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eparating All Things Seen from 

Years ago,  I was  wor anished video adapter manufac- 
clone. The fellow  who was designing Video  Seven’s 
ked around  the clock for  months to make his VGA 
nfident  he  had pretty much maxed out its perfor- 
ishing touches on his chip  design, however,  news 
r, Paradise, had  juiced  up  the  performance of the 

about what sort of FIFO, or how 
much it helped,  or ahything else. Nonetheless, Tom, normally an affable, laid-back 
sort,  took on  the wide-awake, haunted look of a man with too  much caffeine in him 
and  no answers to show for it, as he tried to figure out,  from hopelessly thin  informa- 
tion, what Paradise had  done. Finally, he  concluded  that Paradise must have put a 
write FIFO between the system bus  and  the VGA, so that when the CPU wrote to 
video memory, the write immediately went into  the FIFO, allowing the CPU to keep 
on processing instead of stalling each time it wrote to display  memory. 
Tom couldn’t  spare  the gates or  the time to do a full FIFO, but  he could implement  a 
onedeep FIFO, allowing the CPU to get one write ahead of the VGA. He wasn’t sure 
how  well it would work, but it was all he could do, so he  put it in and taped out  the  chip. 
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The  one-deep FIFO turned  out to work astonishingly well; for  a  time, Video Seven’s 
VGAs were the fastest around, a  testament  to Tom’s ingenuity and creativity under 
pressure. However, the truly remarkable part of this  story is that Paradise’s FIFO design 
turned  out to bear not the slightest resemblance  to Tom’s, and didn’t work as well. 
Paradise had stuck a read FIFO between  display  memory and the video output stage of 
the VGA, allowing the video output to  read  ahead, so that  when  the CPU wanted to 
access  display  memory, pixels could  come  from  the FIFO while the CPU  was serviced 
immediately. That did indeed help performance-but not as much as Tom’s  write FIFO. 

What  we  have here is  as  neat  a  parable  about  the  nature of creative  design  as  one p could  hope  to find. The scrap of news  about Paradise j .  chip  contained  almost no 
actual  information,  but  it  forced Tom to push  past the  limits  he had unconsciously 
set  in  coming  up  with  his  original  design.  And,  in  the  end, I think  that  the  single 
most  important  element of great  design,  whether  it  be hardware, software,  or  any 
creative  endeavor,  is  precisely  what  the  Paradise  news  triggered  in Tom: the  abil- 
ity  to  detect  the  limits  you  have  built  into  the  way you think  about your design,  and 
then  transcend  those  limits. 

The problem, of course, is  how to go about  transcending limits you don’t even  know 
you’ve imposed.  There’s no formula  for success, but two principles  can  stand you in 
good  stead: simplify and keep on trylng new things. 
Generally, if you find your code  getting more complex, you’re fine-tuning  a  frozen 
design, and it’s  likely  you can get more of a  speed-up, with  less code, by rethinking 
the  design. A really good design should  bring with it a moment of immense satisfac- 
tion in which everything falls into place, and you’re amazed at how little  code is 
needed  and how all the  boundary cases just work properly. 
As for how  to rethink  the  design, do it by pursuing whatever ideas  occur  to you, no 
matter how  off-the-wall  they seem. Many  of the truly brilliant design ideas I’ve heard 
of over the years sounded like nonsense at first, because they didn’t  fit my precon- 
ceived view  of the world. Often,  such  ideas  are  in  fact off-the-wall, butjust as the news 
about Paradise’s chip  sparked Tom’s imagination, aggressively pursuing seemingly 
outlandish ideas can open  up new design possibilities for you. 
Case in  point: The evolution of Quake’s 3-D graphics  engine. 

VSD: The  Toughest 3-0 Challenge of All 
I’ve spent most of my waking hours  for  the last  several months working on Quake,  id 
Software’s  successor to DOOM, and I  suspect I have a few more  months to go. The 
very best things don’t  happen easily, nor quickly-but when they happen, all the 
sweat becomes worthwhile. 
In terms of graphics, Quake is to DOOM as DOOM was to its predecessor, Wolfenstein 
3-D. Quake  adds  true,  arbitrary 3-D (you can look up  and down, lean, and even fall 
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on your side), detailed  lighting and shadows, and 3-D monsters and players in place 
of  DOOM’S sprites. Someday I hope to talk about how all that works, but  for  the  here 
and now I want to talk about what  is, in my opinion,  the toughest 3-D problem of  all: 
visible surface determination (drawing the  proper surface at each pixel), and its  close 
relative, culling (discarding non-visible  polygons  as  quickly as possible, a way  of accelerat- 
ing visible surface determination).  In  the interests of  brevity, I’ll use the  abbreviation 
VSD to mean  both visible surface  determination  and  culling  from now on. 
Why do I think VSD  is the toughest 3-D challenge?  Although  rasterization issues 
such as texture  mapping  are fascinating and  important, they are tasks  of  relatively 
finite  scope, and  are being moved into hardware as  3-D accelerators  appear; also, 
they only scale with increases in  screen  resolution, which are relatively modest. 
In contrast, VSD  is an  open-ended  problem,  and  there  are  dozens of approaches 
currently  in use. Even more significantly, the  performance of VSD, done  in  an unso- 
phisticated  fashion, scales directly with scene complexity, which tends  to  increase as 
a  square  or  cube  function, so this very rapidly becomes  the  limiting  factor  in  render- 
ing realistic worlds. I expect VSD to be the increasingly dominant issue in  realtime 
PC  3-D over the  next few years, as  3-D worlds become increasingly detailed. Already, 
a good-sized Quake level contains on  the  order of 10,000 polygons, about  three times 
as  many polygons as a  comparable DOOM level. 

The Structure of Quake Levels 
Before  diving into VSD, let me note that each Quake level  is stored as a single  huge 3-D 
BSP tree. This BSP tree, like  any BSP, subdivides  space, in this case along the planes of 
the polygons.  However, unlike the BSP tree I presented  in  Chapter 62, Quake’s BSP tree 
does  not  store polygons in the  tree  nodes, as part of the splitting  planes, but  rather 
in the empty (non-solid) leaves,  as  shown in  overhead view in Figure 64.1. 
Correct drawing order can be  obtained by drawing the leaves in front-to-back or 
back-to-front BSP order, again as discussed in  Chapter 62.  Also, because BSP leaves 
are always convex and  the polygons are  on  the  boundaries of the BSP leaves, facing 
inward, the polygons in a given  leaf can never obscure one  another  and can be drawn 
in any order.  (This is a  general  property of convex polyhedra.) 

Culling and Visible Surface Determination 
The process of  VSD  would  ideally  work  as  follows:  First,  you  would cull  all  polygons that 
are completely outside the view frustum (view pyramid), and would  clip away the irrel- 
evant portions of  any  polygons that are partially outside. Then, you  would  draw  only 
those  pixels  of each polygon that are actuallyvisible  from the  current viewpoint, as shown 
in overhead view in Figure  64.2,  wasting no time  overdrawing  pixels multiple times; note 
how little of the polygon  sets in Figure  64.2  actually need to  be drawn. Finally, in a per- 
fect world, the tests to figure out what parts of which  polygons are visible  would be free, 
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and the processing  time  would be the same for all  possible  viewpoints,  giving the game a 
smooth visual  flow. 
As it happens,  it is  easy to determine which polygons are outside the frustum or 
partially clipped, and it’s quite possible to figure out precisely  which  pixels need to  be 
drawn. Alas, the world  is far from perfect, and those tests are far from free, so the real 
trick is how to accelerate or skip various tests and still produce  the desired  result. 
As I discussed at  length in Chapter 62, given a BSP, it’s easy and inexpensive to walk 
the world in front-to-back or back-to-front order. The simplest VSD solution, which I 
in  fact  demonstrated  earlier, is to simply  walk the  tree back-to-front, clip each poly- 
gon to  the  frustum,  and draw it if it’s facing forward and  not entirely  clipped (the 
painter’s  algorithm). Is that  an  adequate  solution? 
For  relatively simple worlds, it is perfectly acceptable. It doesn’t scale very  well, though. 
One  problem is that as  you add  more polygons in the world, more transformations 
and tests have to be performed  to cull polygons that  aren’t visible; at some  point, 
that will bog considerably performance down. 

Nodes Inside and Outside the View Frustum 
Happily, there’s  a  good  workaround  for this particular  problem. As discussed earlier, 
each leaf of a BSP tree  represents  a convex subspace, with the  nodes  that  bound  the 
leaf delimiting the space. Perhaps less obvious is that  each node in  a BSP tree also 
describes a subspace-the subspace composed of all the node’s  children, as shown 
in Figure 64.3. Another way  of thinking of this is that  each node splits the subspace 
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into two pieces created by the  nodes above it in the tree, and  the node’s children 
then  further carve that subspace into all the leaves that  descend  from  the  node. 
Since a node’s subspace is bounded  and convex, it is  possible to test whether  it is 
entirely outside the frustum. If it is, all of the node’s children are certain to be fully 
clipped and can be rejected without any additional processing. Since most of the 
world is typically outside the frustum, many of the polygons in the world can be 
culled almost for  free, in huge, node-subspace chunks. It’s  relatively expensive to 
perform a  perfect test for subspace clipping, so instead bounding spheres or boxes 
are often  maintained  for  each  node, specifically for culling tests. 
So culling to the frustum isn’t a problem,  and  the BSP can be used to draw back-to- 
front. What, then, is the  problem? 

Overdraw 
The  problem  John Carmack, the driving technical force behind DOOM and  Quake, 
faced when he designed Quake was that in a  complex world, many scenes have an 
awful lot of  polygons in the frustum. Most of those polygons are partially or entirely 
obscured by other polygons, but  the painter’s algorithm described earlier  requires 
that every pixel of  every polygon in the  frustum  be drawn, often only to be over- 
drawn. In a 10,000-polygon Quake level, it would be easy to get a worst-case  overdraw 
level  of 10 times or  more;  that is, in some frames each pixel could  be  drawn 10 times 
or  more,  on average. No rasterizer is  fast enough to compensate  for  an  order of such 
magnitude  and  more work than is  actually  necessary to show a  scene; worse  still, the 
painter’s algorithm will cause a vast difference between best-case and worst-case  per- 
formance, so the  frame  rate can vary  wildly  as the viewer  moves around. 
So the  problem  John faced was  how to keep overdraw down to a  manageable level, 
preferably drawing each pixel exactly once, but certainly no  more  than two or  three 
times in the worst  case. As with frustum culling, it would be ideal if he could elimi- 
nate all  invisible  polygons in the frustum with  virtually no work. It would  also be a 
plus if he  could  manage to  draw only the visible parts of  partially-visible  polygons, 
but  that was a balancing act in  that it had to be a lower-cost operation  than  the 
overdraw that would otherwise result. 
When I arrived at id at  the  beginning of March 1995, John already had  an  engine 
prototyped  and a plan in mind,  and I assumed  that our work was a simple matter of 
finishing and optimizing that  engine. If I had  been aware of id’s  history,  however, I 
would  have known better. John  had  done  not only DOOM, but also the  engines  for 
Wolfenstein 3-D and several earlier games, and  had actually done several different 
versions of each  engine in the course of development  (once  doing  four  engines  in 
four weeks), for a total of perhaps 20 distinct engines over a four-year period.  John’s 
tireless pursuit of  new and better designs for Quake’s engine,  from every angle he 
could  think of, would end only when we shipped  the  product. 
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By three  months after I arrived, only one  element of the original VSD design was 
anywhere in sight, and  John  had taken the dictum of “try new things” farther  than 
I’d  ever seen it taken. 

The  Beam  Tree 
John’s original Quake design was to draw front-to-back, using a second BSP tree to 
keep track of what parts of the screen were already drawn and which  were  still empty 
and therefore drawable by the  remaining polygons.  Logically,  you can think of this 
BSP tree as being  a 2-D region describing solid and empty areas of the screen, as 
shown in Figure 64.4, but in fact it is a 3-D tree, of the sort known  as a beam tree. A 
beam  tree is a collection of 3-D wedges (beams),  bounded by planes, projecting out 
from  some center  point, in this case the viewpoint,  as  shown in Figure 64.5. 
In  John’s design, the  beam  tree started out consisting of a single beam  describing 
the  frustum; everything outside  that  beam was marked solid (so nothing would 
draw there),  and  the inside of the  beam was marked empty. As each new polygon 
was reached while  walking the world BSP tree front-to-back, that polygon was con- 
verted to a  beam by running planes  from its edges  through  the viewpoint, and any 
part of the  beam  that  intersected empty  beams in the  beam  tree was considered 
drawable and  added to the  beam  tree as a solid beam.  This  continued until either 
there were no  more polygons or  the  beam  tree  became entirely solid. Once  the 
beam  tree was completed,  the visible portions of the polygons that  had  contrib- 
uted to the  beam  tree were drawn. 
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Beams as wedges projecting from the viewpoint to polygon edges. 
Figure 64.5 

The advantage  to  working with a 3 D  beam tree, rather than a 2-D region, is that deter- 
mining which  side  of a beam plane a polygon  vertex is on involves  only checking the sign 
of the dot product of the ray to the vertex and the plane normal, because  all beam planes 
run through the origin (the viewpoint). Also, because a beam plane is completely  de- 
scribed by a single normal, generating a beam from a polygon edge requires only a 
crossproduct of the edge and  a ray from the edge to the viewpoint.  Finally, bounding 
spheres of BSP nodes can  be  used  to do the aforementioned bulk  culling  to the frustum. 
The early-out feature of the beam tree-stopping when the beam tree becomes solid- 
seems appealing, because it  appears to cap worst-case performance. Unfortunately, 
there  are still scenes where it’s  possible to see all the way to the sky or  the back wall  of 
the world, so in the worst case, all  polygons in the frustum will still  have to be tested 
against the beam  tree. Similar problems can arise from tiny  cracks due to numeric 
precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes with 
long view distances, such as views across the top of a level, the total cost of beam 
processing slowed Quake’s frame  rate to a crawl. So, in the  end,  the beam-tree ap- 
proach proved to suffer from  much the same  malady  as the painter’s algorithm: The 
worst  case was much worse than  the average case, and it didn’t scale well  with in- 
creasing level  complexity. 

3-D Engine du lour 
Once  the  beam  tree was working, John relentlessly worked at  speeding  up  the 3-D 
engine, always t y n g  to  improve the design, rather than tweaking the implementation. 
At least once a week, and often every  day, he would walk into my office and say 

1 186 Chapter 64 



“Last night I couldn’t  get to sleep, so I was thinking ...” and  I’d know that I was 
about  to  get my mind  stretched yet again. John  tried many ways to  improve the 
beam  tree, with some success, but  more  interesting was the  profusion of  wildly 
different  approaches  that  he  generated, some of which  were merely  discussed, oth- 
ers of which  were implemented in  overnight or weekend-long  bursts of coding,  in 
both cases ultimately  discarded or  further evolved when they turned  out  not  to 
meet  the design  criteria well enough.  Here  are some of those  approaches,  pre- 
sented in  minimal  detail  in  the  hopes  that, like Tom  Wilson  with the Paradise FIFO, 
your  imagination will be  sparked. 

Subdividing Raycast 
Rays are cast in  an 8x8 screen-pixel grid; this is a highly efficient operation because 
the first intersection with a  surface  can be found by simply clipping the ray into  the 
BSP tree,  starting at  the viewpoint, until  a solid leaf is reached. If adjacent rays don’t 
hit  the  same  surface,  then  a ray  is cast halfway between, and so on until all adjacent 
rays either  hit  the same surface or  are  on  adjacent pixels; then  the block around 
each ray  is drawn from the polygon that was hit. This scales  very  well, being  limited 
by the  number of pixels, with no overdraw. The  problem is dropouts; it’s quite pos- 
sible for small polygons to fall between rays and vanish. 

Vertex-Free  Surfaces 
The world is represented by a set of surface  planes. The polygons are implicit in the 
plane  intersections, and  are  extracted  from  the planes as a final step  before drawing. 
This makes for fast clipping and a very small data set (planes  are  far  more  compact 
than polygons), but it’s time-consuming to extract polygons from  planes. 

The Draw-Buffer 
Like a z-buffer, but with 1 bit  per  pixel,  indicating  whether  the pixel  has been 
drawn yet. This  eliminates overdraw, but  at  the cost of an  inner-loop  buffer  test, 
extra writes and  cache misses, and, worst of all,  considerable complexity. Varia- 
tions  include  testing  the draw-buffer  a byte at a  time and completely  skipping 
fully-occluded bytes, or  branching off each draw-buffer byte to one of  256 un- 
rolled  inner  loops  for drawing 0-8 pixels, in  the process possibly taking  advantage 
of the ability of the x86 to  do  the perspective  floating-point  divide  in  parallel 
while 8 pixels are  processed. 

Span-Based Drawing 
Polygons are rasterized into spans, which are  added to a global span list and clipped 
against that list so that only the  nearest  span  at  each pixel remains. Little sorting is 
needed with front-to-back walking, because if there’s any overlap, the span already in 
the list is nearer.  This  eliminates overdraw, but  at  the cost of a  lot of span  arithmetic; 
also, every polygon still has to be  turned  into spans. 
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Portals 
The holes where polygons are missing on surfaces are tracked, because it’s  only 
through such portals that line-of-sight can extend. Drawing goes front-to-back, and 
when  a  portal is encountered, polygons and portals behind it are clipped to its  lim- 
its, until no polygons or portals remain visible. Applied recursively,  this  allows drawing 
only the visible portions of  visible  polygons, but at the cost  of a considerable amount 
of portal clipping. 

Breakthrough! 
In  the  end,  John  decided  that  the  beam  tree was a  sort of second-order  structure, 
reflecting information already implicitly contained in the world BSP tree, so he 
tackled the  problem of extracting visibility information directly from  the world 
BSP tree.  He  spent a week on this, as a  byproduct devising a perfect DOOM (2-D) 
visibility architecture, whereby  a  single,  linear walk  of a DOOM BSP tree  produces 
zero-overdraw 2-D visibility. Doing the  same in 3-D turned  out to be a much  more 
complex  problem,  though,  and by the  end of the week John was frustrated by the 
increasing complexity and persistent  glitches in the visibility code.  Although  the 
direct-BSP approach was getting closer to working, it was taking more  and  more 
tweaking, and a  simple,  clean design didn’t  seem to be falling out.  When  I left 
work one Friday, John was preparing to try to get  the direct-BSP approach working 
properly over the  weekend. 
When  I  came  in on Monday, John  had  the look of a  man who had  broken  through to 
the  other side-and  also the look of a  man who hadn’t  had  much sleep. He  had 
worked all weekend on  the direct-BSP approach,  and  had  gotten it working reason- 
ably  well,  with insights into how to finish it off. At 3:30 Monday morning, as he lay in 
bed, thinking about portals, he  thought of precalculating and storing in each leaf a 
list  of  all  leaves  visible from  that leaf, and  then  at  runtime  just drawing the visible 
leaves back-to-front for whatever  leaf the viewpoint happens to be in,  ignoring all 
other leaves entirely. 
Size was a concern; initially, a raw, uncompressed potentially visible set (PVS) was 
several  megabytes  in  size.  However, the PVS could be stored as a bit vector, with 1 bit 
per leaf, a structure  that  shrunk a great  deal with simple zero-byte compression. 
Those steps, along with changing  the BSP heuristic to generate fewer  leaves (choos- 
ing as the  next splitter the polygon that splits the fewest other polygons appears to 
be the best  heuristic) and sealing the outside of the levels so the BSPer can  remove 
the outside surfaces, which can never be seen, eventually brought  the PVS down  to 
about 20  Kb for  a good-size level. 
In  exchange  for  that 20  Kb, culling leaves outside the  frustum is speeded  up (be- 
cause only leaves in the PVS are  considered),  and culling  inside the  frustum costs 
nothing  more  than a little overdraw (the PVS for a leaf includes all leaves  visible 
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from  anywhere in  the leaf, so some overdraw, typically on  the  order of 50 percent 
but  ranging  up  to 150 percent, generally occurs).  Better yet, precalculating  the 
PVS results  in  a leveling of performance; worst case is no  longer  much worse than 
best  case,  because there’s  no  longer  extra VSD processing-just more polygons 
and  perhaps some extra overdraw-associated with complex  scenes. The first  time 
John showed  me his working  prototype, I went  to the most  complex  scene I knew 
of, a  place  where the  frame  rate used  to grind down into  the single digits, and  spun 
around smoothly, with no perceptible slowdown. 
John says precalculating  the PVS  was a logical evolution of the  approaches  he  had 
been  considering,  that  there was no  moment when he said “Eureka!”  Nonetheless, 
it was clearly a breakthrough  to a  brand-new, superior  design, a  design  that, to- 
gether with a  still-in-development  sorted-edge  rasterizer that completely  eliminates 
overdraw, comes  remarkably close to  meeting  the “perfect-world’’ specifications we 
laid out  at  the start. 

Simplify, and Keep on Trying New Things 
What  does  it all mean? Exactly what  I  said up  front: Simplify, and  keep  trying new 
things. The  precalculated PVS is simpler  than any of the  other  schemes  that  had 
been  considered (although precalculating the PVS  is an  interesting task that I’ll dis- 
cuss another  time).  In  fact,  at  runtime  the  precalculated PVS is just a constrained 
version of the  painter’s  algorithm. Does that  mean it’s not particularly  profound? 
Not  at all. All really great designs  seem  simple and even obvious-once they’ve 
been  designed. But the process of getting  there  requires  incredible  persistence 
and a willingness to try lots of different  ideas  until  the  right  one falls into  place, as 
happened  here. 

p My  friend Chris  Hecker  has a theory that all approaches work out to  the same 
thing in  the  end,  since  they all reflect the  same underlying state and functionali@. 
In terms  of underlying theory, I’ve  found  that  to be true; whether you do  perspec- 
tive texture mapping  with a divide or with incremental hyperbolic calculations, 
the numbers do exactly the  same thing. When  it  comes to implementation, however, 
my  experience  is that simply time-shifting an approach, or matching hardware 
capabilities better, or caching can make  an astonishing difference. 

My friend Terje Mathisen likes to say that “almost all programming  can  be viewed  as 
an exercise in  caching,”  and that’s exactly what John  did. No matter how fast he 
made his VSD calculations, they could never be as fast as precalculating and looking 
up  the visibility, and his most inspired move was to yank himself out of the “faster 
code”  mindset  and realize that  it was in fact possible to precalculate (in effect, cache) 
and look up  the PVS. 
The  hardest  thing in the world is to step  outside  a familiar, pretty  good  solution to a 
difficult problem  and look  for  a  different, better solution. The best ways I know to do 
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that  are  to  keep trying new,  wacky things, and always,  always,  always try to simplify. 
One of John’s goals is to have  fewer lines of code  in  each 3-D game  than  in  the 
previous game, on  the assumption that as he  learns  more,  he  should  be  able  to do 
things  better with  less code. 
So far, it seems to have worked out pretty well for  him. 

Learn Now, Pay  Forward 
There’s one  other thing-I’d like  to mention  before  I close  this chapter. Much  of  what 
I’ve learned,  and  a  great  deal of what  I’ve written, has been  in  the pages of Dr: Dobb’s 
Journal. As far back  as I can remember, DDJhas epitomized  the  attitude  that  sharing 
programming  information is A Good Thing.  I know a  lot of programmers who  were 
able to leap  ahead in their  development because of Hendrix’s Tiny C, or Stevens’ D- 
Flat, or simply by browsing  through DDJs annual  collections.  (Me,  for  one.) 
Understandably, most companies  understandably view sharing  information in a very 
different way,  as potential  profit lost-but that’s what  makes DDJso valuable to  the 
programming community. 
It is in that spirit  that id  Software is allowing  me to  describe  in  these pages (which 
also appeared  in  one of the DDJspecial issues)  how Quake works,  even before  Quake 
has shipped.  That’s also why id has placed the full source  code  for Wolfenstein 3-D 
on ftp.idsoftware.com/idstuff/source; and  although you can’tjust  recompile  the  code 
and sell it, you can  learn how a full-blown, successful game works. Check wolfsrc.txt 
in  the  above-mentioned  directory  for details on how the  code may be  used. 
So remember, when it’s  legally possible, sharing  information  benefits us  all in  the 
long  run. You can pay forward the  debt  for  the  information you gain here  and else- 
where by sharing what you  know whenever you can, by writing an article or book or 
posting on  the Net.  None of us learns in a vacuum; we all stand  on  the  shoulders of 
giants  such as Wirth and Knuth and  thousands of others.  Lend your shoulders  to 
building  the  future! 
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