scaled as the index while being used un-
changed as the base. That means that you can, for example, multiply EBX by 5 with:

1 ea ebx . [ebx+ebx*41

Without LEA and scaling, multiplication of EBX by 5 would require either a rela-
tively slow MUL, along with a set-up instruction or two, or three separate instructions
along the lines of the following

mov e d x . e b x
s h l e b x . 2
a d d e b x , e d x

and would in either case require the destruction of the contents of another register.
Multiplying a 32-bit value by a non-power-of-two multiplier in just 2 cycles is a pretty
neat trick, even though it works only on a 386 or 486.

The full list of values that LEA can multiply a register by on a 386 or 486 is: 2, 3, p 4, 5, 8, and 9. That list doesn 't include every multiplier you might want, but it
covers some common1y used ones, and the performance is hard to beat.

I'd like to extend my thanks to Duane Strong of Metagraphics for his help in brain-
storming uses for the 386 version of LEA and for pointing out the complications of
486 instruction timings.

Looking Past Face Value 133

	next:
	home:
	previous:

