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entals of the Math behind 3-D Graphics 
,‘ Several  years ago,  \,opened a column  in Dr. DobbSJournaZwith a story about singing 

my daughter  to sle les’ songs. Beatles’ songs, at least the earlier  ones, 
tend to be  bouncy t, which makes them suitable goodnight  fodder- 
and  there  are a lot of eful  hedge against terminal  boredom. So for many 
good reasons, “Ca  ve ”and “A Hard Day’s Night” and  “Help!”  and  the 
rest were evening shples for years. 

. You see, I got my  wife some Beatles tapes for Christmas, and 
ning  to  them in the car, and now that my daughter has heard 
$an barely stand  to  be  in  the same room,  much less fall asleep, 

when I sing  those sbngs. 
What’s noteworthy is that  the only  variable  involved in this change was  my daughter’s 
frame of reference. My singing hasn’t gotten any  worse  over the last four years. (I’m 
not sure it’s possibkfor my singing to get worse.) All that  changed was  my daughter’s 
frame of reference  for those songs. The rest of the universe stayed the same; the 
change was in her mind, lock, stock, and  barrel. 
Often,  the key to solving a  problem, or to working on a  problem efficiently, is having 
a  proper  frame of reference. The model you  have  of a  problem you’re tackling often 
determines how deeply you can understand  the  problem,  and how flexible and in- 
novative  you’ll be able to be in solving it. 
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An excellent example of this, and  one that I’ll discuss  toward the  end of this chapter, 
is that of 3-D transfomzation-the process of converting coordinates  from one coordi- 
nate space to another,  for example from worldspace to viewspace. The way this is 
traditionally explained is functional, but  not particularly intuitive, and fairly hard to 
visualize.  Recently,  I’ve come across another way  of looking at transforms that seems 
to me to  be far easier to grasp. The two approaches  are technically equivalent, s o  the 
difference is purely a  matter of  how we choose to view things-but sometimes that’s 
the most important sort of difference. 
Before we can talk about transforming between coordinate spaces, however, we need 
two building blocks: dot products and cross products. 

3-D Math 
At this point in the book, I was originally going to present  a BSP-based renderer, to 
complement the BSP compiler  I  presented in the previous chapter. What changed 
my plans was the considerable amount of  mail about 3-D math that I’ve gotten in 
recent months. In every  case, the writer  has bemoaned his/her lack  of expertise with 3-D 
math, and has  asked  what  books about 3-D math I’d recommend, and how  else he/she 
could  learn  more. 
That’s  a  commendable  attitude, but  the  truth is, there’s not all that  much to 3-D 
math,  at least not when it comes to  the sort of polygon-based, realtime 3-D that’s 
done  on PCs.  You really need only two basic math tools beyond simple arithmetic: 
dot products and cross products, and really  mostly just  the former. My friend Chris 
Hecker  points out  that this is an oversimplification; he notes  that lots more  math- 
related stuff, like BSP trees, graphs, discrete math for  edge  stepping, and affine and 
perspective texture mappings, goes into  a  productionquality game. While  that’s  surely 
true,  dot  and cross products,  together with matrix math  and perspective projection, 
constitute the bulk of what most people  are asking about when they inquire  about 
“3-D math,”  and, as  we’ll see, are key tools for  a  lot of  useful 3-D operations. 
The  other thing the mail made clear was that  there  are  a  lot of people out  there who 
don’t  understand  either type  of product,  at least insofar as  they apply to 3-D. Since 
much or even most advanced 3-D graphics machinery relies to a  greater  or lesser 
extent  on  dot  products  and cross products (even the line intersection formula  I 
discussed in the last chapter is actually a  quotient of dot  products),  I’m  going to 
spend this chapter  examining these basic tools and some of their 3-D applications. If 
this is old hat to you, my apologies, and I’ll return to BSP-based rendering in the 
next chapter. 

Foundation  Definitions 
The  dot  and cross products themselves are straightforward and  require almost no 
context to understand, but  I  need to define some terms I’ll  use  when  describing  applica- 
tions of the  products, so I’ll do that now, and  then  get  started with dot products. 
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I’m going to have  to  assume  you  have some math  background, or we’ll never get to 
the  good stuff. So, I’m just going to quickly define  a vector as a  direction and a mag- 
nitude,  represented as a  coordinate pair (in 2-D) or triplet (in 3-D),  relative to the 
origin. That’s a pretty sloppy definition, but it’ll do for our purposes; if you  want the 
Real  McCoy, I suggest  you check out Calculus  and  Analytic Geometry, by Thomas and 
Finney (Addison-Wesley: ISBN 0-201-52929-7). 
So, for  example, in 3-D, the vector V = [5 0 51 has a length,  or  magnitude, by the 
Pythagorean theorem, of 

(where vertical double bars denote vector length),  and a  direction in the  plane of 
the  x and z axes,  exactly halfway between those two axes. 
I’ll be working in a  left-handed  coordinate system,  whereby if you  wrap the fingers of 
your left hand  around  the z axis  with your thumb  pointing  in  the positive z direction, 
your fingers will curl  from  the positive x axis to the positive y axis. The positive x axis 
runs left to right across the  screen, the positive y axis runs bottom to top across the 
screen, and  the positive z axis runs  into  the  screen. 
For our purposes, projection is the process of mapping coordinates onto  a line or sur- 
face. Perspectiveprojection projects 3-D coordinates onto a viewplane,  scaling coordinates 
according to their z distance from the viewpoint  in order to provide proper perspec- 
tive. Objectspace is the coordinate space in which an object is defined,  independent of 
other objects and the world  itself. Worldspace is the absolute  frame of reference for a 3-D 
world;  all  objects’ locations and orientations are with respect to  worldspace, and this is 
the frame of reference around which the viewpoint and view direction move. Viewspace 
is worldspace as seen from the viewpoint, looking in the view direction. Screenspace is 
viewspace after perspective projection and scaling  to the screen. 
Finally, transformation is the process of converting points from one coordinate space 
into  another;  in  our case, that’ll mean  rotating and translating (moving) points from 
objectspace or worldspace to viewspace. 
For additional  information, you might want to check out Foley & van  Dam’s Com- 
puter Graphics (ISBN 0-201-12110-’7), or  the  chapters in this book dealing with my 
X-Sharp 3-D graphics library. 

The Dot Product 
Now we’re ready to move on to the  dot  product. Given  two vectors U = [u, u, u,] and 
V = [v, v, v,] , their  dot  product,  denoted by the symbol 0, is calculated as: 
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As you can  see,  the  result is a  scalar value (a single  real-valued number), not 
another vector. 
Now that we know  how to  calculate  a dot  product, what does  that  get us? Not much. 
The  dot  product isn’t of much use for  graphics  until you start  thinking of it this way 

u v = cos(8) IPII llvll (eq. 3) 
where q is the  angle between the two vectors, and  the  other two terms  are the lengths 
of the vectors, as  shown in Figure 61 .l. Although it’s not immediately obvious, equa- 
tion 3 has a wide  variety of applications in 3-D graphics. 

Dot  Products of Unit Vectors 
The simplest  case  of  the dot product is when both vectors are unit vectars; that is, when  their 
lengths are  both  one, as calculated as in Equation 1. In this  case, equation 3 simplifies  to: 

u v = cos(e) (eq. 4) 

In  other words, the dot  product of two unit vectors is the cosine of the  angle between 
them. 
One obvious  use of this is to  find  angles between unit vectors, in  conjunction with an 
inverse cosine function or lookup  table. A more useful application  in 3-D graphics 

llull l lvl l 

The dot product. 
Figure 6 1 . 1 
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lies in lighting surfaces, where the cosine of the angle between incident light and  the 
normal  (perpendicular vector) of a surface determines  the fraction of the light’s full 
intensity at which the surface is illuminated, as in 

where Is is the intensity  of illumination of the surface, I, is the intensity  of the light, 
and q is the angle between -D, (where Dl is the light direction vector) and  the  surface 
normal. If the inverse light vector and  the surface normal  are  both  unit vectors, then 
this calculation can be  performed with four multiplies and  three additions-and no 
explicit  cosine  calculations-as 

I, = I& ”), (eq. 6) 

where Ns is the surface unit  normal and D, is the  light  unit direction vector,  as  shown 
in Figure 61.2. 

Cross  Products  and the Generation of Polygon  Normals 
One question equation 6 begs is where the surface unit  normal comes from. One 
approach is to  store  the end of a surface normal as an  extra  data  point with each 
polygon  (with the  start  being some point that’s  already in the  polygon), and trans- 
form it along with the rest of the points. This has the advantage that if the  normal 
starts out as a unit normal, it will end  up that way too, if only rotations and transla- 
tions (but  not scaling and shears) are performed. 
The problem with  having an explicit normal is that it will remain a normal-that  is, 
perpendicular to the surface-only through viewspace. Rotation, translation, and 

The dot  product as used in calculating lighting intensity. 
Figure 61.2 
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scaling preserve right angles, which is why normals are still normals in viewspace, but 
perspective projection does not preserve angles, so vectors that were surface normals 
in viewspace are  no  longer normals in screenspace. 
Why does this matter? It matters because, on average, half the polygons in any scene 
are facing away from  the viewer, and  hence  shouldn’t be drawn. One way to identify 
such polygons  is to see whether they’re facing toward or away from  the viewer; that 
is, whether  their normals have negative z values (so they’re visible) or positive z Val- 
ues (so they should be culled). However,  we’re talking about screenspace normals 
here, because the perspective projection can shift a polygon  relative  to the viewpoint 
so that  although its  viewspace normal has a negative z, its screenspace normal has a 
positive z, and vice-versa,  as  shown in Figure 61.3.  So we need screenspace normals, 
but those can’t readily be generated by transformation from worldspace. 

viewpoint in viewspace 

x, 

viewplane in screenspace  after  perspective  projection 

A problem with  determining front/back visibi1iQ. 
Figure 61.3 
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The solution is to use the cross product of two of the polygon's edges to generate  a 
normal. The formula  for  the cross product is: 

u x v = [u2v3 -u3v2 u3v1 - q v 3  y v 2  - U 2 V 1 ]  (eq. 7) 

(Note  that  the cross product  operation is denoted by an X.) Unlike the  dot  product, 
the result of the cross product is a vector. Not just any  vector, either;  the vector gen- 
erated by the cross product is perpendicular to both of the  original vectors. Thus, 
the cross product can  be  used to generate  a  normal to  any surface  for which you 
have two vectors that lie  within the surface. This  means  that we can generate  the 
screenspace normals we need by taking the cross product of two adjacent polygon 
edges, as  shown in Figure 61.4. 

In fact, we can cull with  only one-third the work  needed to generate  a full cmss p product;  because we  're  interested only in the sign of the z component  of the nor- 
mal, we can skip entirely calculating the x and y components.  The  only  caveat is  to 
be  careful that neither edge you choose is zero-length and that the edges aren 't 
collineal: because the dot  product  can  ?produce  a  normal in those cases. 

How the cross product of polygon edge vectors generates a polygon normal. 
Figure 6 1.4 
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Perhaps  the most often asked question  about cross products is ‘Which way do normals 
generated by cross products go?” In  a  left-handed  coordinate system, curl  the  fingers 
of your left hand so the  fingers  curl  through  an  angle of less than 180 degrees  from 
the first vector in the cross product to the  second vector. Your thumb now points  in 
the  direction of the  normal. 
If  you take the cross product of  two orthogonal  (right-angle)  unit vectors, the  result 
will be a  unit vector that’s  orthogonal  to  both of them.  This  means  that if you’re 
generating  a new coordinate space-such  as a new  viewing frame of reference-you 
only need to  come up with unit vectors for two  of the axes for  the new coordinate 
space, and can then use their cross product  to  generate  the  unit vector for  the  third 
axis.  If  you need  unit  normals,  and  the two vectors being crossed aren’t  orthogonal 
unit vectors, you’ll  have to  normalize  the  resulting vector; that is, divide each of the 
vector’s components by the  length of the vector, to make it  a  unit  long. 

