
chapter 61

frames of reference

k

entals of the Math behind 3-D Graphics
,‘ Several years ago, \,opened a column in Dr. DobbSJournaZwith a story about singing

my daughter to sle les’ songs. Beatles’ songs, at least the earlier ones,
tend to be bouncy t, which makes them suitable goodnight fodder-
and there are a lot of eful hedge against terminal boredom. So for many
good reasons, “Ca ve ”and “A Hard Day’s Night” and “Help!” and the
rest were evening shples for years.

. You see, I got my wife some Beatles tapes for Christmas, and
ning to them in the car, and now that my daughter has heard
$an barely stand to be in the same room, much less fall asleep,

when I sing those sbngs.
What’s noteworthy is that the only variable involved in this change was my daughter’s
frame of reference. My singing hasn’t gotten any worse over the last four years. (I’m
not sure it’s possibkfor my singing to get worse.) All that changed was my daughter’s
frame of reference for those songs. The rest of the universe stayed the same; the
change was in her mind, lock, stock, and barrel.
Often, the key to solving a problem, or to working on a problem efficiently, is having
a proper frame of reference. The model you have of a problem you’re tackling often
determines how deeply you can understand the problem, and how flexible and in-
novative you’ll be able to be in solving it.

F

1133

An excellent example of this, and one that I’ll discuss toward the end of this chapter,
is that of 3-D transfomzation-the process of converting coordinates from one coordi-
nate space to another, for example from worldspace to viewspace. The way this is
traditionally explained is functional, but not particularly intuitive, and fairly hard to
visualize. Recently, I’ve come across another way of looking at transforms that seems
to me to be far easier to grasp. The two approaches are technically equivalent, s o the
difference is purely a matter of how we choose to view things-but sometimes that’s
the most important sort of difference.
Before we can talk about transforming between coordinate spaces, however, we need
two building blocks: dot products and cross products.

3-D Math
At this point in the book, I was originally going to present a BSP-based renderer, to
complement the BSP compiler I presented in the previous chapter. What changed
my plans was the considerable amount of mail about 3-D math that I’ve gotten in
recent months. In every case, the writer has bemoaned his/her lack of expertise with 3-D
math, and has asked what books about 3-D math I’d recommend, and how else he/she
could learn more.
That’s a commendable attitude, but the truth is, there’s not all that much to 3-D
math, at least not when it comes to the sort of polygon-based, realtime 3-D that’s
done on PCs. You really need only two basic math tools beyond simple arithmetic:
dot products and cross products, and really mostly just the former. My friend Chris
Hecker points out that this is an oversimplification; he notes that lots more math-
related stuff, like BSP trees, graphs, discrete math for edge stepping, and affine and
perspective texture mappings, goes into a productionquality game. While that’s surely
true, dot and cross products, together with matrix math and perspective projection,
constitute the bulk of what most people are asking about when they inquire about
“3-D math,” and, as we’ll see, are key tools for a lot of useful 3-D operations.
The other thing the mail made clear was that there are a lot of people out there who
don’t understand either type of product, at least insofar as they apply to 3-D. Since
much or even most advanced 3-D graphics machinery relies to a greater or lesser
extent on dot products and cross products (even the line intersection formula I
discussed in the last chapter is actually a quotient of dot products), I’m going to
spend this chapter examining these basic tools and some of their 3-D applications. If
this is old hat to you, my apologies, and I’ll return to BSP-based rendering in the
next chapter.

Foundation Definitions
The dot and cross products themselves are straightforward and require almost no
context to understand, but I need to define some terms I’ll use when describing applica-
tions of the products, so I’ll do that now, and then get started with dot products.

1 1 34 Chapter 61

I’m going to have to assume you have some math background, or we’ll never get to
the good stuff. So, I’m just going to quickly define a vector as a direction and a mag-
nitude, represented as a coordinate pair (in 2-D) or triplet (in 3-D), relative to the
origin. That’s a pretty sloppy definition, but it’ll do for our purposes; if you want the
Real McCoy, I suggest you check out Calculus and Analytic Geometry, by Thomas and
Finney (Addison-Wesley: ISBN 0-201-52929-7).
So, for example, in 3-D, the vector V = [5 0 51 has a length, or magnitude, by the
Pythagorean theorem, of

(where vertical double bars denote vector length), and a direction in the plane of
the x and z axes, exactly halfway between those two axes.
I’ll be working in a left-handed coordinate system, whereby if you wrap the fingers of
your left hand around the z axis with your thumb pointing in the positive z direction,
your fingers will curl from the positive x axis to the positive y axis. The positive x axis
runs left to right across the screen, the positive y axis runs bottom to top across the
screen, and the positive z axis runs into the screen.
For our purposes, projection is the process of mapping coordinates onto a line or sur-
face. Perspectiveprojection projects 3-D coordinates onto a viewplane, scaling coordinates
according to their z distance from the viewpoint in order to provide proper perspec-
tive. Objectspace is the coordinate space in which an object is defined, independent of
other objects and the world itself. Worldspace is the absolute frame of reference for a 3-D
world; all objects’ locations and orientations are with respect to worldspace, and this is
the frame of reference around which the viewpoint and view direction move. Viewspace
is worldspace as seen from the viewpoint, looking in the view direction. Screenspace is
viewspace after perspective projection and scaling to the screen.
Finally, transformation is the process of converting points from one coordinate space
into another; in our case, that’ll mean rotating and translating (moving) points from
objectspace or worldspace to viewspace.
For additional information, you might want to check out Foley & van Dam’s Com-
puter Graphics (ISBN 0-201-12110-’7), or the chapters in this book dealing with my
X-Sharp 3-D graphics library.

The Dot Product
Now we’re ready to move on to the dot product. Given two vectors U = [u, u, u,] and
V = [v, v, v,] , their dot product, denoted by the symbol 0, is calculated as:

Frames of Reference 1 1 35

As you can see, the result is a scalar value (a single real-valued number), not
another vector.
Now that we know how to calculate a dot product, what does that get us? Not much.
The dot product isn’t of much use for graphics until you start thinking of it this way

u v = cos(8) IPII llvll (eq. 3)
where q is the angle between the two vectors, and the other two terms are the lengths
of the vectors, as shown in Figure 61 .l. Although it’s not immediately obvious, equa-
tion 3 has a wide variety of applications in 3-D graphics.

Dot Products of Unit Vectors
The simplest case of the dot product is when both vectors are unit vectars; that is, when their
lengths are both one, as calculated as in Equation 1. In this case, equation 3 simplifies to:

u v = cos(e) (eq. 4)

In other words, the dot product of two unit vectors is the cosine of the angle between
them.
One obvious use of this is to find angles between unit vectors, in conjunction with an
inverse cosine function or lookup table. A more useful application in 3-D graphics

llull l lvl l

The dot product.
Figure 6 1 . 1

1 1 36 Chapter 61

lies in lighting surfaces, where the cosine of the angle between incident light and the
normal (perpendicular vector) of a surface determines the fraction of the light’s full
intensity at which the surface is illuminated, as in

where Is is the intensity of illumination of the surface, I, is the intensity of the light,
and q is the angle between -D, (where Dl is the light direction vector) and the surface
normal. If the inverse light vector and the surface normal are both unit vectors, then
this calculation can be performed with four multiplies and three additions-and no
explicit cosine calculations-as

I, = I& ”), (eq. 6)

where Ns is the surface unit normal and D, is the light unit direction vector, as shown
in Figure 61.2.

Cross Products and the Generation of Polygon Normals
One question equation 6 begs is where the surface unit normal comes from. One
approach is to store the end of a surface normal as an extra data point with each
polygon (with the start being some point that’s already in the polygon), and trans-
form it along with the rest of the points. This has the advantage that if the normal
starts out as a unit normal, it will end up that way too, if only rotations and transla-
tions (but not scaling and shears) are performed.
The problem with having an explicit normal is that it will remain a normal-that is,
perpendicular to the surface-only through viewspace. Rotation, translation, and

The dot product as used in calculating lighting intensity.
Figure 61.2

Frames of Reference 1 1 37

scaling preserve right angles, which is why normals are still normals in viewspace, but
perspective projection does not preserve angles, so vectors that were surface normals
in viewspace are no longer normals in screenspace.
Why does this matter? It matters because, on average, half the polygons in any scene
are facing away from the viewer, and hence shouldn’t be drawn. One way to identify
such polygons is to see whether they’re facing toward or away from the viewer; that
is, whether their normals have negative z values (so they’re visible) or positive z Val-
ues (so they should be culled). However, we’re talking about screenspace normals
here, because the perspective projection can shift a polygon relative to the viewpoint
so that although its viewspace normal has a negative z, its screenspace normal has a
positive z, and vice-versa, as shown in Figure 61.3. So we need screenspace normals,
but those can’t readily be generated by transformation from worldspace.

viewpoint in viewspace

x,

viewplane in screenspace after perspective projection

A problem with determining front/back visibi1iQ.
Figure 61.3

1 138 Chapter 61

The solution is to use the cross product of two of the polygon's edges to generate a
normal. The formula for the cross product is:

u x v = [u2v3 -u3v2 u3v1 - q v 3 y v 2 - U 2 V 1] (eq. 7)

(Note that the cross product operation is denoted by an X.) Unlike the dot product,
the result of the cross product is a vector. Not just any vector, either; the vector gen-
erated by the cross product is perpendicular to both of the original vectors. Thus,
the cross product can be used to generate a normal to any surface for which you
have two vectors that lie within the surface. This means that we can generate the
screenspace normals we need by taking the cross product of two adjacent polygon
edges, as shown in Figure 61.4.

