
chapter 68

quake's lighting model



Different  Approach  to Lighting Polygons 
ollege that  I discovered computer games. Not Wiz- 

cause none of those existed yet-the game that 
Trek game, in which  you navigated from one 8x8 

of starbases, occasionally firing phasers or  photon 
than  it sounds; after  each move, the  current quad- 
atch,  along with the  current stats-and the  output 

tball console. A typical game took over an hour, during which 
mulating ever happened (Klingons appeared periodically, but 
your next move before attacking, and your photon  torpedoes 

never in doubt),  but  none of that  mattered;  noth- 
hrill of being in a computer-simulated universe. 

Then  the college got  a PDP-11 with four CRT terminals, and suddenly Star Trek 
could redraw in a second instead of a  minute. Better yet, I  found  the source code  for 
the Star Trek program  in the recesses of the new  system, the first time I’d ever seen 
any  real-world code  other  than my own, and excitedly  dove into it. One evening, as I 
was looking through  the  code,  a really cute girl at  the  next  terminal asked me  for 
help  getting  a  program to run. After I had  helped her, eager to get to know her 
better, I said, ‘Want to see something? This is the actual source for  the Star Trek 
game!” and proceeded to page through  the code, describing each  subroutine. We 
got to talking, and eventually I worked up the nerve to ask her  out. She said sure, and 
we ended  up having a  good time, although things soon fell apart because of her two 
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or  three  other boyfriends (I never  did  get  an  exact count).  The interesting  thing, 
though, was her response when I finally got  around to asking her  out. She  said, “It’s 
about time!”  When  I asked what she  meant,  she said, “I’ve been trying to get you to 
ask me out all  evening-but it took you forever! You didn’t actually think  I was inter- 
ested  in that Star Trek program,  did  you?” 
Actually,  yes, I  had  thought  that, because Iwas interested  in it. One thing I learned 
from  that  experience,  and have had  reinforced  countless times since, is that we- 
you,  me,  anyone who programs  because they love it, who would do it  for  free if 
necessary-are a  breed  apart. We’re different,  and luckily so; while everyone else is 
worrying about downsizing, we’re in one of the  hottest  industries  in  the world. And, 
so far as I  can  see, the biggest reason we’re in  such a good  situation  isn’t  intelligence, 
or  hard work, or  education,  although  those  help; it’s that we actually like this stuff. 
It’s important to  keep it that way.  I’ve seen  far  too many people  start to treat  pro- 
gramming like a  job,  forgetting  the joy  of doing  it,  and  burn  out. So keep  an eye on 
how  you feel about  the programming  you’re  doing, and if it’s getting  stale, it’s time 
to  learn  something new; there’s  plenty of interesting  programming of  all sorts  to be 
done. Follow your interests-and don’t  forget to have fun! 

The Lighting Conundrum 
I spent  about two years working with John Carmack on Quake’s 3-D graphics  engine. 
John faced several fundamental  design issues  while architecting  Quake. I’ve written 
in  earlier  chapters  about  some of those issues, including  eliminating non-visible  poly- 
gons quickly via a  precalculated  potentially visible  set (PVS), and  improving 
performance by inserting  potentially visible polygons into  a global  edge list and scan- 
ning  out only the  nearest polygon at  each pixel. 
In this chapter, I’m going  to talk about  another, equally crucial  design issue: how we 
developed our lighting  approach  for  the part of the Quake  engine  that draws the 
world itself, the static walls and floors and ceilings. Monsters and players are drawn 
using  completely  different rendering  code, with speed  the  overriding  factor. A pri- 
mary goal  for the world, on  the  other  hand, was to be as precise as possible, getting 
everything right so that polygons, textures, and sophisticated lighting would be pegged 
in  place, with no visible shifting or distortion under all  viewing conditions, for maxi- 
mum player immersion-all  with good  performance, of course. As I’ll discuss, the 
twin goals of performance  and rock-solid, complex  lighting  proved  to  be difficult to 
achieve with traditional  lighting  approaches; ultimately, a dramatically different  ap- 
proach was required. 

Gouraud Shading 
The traditional way to do realistic lighting  in polygon pipelines is Gouraud  shading 
(also known  as smooth  shading). Gouraud  shading involves generating  a  lighting value 
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at  each polygon vertex by applying all relevant world lighting, linearly interpolating 
between lighting values  down the  edges of the polygon, and  then linearly interpolat- 
ing between the  edges of the polygon across each  span. If texture  mapping is desired 
(and all polygons are  texture  mapped in Quake),  then  at each pixel in  each  span, 
the pixel’s corresponding  texture  map  location  (texel) is determined,  and  the inter- 
polated lighting is applied to the texel to generate a final, lit pixel. Texels are generally 
taken from  a 32x32 or 64x64 texture that’s tiled repeatedly across the polygon, for 
several reasons: performance (a 64x64 texture sits  nicely in  the 486 or Pentium cache), 
database size, and less artwork. 
The  interpolated  lighting can consist of either a  color intensity value or  three sepa- 
rate  red,  green,  and blue values. RGB lighting  produces more sophisticated results, 
such as colored lights, but is  slower and best  suited  to RGB modes. Games like Quake 
that  are  targeted  at palettized 256-color modes generally use intensity lighting;  each 
pixel is lit by looking up  the pixel color  in  a  table, using the texel color and  the 
lighting intensity as the look-up indices. 
Gouraud  shading allows for  decent lighting effects with a relatively small amount of 
calculation and a  compact  data set that’s a simple extension of the basic polygon 
model. However, there  are several important drawbacks to Gouraud  shading, as  well. 

Problems with  Gouraud  Shading 
The quality of Gouraud  shading  depends heavily on  the average size  of the polygons 
being drawn. Linear  interpolation is used, so highlights  can only occur  at vertices, 
and color  gradients  are  monotonic across the face of each polygon. This can make 
for  bland  lighting effects if polygons are  large, and makes it difficult to do spotlights 
and  other detailed or dramatic  lighting effects. After John  brought  the initial, primi- 
tive Quake  engine  up using Gouraud  shading  for  lighting, the first thing  he  tried to 
improve lighting quality was adding  a single vertex and  creating new polygons wher- 
ever a  spotlight was directly overhead  a polygon, with the new vertex added directly 
underneath  the light, as  shown in Figure 68.1. This produced fairly attractive high- 
lights, but simultaneously made  evident several problems. 
A primary  problem with Gouraud  shading is that it requires  the vertices used  for 
world geometry to serve as lighting  sample  points as  well, even though  there isn’t 
necessarily a close relationship between lighting and geometry. This artificial cou- 
pling often forces the subdivision of a single polygon into several polygons purely for 
lighting  reasons, as with the  spotlights  mentioned above; these extra polygons in- 
crease the world database size, and  the  extra transformations and projections  that 
they induce  can  harm  performance considerably. 
Similar problems  occur with overlapping lights, and with shadows, where additional 
polygons are  required  in  order to approximate  lighting  detail well. In particular, 
good shadow edges need small polygons, because otherwise the  gradient between 
light and  dark gets spread across too wide an  area. Worse still, the  rate of lighting 
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Wall is a single  polygon  before adding  a 
light  vertex 

Wall becomes four polygons  after  adding a 
light  vertex  directly  beneath a  light 

Adding an  extra vertex directly beneath a light. 
Figure 68.1 

change across a  shadow  edge can vary considerably as a  function of the geometry the 
edge crosses;  wider  polygons stretch and diffuse the transition between light and 
shadow. A related  problem is that lighting discontinuities can be  very  visible at t- 
junctions  (although ultimately we had to add edges to eliminate tjunctions anyway, 
because otherwise dropouts can occur  along polygon edges).  These  problems can 
be eased by adding  extra edges, but that increases the rasterization load. 

Perspective  Correctness 
Another  problem is that  Gouraud  shading isn’t perspective-correct. With Gouraud 
shading, lighting varies linearly across the face of a polygon, in equal  increments  per 
pixel-but unless the polygon is parallel to the screen, the same  sort of perspective 
correction is needed to step lighting across the polygon properly as is required for 
texture  mapping. Lack  of perspective correction is not as  visibly wrong  for lighting 
as it is for  texture  mapping, because smooth  lighting  gradients can tolerate consider- 
ably more warping than can the detailed bitmapped images used in texture  mapping, 
but it nonetheless shows up in several ways. 
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First, the  extent of the mismatch between Gouraud  shading  and perspective lighting 
varies  with the  angle and orientation of the polygon being lit. As a polygon turns to 
become  more  on-edge,  for example, the lighting warps more  and therefore shifts 
relative  to the perspective-texture mapped texels  it’s shading, an effect I’ll call view- 
ing vam’ance. Lighting can similarly shift as a result of clipping, for example if one  or 
more polygon edges are completely clipped; I’ll refer to this as clipping vam’ance. 
These are fairly subtle effects; more  pronounced is the rotational variance that occurs 
when  Gouraud  shading any  polygon  with more  than three vertices. Consistent light- 
ing for  a polygon is fully defined by three lighting values; taking four or more vertices 
and interpolating between them, as Gouraud shading does, is  basically a hack, and 
does not reflect any consistent underlying model. If you  view a Gouraud-shaded quad 
head-on, then rotate it like a pinwheel, the lighting will shift as the  quad turns, as 
shown in Figure 68.2. The  extent of the lighting shift can be quite drastic, depend- 
ing on how different the colors at the vertices are. 
It was rotational variance that finally brought  the lighting issue to a head for  Quake. 
We’d look at the floors, which  were Gouraud-shaded quads; then we’d  pivot, and  the 
lighting  would  shimmy and shift,  especially  where there were  spotlights and shadows. 
Given the goal of rendering  the world  as accurately and convincingly  as possible, this 
was unacceptable. 
The obvious solution to rotational variance is to use  only triangles, but  that brings 
with it a new set of problems. It takes twice as  many triangles as quads to describe the 
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How Gouraud shading varies with polygon screen orientation. 
Figure 68.2 
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same scene, increasing the size  of the world database and requiring extra rasterization, 
at  a performance cost. Triangles still don’t provide perspective lighting; their light- 
ing is rotationally invariant, but it’s still wrong-just wrong in a more consistant way. 
Gouraud-shaded triangles still result in  odd lighting patterns, and require lots of 
triangles to support shadowing and  other lighting detail. Finally, triangles don’t solve 
clipping or viewing variance. 
Yet another  problem is that while it may  work  well to add extra geometry so that 
spotlights and shadows  show up well, that’s feasible only for static lighting. Dynamic 
lighting-light  cast by sources that move-has to work  with  whatever geometry the 
world has to  offer, because its needs  are constantly changing. 
These issues led us to conclude  that if  we were going to use Gouraud  shading, we 
would  have to build Quake levels from many  small triangles, with  sufficiently  finely 
detailed  geometry so that  complex lighting could be supported  and  the inaccuracies 
of Gouraud  shading wouldn’t be too  noticeable. Unfortunately, that line of thinking 
brought us back to the  problem of a  much larger world database and a  much heavier 
rasterization load (all the worse because Gouraud  shading  requires  an  additional 
interpolant, slowing the inner rasterization loop), so that not only  would the world  still 
be less than totally  solid,  because of the limitations of Gouraud shading, but the engine 
would  also be too slow to support  the complex worlds we had  hoped for in Quake. 

The  Quest for Alternative Lighting 
None of  which is to say that  Gouraud  shading isn’t useful in  general. Descent uses it 
to excellent effect, and in fact Quake uses Gouraud  shading  for moving entities, 
because these consist of  small triangles and  are always in  motion, which helps hide 
the relatively  small lighting errors. However, Gouraud  shading  didn’t  seem capable 
of meeting  our design goals for rendering quality and  speed for drawing the world  as 
a whole, so it was time to look for alternatives. 
There  are many alternative lighting approaches, most  of them higher-quality than 
Gouraud, starting with Phong shading,  in which the surface normal is interpolated 
across the polygon’s surface, and  going all the way up to ray-tracing lighting tech- 
niques in  which full illumination calculations are  performed  for all direct  and 
reflected paths  from  each  light source for  each pixel. What all these approaches 
have in  common is that they’re slower than  Gouraud  shading, too slow for  our pur- 
poses in Quake. For weeks, we kicked around  and rejected various possibilities and 
continued working with Gouraud  shading  for lack of a better alternative-until the 
day John came  into work and said, “You know, I have an idea .... ” 

Decoupling  Lighting  from  Rasterization 
John’s  idea  came to him while was looking at  a wall that had  been carved into several 
pieces because of a spotlight, with an ugly lighting glitch due to a t-junction. He 
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thought to  himself that if only there were some way to treat it as one surface, it would 
look better  and draw  faster-and then  he realized that there was a way to do that. 
The insight was to split lighting and rasterization into two separate steps. In a  normal 
Gouraud-based rasterizer, there’s first an off-line preprocessing step  when the world 
database is built, during which  polygons are added to support additional lighting 
detail as needed,  and lighting values are calculated at  the vertices  of  all  polygons. At 
runtime,  the lighting values are modified if dynamic lighting is required,  and  then 
the polygons are drawn  with Gouraud shading. 
Quake’s approach, which I’ll call surface-based lighting, preprocesses differently, 
and adds an extra rendering step. Duri,ng  off-line preprocessing, a  grid, called a 
light map, is calculated for each polygon in the world, with a lighting value  every 16 
texels horizontally and vertically. This lighting is done by casting light from all the 
nearby lights in the world to each of the grid points on  the polygon, and summing 
the results for each grid point. The Quake preprocessor filters the values, so shadow 
edges don’t have a stair-step appearance  (a  technique suggested by Billy Zelsnack) ; 
additional preprocessing could be done, for  example  Phong  shading to make sur- 
faces appear smoothly curved. Then,  at  runtime,  the polygon’s texture is tiled into a 
buffer, with each texel lit according to the weighted average intensities of the  four 
nearest light map points, as  shown in Figure 68.3. If dynamic lighting is needed,  the 
light map is modified accordingly before the buffer,  which I’ll call a surface, is built. 
Then  the polygon  is drawn with perspective texture  mapping, with the surface serv- 
ing as the  input texture, and with no lighting performed  during  the  texture mapping. 
So what does surface-based lighting buy us? First and foremost, it provides  consis- 
tent, perspective-correct lighting, eliminating all rotational, viewing, and clipping 
variance, because lighting is done in surface space rather than in screen space. By 
lighting in surface space, we bind  the lighting to the texels in an invariant way, and 
then  the lighting gets a  free  ride through  the perspective texture  mapper and  ends 
up perfectly matched to the texels. Surface-based lighting also supports good, al- 
though  not perfect, detail for overlapping lights and shadows. The 16-texel grid has 
a resolution of two feet in the Quake  frame of reference, and this relatively fine 
resolution,  together with the filtering performed  when  the light map is built, is suf- 
ficient to support  complex shadows with smoothly  fading  edges. Additionally, 
surface-based lighting eliminates lighting glitches at t-junctions, because lighting is 
unrelated to  vertices. In short, surface-based lighting meets  all of Quake’s visual  quality 
goals,  which  leaves  only one question: How does it perform? 

Size  and Speed 
As it turns  out, the raw speed of surface-based lighting is pretty good. Although an 
extra  step is required to build the surface, moving lighting and tiling into  a  separate 
loop  from  texture  mapping allows each of the two loops to be optimized very  effec- 
tively, with almost all  variables kept in registers. The surface-building inner  loop is 
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Light map 
0 32 64  96  128 
0 0 0 0 0  
32 64 96  128  160 

0 0 0 0 0  
64 96  128  160  192 
0 0 0 0 0  

Texture  tile 

0 0 0 0 0  
96  128  160  192  224 

0 0 0 0 0  
128  160  192  224  255 

/ 
The  texture is tiled  across the surface, 
with each texel  lit  according  to  the 
weighted  averages of the  four  nearest 
light  map  values.  (The  black dots on 
the  surface  show  where  the  light  map 
points  fall  for  illustrative  purposes, 
and  are not  actually drawn.) 
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nd lighting the texels from the  light map. 
Figure 68.3 
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particularly efficient, because it consists  of nothing  more  than interpolating  inten- 
sity, combining it with a texel and using the result to look up a lit texel color, and 
storing the results with a  dword write  every four texels. In assembly language, we got 
this code down to 2.25 cycles per lit texel in Quake. Similarly, the texture-mapping 
inner loop, which overlaps an FDIV for floating-point perspective correction with 
integer pixel drawing in 16-pixel bursts, has been squeezed down to 7.5 cycles per 
pixel on a  Pentium, so the  combined  inner  loop times for building and drawing a 
surface is roughly in the  neighborhood of 10 cycles per pixel. It’s certainly possible 
to write a Gouraud-shaded perspectivecorrect  texture  mapper that’s  somewhat faster 
than 10 cycles, but 10 cycles/pixel is fast enough to do 40 frames/second  at 640x400 
on a  Pentium/100, so the cycle counts of surface-based lighting are acceptable. It’s 
worth noting  that it’s possible to write a one-pass texture  mapper  that  does approxi- 
mately perspective-correct lighting. However, I have  yet  to hear of or devise such an 
inner  loop that isn’t complicated and full of special cases,  which  makes it hard to 
optimize; worse,  this approach  doesn’t work  well  with the  procedural  and post-pro- 
cessing techniques I’ll discuss  shortly. 
Moreover, surface-based lighting tends to spend  more of its time in inner loops, 
because  polygons  can  have  any number of sides and don’t need to be split into multiple 
smaller polygons for lighting purposes; this reduces  the  amount of transformation 
and projection that are required, and makes  polygon spans longer. So the perfor- 
mance of surface-based lighting stacks up very  well indeed-except for caching. 
I mentioned earlier  that  a 64x64 texture tile fits nicely in the processor cache. A 
typical surface doesn’t. Every texel in every surface is unique, so even at 320x200 
resolution, something  on  the  rough  order of 64,000 texels must be read in order to 
draw a single scene. (The  number actually  varies quite  a bit, as  discussed  below, but 
64,000 is in the ballpark.) This means  that  on  a  Pentium, we’re guaranteed to miss 
the cache once every 32 texels, and  the  number can be considerably worse than  that 
if the texture access patterns are  such  that we don’t use every texel in  a given cache 
line  before  that  data gets thrown out of the cache. Then, too,  when  a surface is built, 
the surface buffer won’t  be in  the  cache, so the writes will be uncached writes that 
have to go to main memory, then get  read back from  main  memory  at  texture  map- 
ping  time, potentially slowing things  further still. All this together makes the 
combination of surface building and unlit  texture  mapping  a  potential  performance 
problem,  but that never posed a  problem  during  the development of Quake, thanks 
to surface caching. 

Surface Caching 
When he thought of  surface-based  lighting, John immediately  realized that surface  build- 
ing  would  be  relatively expensive. (In fact, he assumed  it would be considerably more 
expensive than it actually turned out to  be  with  full  assembly-language optimization.) 
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Consequently,  his  design included the concept of caching  surfaces, so that if the same 
surface  were  visible  in the next frame, it could  be reused without  having  to be rebuilt. 
With surface rebuilding needed only rarely, thanks to surface  caching, Quake's 
rasterization speed is generally the  speed of the  unlit, perspective-correct texture- 
mapping  inner  loop, which  suffers from  more cache misses than  Gouraud-shaded, 
tiled texture mapping, but doesn't have the overhead of Gouraud shading, and allows 
the use of larger polygons. In  the worst case, where everything in a  frame is a new 
surface, the  speed of the surface-caching approach is somewhat slower than  Gouraud 
shading, but generally  surface  caching  provides  equal or better performance, so once 
surface caching was implemented in Quake,  performance was no longer  a  prob- 
lem-but  size became  a concern. 
The  amount of memory required for surface  caching  looked forbidding at first.  Surfaces 
are large relative to texture tiles, because every texel of  every surface is unique. Also, 
a surface can contain many texels  relative to the  number of pixels  actually drawn on 
the screen, because due to perspective foreshortening,  distant polygons  have  only a 
few pixels  relative to the surface size in texels. Surfaces associated with partly hidden 
polygons must be fully built, even though only part of the polygon is visible, and if 
polygons are drawn back to front with  overdraw, some polygons won't even be vis- 
ible, but will still require surface building and caching. What all  this meant was that 
the surface cache initially looked to be very large, on  the  order of several megabytes, 
even at 32Ox200"too much  for  a  game  intended to run  on  an 8 MB machine. 

Mipmapping To The  Rescue 
Two factors combined to solve this problem. First,  polygons are drawn through  an 
edge list  with no overdraw,  as I discussed a few chapters back, so no surface is ever 
built unless at least part of it is  visible. Second, surfaces are built at  four  mipmap 
levels, depending  on distance, with each  mipmap level having one-quarter as many 
texels  as the  preceding level,  as  shown in Figure 68.4. 
For those whose heads haven't been basted in 3-D technology for  the past several 
years, mipmuppingis  3-D graphics jargon for  a process that normalizes the  number of 
texels  in a surface  to be approximately equal to the number of  pixels, reducing calcula- 
tion  time for distant surfaces containing only a few pixels. The mipmap level for a given 
surface is selected to result in a texe1:pixel ratio approximately between 1:l and 1:2, 
so texels map roughly  to  pixels, and  more distant surfaces are correspondingly smaller. 
As a result, the  number of surface texels required to draw a scene at 320x200 is on 
the  rough  order of 64,000; the  number is actually somewhat higher, because of por- 
tions of surfaces that are  obscured  and viewspace-tilted polygons, which  have high 
texel-to-pixel ratios along one axis, but  not a whole lot higher. Thanks to mipmapping 
and  the  edge list,  600K has proven to be plenty for  the surface cache  at 320x200, 
even in the most  complex scenes, and  at 640x480, a little more than 1 MB suffices. 
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How mipmapping  reduces  surface  caching  requirements. 
Figure 68.4 

All mipmapped  texture tiles are  generated as a  preprocessing  step, and  loaded  from 
disk at runtime. One interesting point is that a key to  making  mipmapping  look  good 
turned  out to be box-filtering  down  from one level to the next by averaging four adjacent 
pixels, then using error diffusion dithering to generate  the  mipmapped texels. 
Also, mipmapping is done  on a per-surface basis; the  mipmap level for  a whole sur- 
face is selected based on  the distance  from  the viewer  of the  nearest vertex. This  led 
us to limit surface size to a maximum of 256x256. Otherwise, surfaces such as floors 
would extend  for  thousands of texels, all at  the  mipmap level  of the  nearest vertex, 
and would require  huge  amounts of surface  cache space while displaying a  great 
deal of aliasing in distant  regions due to a  high texe1:pixel ratio. 

Two Final  Notes  on  Surface  Caching 
Dynamic lighting  has  a significant impact on the  performance of surface  caching, 
because whenever the lighting on a  surface  changes,  the  surface has to be  rebuilt. In 
the worst case, where the lighting  changes on every  visible surface, the surface  cache 
provides no benefit,  and  rendering  runs  at  the  combined  speed of surface  building 
and  texture  mapping. This worst-case  slowdown  is tolerable but certainly noticeable, 
so it’s best to design games that use surface  caching so only some of the surfaces 
change  lighting  at any one time. If necessary, you could  alternate  surface  relighting 
so that half  of the surfaces change on even frames, and half on  odd frames, but 
large-scale, constant  relighting is not surface caching’s strongest suit. 
Finally, Quake barely begins to tap  surface caching’s potential. All sorts of proce- 
dural  texturing  and post-processing effects are possible. If a wall  is shot,  a  sprite of 
pockmarks could be attached to the wall’s data  structure,  and  the  sprite  could be 
drawn into  the  surface  each time the surface is rebuilt. The same could be done for 
splatters, or graffiti, with translucency easily supported.  These effects would then  be 
cached  and drawn  as part of the  surface, so the  performance cost would be  much 

Quake‘s Lighting Model 1255 



less  than  effects done by on-screen overdraw  every frame. Basically, the  surface is a 
handy repository for all  sorts of  effects, because multiple techniques can be 
composited, because  it  caches  the  results  for  reuse  without  rebuilding,  and  because 
the  texels  constructed  in a surface  are  automatically drawn  in perspective. 

1 256 Chapter 68 


	previous: 
	home: 
	next: 