Using the Sign of the Dot Product 
The  dot  product is the cosine of the angle between two vectors,  scaled by the magni- 
tudes of the vectors.  Magnitudes are always positive, so the sign  of the cosine determines 
the sign  of the result. The  dot  product is positive if the  angle between the vectors is less 
than 90 degrees, negative if it’s greater  than 90 degrees, and zero if the  angle is exactly 
90 degrees. This means thatjust the sign  of the  dot  product suffices for tests  involving 
comparisons of angles to 90 degrees, and there  are  more of those than you’d think. 
Consider, for  example,  the process of backface culling, which we discussed  above in 
the  context of using screenspace  normals  to  determine polygon orientation relative 
to  the viewer. The problem with that  approach is that  it  requires  each polygon to be 
transformed  into viewspace, then perspective projected  into  screenspace,  before  the 
test can be performed,  and  that involves a  lot of time-consuming calculation.  In- 
stead, we can  perform culling way back in worldspace (or even earlier, in objectspace, 
if we transform  the viewpoint into  that  frame of reference) , given  only a vertex and 
a  normal  for  each polygon and a  location  for  the viewer. 
Here’s  the trick: Calculate the vector from  the viewpoint to any vertex in  the polygon 
and take its dot  product with the polygon’s normal, as  shown in Figure 61.5. If the 
polygon is facing  the viewpoint, the  result is negative, because the  angle between the 
two vectors is greater  than 90 degrees. If the polygon is facing away, the  result is 
positive, and if the polygon is edge-on,  the  result is 0. That’s all there is to it-and 
this  sort of backface culling  happens  before any transformation or projection at all is 
performed, saving a  great  deal of  work for  the half of all polygons, on average, that 
are  culled. 
Backface culling with the  dot  product is just  a special  case  of determining which side of 
a  plane any point (in this  case, the viewpoint) is on.  The same  trick can be applied 
whenever you  want  to determine  whether  a  point is in front of or behind  a  plane, 
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vo*  N0<0, ; Vl.N1>0, 
so pol  gon O 
faces orward & '"-, faces Lackward & 
is  visible 

r ; so pol  gon O 

* '  is not  visible 

viewpoint  in  viewspace 

Bacyace culling with the dot product. 
Figure 61.5 

where a plane is described by any point that's on  the plane (which I'll call the plane 
origin), plus a plane normal. One such application is in clipping a line (such as a 
polygon edge) to a plane. Just do a dot  product between the plane normal  and  the 
vector from one line endpoint to the plane origin, and  repeat for the  other line end- 
point. If the signs  of the  dot products are  the same, no clipping is needed; if they  differ, 
clipping is needed. And  yes, the  dot  product is also the way to do the actual clipping; 
but before we can talk about that, we need to understand  the use of the dot product 
for projection. 

Using the Dot Product  for  Projection 
Consider Equation 3 again, but this time make one of the vectors, say V, a unit vector. 
Now the  equation  reduces to: 

In  other words, the result is the cosine of the angle between the two vectors, scaled 
by the  magnitude of the  non-unit vector. Now, consider that cosine is really just  the 
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unit vector U 

4 F 
U * V  

How  the dot product with a unit vector performs a projection. 
Figure 61.6 

length of the  adjacent leg of a  right  triangle, and think of the  non-unit vector as the 
hypotenuse of a  right  triangle, and  remember  that all  sides of similar triangles scale 
equally. What it all  works out to is that  the value  of the  dot  product of any vector with 
a  unit vector is the  length of the first vector projected onto the  unit vector, as shown 
in Figure 61.6. 
This unlocks all sorts of neat stuff.  Want to know the  distance  from  a  point  to  a 
plane?  Just dot the vector from the  point P to the  plane origin 0, with the  plane  unit 
normal N,, to project  the vector onto  the normal,  then take the  absolute value 

distance = I p - $) . Elp[ 

as  shown  in Figure 61.7. 
Want to clip a  line to a  plane? Calculate the  distance  from one  endpoint to the 
plane, as just described, and  dot the whole line  segment with the  plane  normal, to 
get  the full length of the  line  along  the  plane  normal. The ratio of the two dot 
products is then how far  along  the  line  from  the  endpoint  the  intersection  point is; 
just move along  the  line  segment by that  distance from the  endpoint,  and you're at 
the  intersection  point, as  shown in Listing 61.1. 

LISTING 61.1  161-l.C 
11 Given  two  line  endpoints, a point on a  plane,  and a unit  normal 
I !  for  the  plane,  returns  the  point  of  intersection  of  the  line 
11 and  the  plane i n  intersectpoint. 
#define  DOT-PROOUCT(x,y) CxCOl*yCOl+x[ll*yC1l+x[21*yC2l) 
void  LineIntersectPlane  (float  *linestart.  float  *lineend. 

{ 
float  *planeorigin.  float  *planenormal,  float  *intersectpoint) 

float  veclC31.  projectedlinelength,  startdistfromplane.  scale; 
veclCO] - linestart[Ol - planeoriginC01; 
vecl[ll - linestartCl] - planeoriginC11; 
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veclC2l - linestartC21 - planeoriginC21: 
startdistfromplane - OOT-PROOUCT(vec1.  planenormal): 
if (startdistfromplane - 0 )  
I 

/ /  point  is  in  plane 
intersectpointC01 - linestartC01: 
intersectpointC11 - linestartC11; 
intersectpointCZ1 - linestartC11: 
return: 

I 
veclCO1 - linestartCO1 - lineendC01: 
veclCll - linestartcll - lineendC11: 
vecl[21 - linestartC21 - lineendC21: 
projectedlinelength - DOT-PRODUCT(vec1,  planenormal): 
scale - startdistfromplane / projectedlinelength: 
intersectpointC01 - 1inestartCOl - vecl[Ol * scale; 
intersectpoint[l] - linestartCl] - vecl[ll * scale: 
intersectpointC21 - 1inestartCll - veclC21 * scale; 

1 

Rotation by Projection 
We can use the  dot product’s projection capability to look at  rotation in an interest- 
ing way.  Typically, rotations  are  represented by matrices. This is certainly a workable 
representation  that encapsulates all aspects of transformation in a single object, and 
is ideal for  concatenations of rotations and translations. One problem with matrices, 
though, is that many people, myself included, have a hard time looking at a matrix of 
sines and cosines and visualizing  what’s  actually going on. So when two 3 D  experts, John 

Using the dot product to get the distance from a point to a plane. 
Figure 61.7 
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Carmack and Billy Zelsnack, mentioned  that they think of rotation differently, in  a 
way that  seemed  more intuitive to  me, I thought  it was worth passing on. 
Their  approach is this: Think of rotation as projecting  coordinates onto new axes. 
That is,  given that you  have points  in, say, worldspace, define  the new coordinate 
space  (viewspace, for example) you  want  to rotate to by a set of three  orthogonal  unit 
vectors defining the new  axes, and  then project each point  onto each of the three axes to 
get  the  coordinates  in  the new coordinate  space, as  shown for  the 2-D case in Figure 
61.8. In 3-D, this involves three  dot  products  per  point,  one  to  project  the  point  onto 
each axis. Translation  can be done separately from  rotation by simple addition. 

Rotation by projection is exactly the same as rotation via matrix multiplication; in 
fact, the rows of a rotation matrix are the orthogonal unit vectors pointing along 
the new axes. Rotation byprojection buys us no technical advantages, so that b not 
what b important here; the key is that  the concept of rotation by projection, to- 
gether with a separate translation step, gives us a new  way to look at transformation 
that I, for one, find easier to visualize and experiment with. A new frame of refer- 
ence for how we think about 3-0 frames of reference, f y o u  will. 

Three things I’ve learned over the years are  that  it never hurts  to  learn  a new way of 
looking at things,  that it helps  to have a  clearer,  more intuitive model  in your head of 
whatever it is you’re working on,  and  that new tools, or new  ways to use old tools, are 
Good  Things. My experience  has  been  that  rotation by projection, and  dot  product 
tricks in general, offer those sorts of benefits  for 3-D. 

y axis 

Rotation  to  a new coordinate space by projection  onto new axes. 
Figure 6 1.8 
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