In fact, we can cull with only one-third the work needed to generate a full cmss p product; because we 're interested only in the sign of the z component of the nor-
mal, we can skip entirely calculating the x and y components. The only caveat is to
be careful that neither edge you choose is zero-length and that the edges aren 't
collineal: because the dot product can ?produce a normal in those cases.

How the cross product of polygon edge vectors generates a polygon normal.
Figure 6 1.4

Frames of Reference 1 1 39

Perhaps the most often asked question about cross products is ‘Which way do normals
generated by cross products go?” In a left-handed coordinate system, curl the fingers
of your left hand so the fingers curl through an angle of less than 180 degrees from
the first vector in the cross product to the second vector. Your thumb now points in
the direction of the normal.
If you take the cross product of two orthogonal (right-angle) unit vectors, the result
will be a unit vector that’s orthogonal to both of them. This means that if you’re
generating a new coordinate space-such as a new viewing frame of reference-you
only need to come up with unit vectors for two of the axes for the new coordinate
space, and can then use their cross product to generate the unit vector for the third
axis. If you need unit normals, and the two vectors being crossed aren’t orthogonal
unit vectors, you’ll have to normalize the resulting vector; that is, divide each of the
vector’s components by the length of the vector, to make it a unit long.

Using the Sign of the Dot Product
The dot product is the cosine of the angle between two vectors, scaled by the magni-
tudes of the vectors. Magnitudes are always positive, so the sign of the cosine determines
the sign of the result. The dot product is positive if the angle between the vectors is less
than 90 degrees, negative if it’s greater than 90 degrees, and zero if the angle is exactly
90 degrees. This means thatjust the sign of the dot product suffices for tests involving
comparisons of angles to 90 degrees, and there are more of those than you’d think.
Consider, for example, the process of backface culling, which we discussed above in
the context of using screenspace normals to determine polygon orientation relative
to the viewer. The problem with that approach is that it requires each polygon to be
transformed into viewspace, then perspective projected into screenspace, before the
test can be performed, and that involves a lot of time-consuming calculation. In-
stead, we can perform culling way back in worldspace (or even earlier, in objectspace,
if we transform the viewpoint into that frame of reference) , given only a vertex and
a normal for each polygon and a location for the viewer.
Here’s the trick: Calculate the vector from the viewpoint to any vertex in the polygon
and take its dot product with the polygon’s normal, as shown in Figure 61.5. If the
polygon is facing the viewpoint, the result is negative, because the angle between the
two vectors is greater than 90 degrees. If the polygon is facing away, the result is
positive, and if the polygon is edge-on, the result is 0. That’s all there is to it-and
this sort of backface culling happens before any transformation or projection at all is
performed, saving a great deal of work for the half of all polygons, on average, that
are culled.
Backface culling with the dot product is just a special case of determining which side of
a plane any point (in this case, the viewpoint) is on. The same trick can be applied
whenever you want to determine whether a point is in front of or behind a plane,

1 1 40 Chapter 61

polygon 0 polygon 1

L; i-"

vo* N0<0, ; Vl.N1>0,
so pol gon O
faces orward & '"-, faces Lackward &
is visible

r ; so pol gon O

* ' is not visible

viewpoint in viewspace

Bacyace culling with the dot product.
Figure 61.5

where a plane is described by any point that's on the plane (which I'll call the plane
origin), plus a plane normal. One such application is in clipping a line (such as a
polygon edge) to a plane. Just do a dot product between the plane normal and the
vector from one line endpoint to the plane origin, and repeat for the other line end-
point. If the signs of the dot products are the same, no clipping is needed; if they differ,
clipping is needed. And yes, the dot product is also the way to do the actual clipping;
but before we can talk about that, we need to understand the use of the dot product
for projection.

Using the Dot Product for Projection
Consider Equation 3 again, but this time make one of the vectors, say V, a unit vector.
Now the equation reduces to:

In other words, the result is the cosine of the angle between the two vectors, scaled
by the magnitude of the non-unit vector. Now, consider that cosine is really just the

Frames of Reference 1 1 41

"""."""""""..
unit vector U

4 F
U * V

How the dot product with a unit vector performs a projection.
Figure 61.6

length of the adjacent leg of a right triangle, and think of the non-unit vector as the
hypotenuse of a right triangle, and remember that all sides of similar triangles scale
equally. What it all works out to is that the value of the dot product of any vector with
a unit vector is the length of the first vector projected onto the unit vector, as shown
in Figure 61.6.
This unlocks all sorts of neat stuff. Want to know the distance from a point to a
plane? Just dot the vector from the point P to the plane origin 0, with the plane unit
normal N,, to project the vector onto the normal, then take the absolute value

distance = I p - $) . Elp[

as shown in Figure 61.7.
Want to clip a line to a plane? Calculate the distance from one endpoint to the
plane, as just described, and dot the whole line segment with the plane normal, to
get the full length of the line along the plane normal. The ratio of the two dot
products is then how far along the line from the endpoint the intersection point is;
just move along the line segment by that distance from the endpoint, and you're at
the intersection point, as shown in Listing 61.1.

LISTING 61.1 161-l.C
11 Given two line endpoints, a point on a plane, and a unit normal
I ! for the plane, returns the point of intersection of the line
11 and the plane i n intersectpoint.
#define DOT-PROOUCT(x,y) CxCOl*yCOl+x[ll*yC1l+x[21*yC2l)
void LineIntersectPlane (float *linestart. float *lineend.

{
float *planeorigin. float *planenormal, float *intersectpoint)

float veclC31. projectedlinelength, startdistfromplane. scale;
veclCO] - linestart[Ol - planeoriginC01;
vecl[ll - linestartCl] - planeoriginC11;

1 142 Chapter 61

veclC2l - linestartC21 - planeoriginC21:
startdistfromplane - OOT-PROOUCT(vec1. planenormal):
if (startdistfromplane - 0)
I

/ / point is in plane
intersectpointC01 - linestartC01:
intersectpointC11 - linestartC11;
intersectpointCZ1 - linestartC11:
return:

I
veclCO1 - linestartCO1 - lineendC01:
veclCll - linestartcll - lineendC11:
vecl[21 - linestartC21 - lineendC21:
projectedlinelength - DOT-PRODUCT(vec1, planenormal):
scale - startdistfromplane / projectedlinelength:
intersectpointC01 - 1inestartCOl - vecl[Ol * scale;
intersectpoint[l] - linestartCl] - vecl[ll * scale:
intersectpointC21 - 1inestartCll - veclC21 * scale;

1

Rotation by Projection
We can use the dot product’s projection capability to look at rotation in an interest-
ing way. Typically, rotations are represented by matrices. This is certainly a workable
representation that encapsulates all aspects of transformation in a single object, and
is ideal for concatenations of rotations and translations. One problem with matrices,
though, is that many people, myself included, have a hard time looking at a matrix of
sines and cosines and visualizing what’s actually going on. So when two 3 D experts, John

Using the dot product to get the distance from a point to a plane.
Figure 61.7

Frames of Reference 1 143

Carmack and Billy Zelsnack, mentioned that they think of rotation differently, in a
way that seemed more intuitive to me, I thought it was worth passing on.
Their approach is this: Think of rotation as projecting coordinates onto new axes.
That is, given that you have points in, say, worldspace, define the new coordinate
space (viewspace, for example) you want to rotate to by a set of three orthogonal unit
vectors defining the new axes, and then project each point onto each of the three axes to
get the coordinates in the new coordinate space, as shown for the 2-D case in Figure
61.8. In 3-D, this involves three dot products per point, one to project the point onto
each axis. Translation can be done separately from rotation by simple addition.

Rotation by projection is exactly the same as rotation via matrix multiplication; in
fact, the rows of a rotation matrix are the orthogonal unit vectors pointing along
the new axes. Rotation byprojection buys us no technical advantages, so that b not
what b important here; the key is that the concept of rotation by projection, to-
gether with a separate translation step, gives us a new way to look at transformation
that I, for one, find easier to visualize and experiment with. A new frame of refer-
ence for how we think about 3-0 frames of reference, f y o u will.

Three things I’ve learned over the years are that it never hurts to learn a new way of
looking at things, that it helps to have a clearer, more intuitive model in your head of
whatever it is you’re working on, and that new tools, or new ways to use old tools, are
Good Things. My experience has been that rotation by projection, and dot product
tricks in general, offer those sorts of benefits for 3-D.

y axis

Rotation to a new coordinate space by projection onto new axes.
Figure 6 1.8

1 1 44 Chapter 61

	next:
	previous:
	home:

