
Homesteading the Noosphere
Eric Steven Raymond$Date: 2000/08/25 02:59:06 $

Copyright © 2000 by Eric S. Raymond

Copyright

Permission is granted to copy, distribute and/or modify this document under the terms of the Open
Publication License, version 2.0.

Revision History

Revision 1.2224 August 2000 Revised by: esr
DocBook 4.1 conversion.
Revision 1.2131 Aug 1999 Revised by: esr
Major revision for the O’Reilly book. Incorporated some ideas about the costs of forking and rogue patches from Michael Chastain. Thomas Gagne tgagne@ix.netcom.com noticed the similarity between "seniority wins" and database heuristics. Henry Spencer’s political analogy. Ryan Waldron and El Howard elhoward@hotmail.com contributed thoughts on the value of novelty. Thomas Bryan tbryan@arlut.utexas.edu explained the hacker revulsion to “embrace and extend”. Darcy Horrocks inspired the new section “How Fine A Gift?” Other new material on the connection to the Maslovian hierarcy of values, and the taboo against attacks on competence.
Revision 1.1421 November 1998Revised by: esr
Minor editorial and stale-link fixes.
Revision 1.1011 July 1998 Revised by: esr
Remove Fare Rideau’s reference to ‘fame’ at his suggestion.
Revision 1.9 26 May 1998 Revised by: esr
Incorporated Faré Rideau’s noosphere/ergosphere distinction. Incorporated RMS’s assertion that he is not anticommercial. New section on acculturation and academia (thanks to Ross J. Reedstrom, Eran Tromer, Allan McInnes, Mike Whitaker, and others). More about humility, (‘egoless behavior’) from Jerry Fass and Marsh Ray.
Revision 1.8 27 April 1998 Revised by: esr
Added Goldhaber to the bibliography. This is the version that will go in the Linux Expo proceedings.
Revision 1.7 16 April 1998 Revised by: esr
New section on ‘Global implications’ discusses historical tends in the colonization of the noosphere, and examines the ‘category-killer’ phenomenon. Added another research question.
Revision 1.3 12 April 1998 Revised by: esr
Typo fixes and responses to first round of public comments. First four items in bibliography. An anonymously contributed observation about reputation incentives operating even when the craftsman is unaware of them. Added instructive contrasts with warez d00dz, material on the ‘software should speak for itself’ premise, and observations on avoiding personality cults. As a result of all these changes, the section on ‘The Problem of Ego’ grew and fissioned.
Revision 1.2 10 April 1998 Revised by: esr
First published on the Web.

After observing a contradiction between the ‘official’ ideology defined by open-source licenses and the
actual behavior of hackers, I examine the actual customs which regulate the ownership and control of
open-source software. I show that they imply an underlying theory of property rights homologous to the
Lockean theory of land tenure. I then relate that to an analysis of the hacker culture as a ‘gift culture’ in
which participants compete for prestige by giving time, energy, and creativity away. Finally, I examine
the implications of this analysis for conflict resolution in the culture, and develop some prescriptive
implications.

1

1. An Introductory Contradiction

Anyone who watches the busy, tremendously productive world of Internet open-source software for a
while is bound to notice an interesting contradiction between what open-source hackers say they believe
and the way they actually behave – between the official ideology of the open-source culture and its actual
practice.

Cultures are adaptive machines. The open-source culture is a response to an identifiable set of drives and
pressures. As usual, the culture’s adaptation to its circumstances manifests both as conscious ideology
and as implicit, unconscious or semi-conscious knowledge. And, as is not uncommon, the unconscious
adaptations are partly at odds with the conscious ideology.

In this paper, I will dig around the roots of that contradiction, and use it to discover those drives and
pressures. We will deduce some interesting things about the hacker culture and its customs. We will
conclude by suggesting ways in which the culture’s implicit knowledge can be leveraged better.

2. The Varieties of Hacker Ideology

The ideology of the Internet open-source culture (what hackers say they believe) is a fairly complex topic
in itself. All members agree that open source (that is, software that is freely redistributable and can
readily be evolved and modified to fit changing needs) is a good thing and worthy of significant and
collective effort. This agreement effectively defines membership in the culture. However, the reasons
individuals and various subcultures give for this belief vary considerably.

One degree of variation is zealotry; whether open source development is regarded merely as a convenient
means to an end (good tools and fun toys and an interesting game to play) or as an end in itself.

A person of great zeal might say “Free software is my life! I exist to create useful, beautiful programs
and information resources, and then give them away.” A person of moderate zeal might say “Open source
is a good thing, which I am willing to spend significant time helping happen”. A person of little zeal
might say “Yes, open source is OK sometimes. I play with it and respect people who build it”.

Another degree of variation is in hostility to commercial software and/or the companies perceived to
dominate the commercial software market.

2

A very anticommercial person might say “Commercial software is theft and hoarding. I write free
software to end this evil.” A moderately anticommercial person might say “Commercial software in
general is OK because programmers deserve to get paid, but companies that coast on shoddy products
and throw their weight around are evil.” An un-anticommercial person might say “Commercial software
is OK, I just use and/or write open-source software because I like it better”. (Nowadays, given the growth
of the open-source part of the industry since the first public version of this paper, one might also hear
“Commercial software is fine, as long as I get the source or it does what I want it to do.”)

All nine of the attitudes implied by the cross-product of the above categories are represented in the
open-source culture. The reason it is worthwhile to point out the distinctions is because they imply
different agendas, and different adaptive and cooperative behaviors.

Historically, the most visible and best-organized part of the hacker culture has been both very zealous
and very anticommercial. The Free Software Foundation founded by Richard M. Stallman (RMS)
supported a great deal of open-source development from the early 1980s on, including tools like Emacs
and GCC which are still basic to the Internet open-source world, and seem likely to remain so for the
forseeable future.

For many years the FSF was the single most important focus of open-source hacking, producing a huge
number of tools still critical to the culture. The FSF was also long the only sponsor of open source with
an institutional identity visible to outside observers of the hacker culture. They effectively defined the
term ‘free software’, deliberately giving it a confrontational weight (which the newer label ‘open source
(http://www.opensource.org)’ just as deliberately avoids).

Thus, perceptions of the hacker culture from both within and outside it tended to identify the culture with
the FSF’s zealous attitude and perceived anticommercial aims. RMS himself denies he is
anticommercial, but his program has been so read by most people, including many of his most vocal
partisans. The FSF’s vigorous and explicit drive to “Stamp Out Software Hoarding!” became the closest
thing to a hacker ideology, and RMS the closest thing to a leader of the hacker culture.

The FSF’s license terms, the “General Public License” (GPL), expresses the FSF’s attitudes. It is very
widely used in the open-source world. North Carolina’s Metalab
(http://metalab.unc.edu/pub/Linux/welcome.html) (formerly Sunsite) is the largest and most popular
software archive in the Linux world. In July 1997 about half the Sunsite software packages with explicit
license terms used GPL.

But the FSF was never the only game in town. There was always a quieter, less confrontational and more

3

market-friendly strain in the hacker culture. The pragmatists were loyal not so much to an ideology as to
a group of engineering traditions founded on early open-source efforts which predated the FSF. These
traditions included, most importantly, the intertwined technical cultures of Unix and the pre-commercial
Internet.

The typical pragmatist attitude is only moderately anticommercial, and its major grievance against the
corporate world is not ‘hoarding’ per se. Rather it is that world’s perverse refusal to adopt superior
approaches incorporating Unix and open standards and open-source software. If the pragmatist hates
anything, it is less likely to be ‘hoarders’ in general than the current King Log of the software
establishment; formerly IBM, now Microsoft.

To pragmatists, the GPL is important as a tool rather than an end in itself. Its main value is not as a
weapon against ‘hoarding’, but as a tool for encouraging software sharing and the growth of
bazaar-mode (http://www.tuxedo.org/~esr/writings/cathedral-bazaar) development communities. The
pragmatist values having good tools and toys more than he dislikes commercialism, and may use
high-quality commercial software without ideological discomfort. At the same time, his open-source
experience has taught him standards of technical quality that very little closed software can meet.

For many years, the pragmatist point of view expressed itself within the hacker culture mainly as a
stubborn current of refusal to completely buy into the GPL in particular or the FSF’s agenda in general.
Through the 1980s and early 1990s, this attitude tended to be associated with fans of Berkeley Unix,
users of the BSD license, and the early efforts to build open-source Unixes from the BSD source base.
These efforts, however, failed to build bazaar communities of significant size, and became seriously
fragmented and ineffective.

Not until the Linux explosion of early 1993-1994 did pragmatism find a real power base. Although Linus
Torvalds never made a point of opposing RMS, he set an example by looking benignly on the growth of a
commercial Linux industry, by publicly endorsing the use of high-quality commercial software for
specific tasks, and by gently deriding the more purist and fanatical elements in the culture.

A side effect of the rapid growth of Linux was the induction of a large number of new hackers for which
Linux was their primary loyalty and the FSF’s agenda primarily of historical interest. Though the newer
wave of Linux hackers might describe the system as “the choice of a GNU generation”, most tended to
emulate Torvalds more than Stallman.

Increasingly it was the anticommercial purists who found themselves in a minority. How much things
had changed would not become apparent until the Netscape announcement in February 1998 that it

4

would distribute Navigator 5.0 in source. This excited more interest in ‘free software’ within the
corporate world. The subsequent call to the hacker culture to exploit this unprecedented opportunity and
to re-label its product from ‘free software’ to ‘open source’ was met with a level of instant approval that
surprised everybody involved.

In a reinforcing development, the pragmatist part of the culture was itself becoming polycentric by the
mid-1990s. Other semi-independent communities with their own self-consciousness and charismatic
leaders began to bud from the Unix/Internet root stock. Of these, the most important after Linux was the
Perl culture under Larry Wall. Smaller, but still significant, were the traditions building up around John
Osterhout’s Tcl and Guido van Rossum’s Python languages. All three of these communities expressed
their ideological independence by devising their own, non-GPL licensing schemes.

3. Promiscuous Theory, Puritan Practice

Through all these changes, nevertheless, there remained a broad consensus theory of what ‘free software’
or ‘open source’ is. The clearest expression of this common theory can be found in the various
open-source licenses, all of which have crucial common elements.

In 1997 these common elements were distilled into the Debian Free Software Guidelines, which became
the Open Source Definition (http://www.opensource.org). Under the guidelines defined by the OSD, an
open-source license must protect an unconditional right of any party to modify (and redistribute modified
versions of) open-source software.

Thus, the implicit theory of the OSD (and OSD-conformant licenses such as the GPL, the BSD license,
and Perl’s Artistic License) is that anyone can hack anything. Nothing prevents half a dozen different
people from taking any given open-source product (such as, say the Free Software Foundations’s gcc C
compiler), duplicating the sources, running off with them in different evolutionary directions, but all
claiming to be the product.

In practice, however, such ‘forking’ almost never happens. Splits in major projects have been rare, and
always accompanied by re-labeling and a large volume of public self-justification. It is clear that, in such
cases as the GNU Emacs/XEmacs split, or the gcc/egcs split, or the various fissionings of the BSD
splinter groups, that the splitters felt they were going against a fairly powerful community norm [SP].

In fact (and in contradiction to the anyone-can-hack-anything consensus theory) the open-source culture
has an elaborate but largely unadmitted set of ownership customs. These customs regulate who can

5

modify software, the circumstances under which it can be modified, and (especially) who has the right to
redistribute modified versions back to the community.

The taboos of a culture throw its norms into sharp relief. Therefore, it will be useful later on if we
summarize some important ones here.

• There is strong social pressure against forking projects. It does not happen except under plea of dire
necessity, with much public self-justification, and with a renaming.

• Distributing changes to a project without the cooperation of the moderators is frowned upon, except in
special cases like essentially trivial porting fixes.

• Removing a person’s name from a project history, credits or maintainer list is absolutely not done
without the person’s explicit consent.

In the remainder of this paper, we shall examine these taboos and ownership customs in detail. We shall
inquire not only into how they function but what they reveal about the underlying social dynamics and
incentive structures of the open-source community.

4. Ownership and Open Source

What does ‘ownership’ mean when property is infinitely reduplicable, highly malleable, and the
surrounding culture has neither coercive power relationships nor material scarcity economics?

Actually, in the case of the open-source culture this is an easy question to answer. The owner(s) of a
software project are those who have the exclusive right, recognized by the community at large, to
re-distribute modified versions.

(In discussing ‘ownership’ in this section I will use the singular, as though all projects are owned by
some one person. It should be understood, however, that projects may be owned by groups. We shall
examine the internal dynamics of such groups later in this paper.)

According to the standard open-source licenses, all parties are equals in the evolutionary game. But in
practice there is a very well-recognized distinction between ‘official’ patches, approved and integrated
into the evolving software by the publicly recognized maintainers, and ‘rogue’ patches by third parties.
Rogue patches are unusual, and generally not trusted [RP].

6

That public redistribution is the fundamental issue is easy to establish. Custom encourages people to
patch software for personal use when necessary. Custom is indifferent to people who redistribute
modified versions within a closed user or development group. It is only when modifications are posted to
the open-source community in general, to compete with the original, that ownership becomes an issue.

There are, in general, three ways to acquire ownership of an open-source project. One, the most obvious,
is to found the project. When a project has had only one maintainer since its inception and the maintainer
is still active, custom does not even permit a question as to who owns the project.

The second way is to have ownership of the project handed to you by the previous owner (this is
sometimes known as ‘passing the baton’). It is well understood in the community that project owners
have a duty to pass projects to competent successors when they are no longer willing or able to invest
needed time in development or maintenance work.

It is significant that in the case of major projects, such transfers of control are generally announced with
some fanfare. While it is unheard of for the open-source community at large to actually interfere in the
owner’s choice of succession, customary practice clearly incorporates a premise that public legitimacy is
important.

For minor projects, it is generally sufficient for a change history included with the project distribution to
note the change of ownership. The clear presumption is that if the former owner has not in fact
voluntarily transferred control, he or she may reassert control with community backing by objecting
publicly within a reasonable period of time.

The third way to acquire ownership of a project is to observe that it needs work and the owner has
disappeared or lost interest. If you want to do this, it is your responsibility to make the effort to find the
owner. If you don’t succeed, then you may announce in a relevant place (such as a Usenet newsgroup
dedicated to the application area) that the project appears to be orphaned, and that you are considering
taking responsibility for it.

Custom demands that you allow some time to pass before following up with an announcement that you
have declared yourself the new owner. In this interval, if someone else announces that they have been
actually working on the project, their claim trumps yours. It is considered good form to give public
notice of your intentions more than once. More points for good form if you announce in many relevant
forums (related newsgroups, mailing lists); and still more if you show patience in waiting for replies. In
general, the more visible effort you make to allow the previous owner or other claimants to respond, the
better your claim if no response is forthcoming.

7

If you have gone through this process in sight of the project’s user community, and there are no
objections, then you may claim ownership of the orphaned project and so note in its history file. This,
however, is less secure than being passed the baton, and you cannot expect to be considered fully
legitimate until you have made substantial improvements in the sight of the user community.

I have observed these customs in action for twenty years, going back to the pre-FSF ancient history of
open-source software. They have several very interesting features. One of the most interesting is that
most hackers have followed them without being fully aware of doing so. Indeed, the above may be the
first conscious and reasonably complete summary ever to have been written down.

Another is that, for unconscious customs, they have been followed with remarkable (even astonishing)
consistency. I have observed the evolution of literally hundreds of open-source projects, and I can still
count the number of significant violations I have observed or heard about on my fingers.

Yet a third interesting feature is that as these customs have evolved over time, they have done so in a
consistent direction. That direction has been to encourage more public accountability, more public
notice, and more care about preserving the credits and change histories of projects in ways which
(among other things) establish the legitimacy of the present owners.

These features suggest that the customs are not accidental, but are products of some kind of implicit
agenda or generative pattern in the open-source culture that is utterly fundamental to the way it operates.

An early respondent pointed out that contrasting the Internet hacker culture with the cracker/pirate
culture (the “warez d00dz” centered around game-cracking and pirate bulletin-board systems) illuminates
the generative patterns of both rather well. We’ll return to the d00dz for contrast later in the paper.

5. Locke and Land Title

To understand this generative pattern, it helps to notice a historical analogy for these customs that is far
outside the domain of hackers’ usual concerns. As students of legal history and political philosophy may
recognize, the theory of property they imply is virtually identical to the Anglo-American common-law
theory of land tenure!

In this theory, there are three ways to acquire ownership of land.

8

On a frontier, where land exists that has never had an owner, one can acquire ownership by
homesteading, mixing one’s labor with the unowned land, fencing it, and defending one’s title.

The usual means of transfer in settled areas is transfer of title – that is, receiving the deed from the
previous owner. In this theory, the concept of ‘chain of title’ is important. The ideal proof of ownership is
a chain of deeds and transfers extending back to when the land was originally homesteaded.

Finally, the common-law theory recognizes that land title may be lost or abandoned (for example, if the
owner dies without heirs, or the records needed to establish chain of title to vacant land are gone). A
piece of land that has become derelict in this way may be claimed by adverse possession – one moves in,
improves it, and defends title as if homesteading.

This theory, like hacker customs, evolved organically in a context where central authority was weak or
nonexistent. It developed over a period of a thousand years from Norse and Germanic tribal law. Because
it was systematized and rationalized in the early modern era by the English political philosopher John
Locke, it is sometimes referred to as the ‘Lockean’ theory of property.

Logically similar theories have tended to evolve wherever property has high economic or survival value
and no single authority is powerful enough to force central allocation of scarce goods. This is true even
in the hunter-gatherer cultures that are sometimes romantically thought to have no concept of ‘property’.
For example, in the traditions of the !Kung San bushmen of the Kgalagadi (formerly ‘Kalahari’) Desert,
there is no ownership of hunting grounds. But there is ownership of water-holes and springs under a
theory recognizably akin to Locke’s.

The !Kung San example is instructive, because it shows that Lockean property customs arise only where
the expected return from the resource exceeds the expected cost of defending it. Hunting grounds are not
property because the return from hunting is highly unpredictable and variable, and (although highly
prized) not a necessity for day-to-day survival. Waterholes, on the other hand, are vital to survival and
small enough to defend.

The ‘noosphere’ of this essay’s title is the territory of ideas, the space of all possible thoughts [N]. What
we see implied in hacker ownership customs is a Lockean theory of property rights in one subset of the
noosphere, the space of all programs. Hence ‘homesteading the noosphere’, which is what every founder
of a new open-source project does.

Faré Rideau � fare@tunes.org � correctly points out that hackers do not exactly operate in the territory of
pure ideas. He asserts that what hackers own is programming projects – intensional focus points of

9

material labor (development, service, etc), to which are associated things like reputation, trustworthiness,
etc. He therefore asserts that the space spanned by hacker projects, is not the noosphere but a sort of dual
of it, the space of noosphere-exploring program projects. (With an apologetic nod to the astrophysicists
out there, it would be etymologically correct to call this dual space the ‘ergosphere’ or ‘sphere of work’.)

In practice, the distinction between noosphere and ergosphere is not important for the purposes of this
paper. It is dubious whether the ‘noosphere’ in the pure sense Faré insists on can be said to exist in any
meaningful way; one would almost have to be a Platonist philosopher to believe in it. And the distinction
between noosphere and ergosphere is only of practical importance if one wishes to assert that ideas (the
elements of the noosphere) cannot be owned, but their instantiations as projects can. This question leads
to issues in the theory of intellectual property which are beyond the scope of this paper (but see [DF]).

To avoid confusion, however, it is important to note that neither the noosphere nor the ergosphere is the
same as the totality of virtual locations in electronic media that is sometimes (to the disgust of most
hackers) called ‘cyberspace’. Property there is regulated by completely different rules that are closer to
those of the material substratum – essentially, he who owns the media and machines on which a part of
‘cyberspace’ is hosted owns that piece of cyberspace as a result.

The Lockean logic of custom suggests strongly that open-source hackers observe the customs they do in
order to defend some kind of expected return from their effort. The return must be more significant than
the effort of homesteading projects, the cost of maintaining version histories that document ‘chain of
title’, and the time cost of doing public notifications and a waiting period before taking adverse
possession of an orphaned project.

Furthermore, the ‘yield’ from open source must be something more than simply the use of the software,
something else that would be compromised or diluted by forking. If use were the only issue, there would
be no taboo against forking, and open-source ownership would not resemble land tenure at all. In fact,
this alternate world (where use is the only yield, and forking is unproblematic) is the one implied by
existing open-source licenses.

We can eliminate some candidate kinds of yield right away. Because you can’t coerce effectively over a
network connection, seeking power is right out. Likewise, the open-source culture doesn’t have anything
much resembling money or an internal scarcity economy, so hackers cannot be pursuing anything very
closely analogous to material wealth (e.g. the accumulation of scarcity tokens).

There is one way that open-source activity can help people become wealthier, however – a way that
provides a valuable clue to what actually motivates it. Occasionally, the reputation one gains in the

10

hacker culture can spill over into the real world in economically significant ways. It can get you a better
job offer, or a consulting contract, or a book deal.

This kind of side effect, however, is at best rare and marginal for most hackers; far too much so to make
it convincing as a sole explanation, even if we ignore the repeated protestations by hackers that they’re
doing what they do not for money but out of idealism or love.

However, the way such economic side-effects are mediated is worth examination. Below we’ll see that an
understanding of the dynamics of reputation within the open-source culture itself has considerable
explanatory power.

6. The Hacker Milieu as Gift Culture

To understand the role of reputation in the open-source culture, it is helpful to move from history further
into anthropology and economics, and examine the difference between exchange cultures and gift
cultures.

Human beings have an innate drive to compete for social status; it’s wired in by our evolutionary history.
For the 90% of that history that ran before the invention of agriculture, our ancestors lived in small
nomadic hunting-gathering bands. High-status individuals (those most effective at informing coalitions
and persuading others to cooperate with them) got the healthiest mates and access to the best food. This
drive for status expresses itself in different ways, depending largely on the degree of scarcity of survival
goods.

Most ways humans have of organizing are adaptations to scarcity and want. Each way carries with it
different ways of gaining social status.

The simplest way is the command hierarchy. In command hierarchies, allocation of scarce goods is done
by one central authority and backed up by force. Command hierarchies scale very poorly [Mal]; they
become increasingly brutal and inefficient as they get larger. For this reason, command hierarchies above
the size of an extended family are almost always parasites on a larger economy of a different type. In
command hierarchies, social status is primarily determined by access to coercive power.

Our society is predominantly an exchange economy. This is a sophisticated adaptation to scarcity that,
unlike the command model, scales quite well. Allocation of scarce goods is done in a decentralized way

11

through trade and voluntary cooperation (and in fact, the dominating effect of competitive desire is to
produce cooperative behavior). In an exchange economy, social status is primarily determined by having
control of things (not necessarily material things) to use or trade.

Most people have implicit mental models for both of the above, and how they interact with each other.
Government, the military, and organized crime (for example) are command hierarchies parasitic on the
broader exchange economy we call ‘the free market’. There’s a third model, however, that is radically
different from either and not generally recognized except by anthropologists; the gift culture.

Gift cultures are adaptations not to scarcity but to abundance. They arise in populations that do not have
significant material-scarcity problems with survival goods. We can observe gift cultures in action among
aboriginal cultures living in ecozones with mild climates and abundant food. We can also observe them
in certain strata of our own society, especially in show business and among the very wealthy.

Abundance makes command relationships difficult to sustain and exchange relationships an almost
pointless game. In gift cultures, social status is determined not by what you control but by what you give
away.

Thus the Kwakiutl chieftain’s potlach party. Thus the multi-millionaire’s elaborate and usually public
acts of philanthropy. And thus the hacker’s long hours of effort to produce high-quality open-source code.

For examined in this way, it is quite clear that the society of open-source hackers is in fact a gift culture.
Within it, there is no serious shortage of the ‘survival necessities’ – disk space, network bandwidth,
computing power. Software is freely shared. This abundance creates a situation in which the only
available measure of competitive success is reputation among one’s peers.

This observation is not in itself entirely sufficient to explain the observed features of hacker culture,
however. The crackers and warez d00dz have a gift culture that thrives in the same (electronic) media as
that of the hackers, but their behavior is very different. The group mentality in their culture is much
stronger and more exclusive than among hackers. They hoard secrets rather than sharing them; one is
much more likely to find cracker groups distributing sourceless executables that crack software than tips
that give away how they did it. (For an inside perspective on this behavior, see [LW]).

What this shows, in case it wasn’t obvious, is that there is more than one way to run a gift culture.
History and values matter. I have summarized the history of the hacker culture in A Brief History of
Hackerdom ; the ways in which it shaped present behavior are not mysterious. Hackers have defined their

12

culture by a set of choices about the form which their competition will take. It is that form which we will
examine in the remainder of this paper.

7. The Joy of Hacking

In making this ‘reputation game’ analysis, by the way, I do not mean to devalue or ignore the pure artistic
satisfaction of designing beautiful software and making it work. We all experience this kind of
satisfaction and thrive on it. People for whom it is not a significant motivation never become hackers in
the first place, just as people who don’t love music never become composers.

So perhaps we should consider another model of hacker behavior in which the pure joy of craftsmanship
is the primary motivation. This ‘craftsmanship’ model would have to explain hacker custom as a way of
maximizing both the opportunities for craftsmanship and the quality of the results. Does this conflict
with or suggest different results than the ‘reputation game’ model?

Not really. In examining the ‘craftsmanship’ model, we come back to the same problems that constrain
hackerdom to operate like a gift culture. How can one maximize quality if there is no metric for quality?
If scarcity economics doesn’t operate, what metrics are available besides peer evaluation? It appears that
any craftsmanship culture ultimately must structure itself through a reputation game – and, in fact, we
can observe exactly this dynamic in many historical craftsmanship cultures from the medieval guilds
onwards.

In one important respect, the ‘craftsmanship’ model is weaker than the ‘gift culture’ model; by itself, it
doesn’t help explain the contradiction we began this paper with.

Finally, the ‘craftsmanship’ motivation itself may not be psychologically as far removed from the
reputation game as we might like to assume. Imagine your beautiful program locked up in a drawer and
never used again. Now imagine it being used effectively and with pleasure by many people. Which
dream gives you satisfaction?

Nevertheless, we’ll keep an eye on the craftsmanship model. It is intuitively appealing to many hackers,
and explains some aspects of individual behavior well enough [HT].

After I published the first version of this paper on the Internet, an anonymous respondent commented:
“You may not work to get reputation, but the reputation is a real payment with consequences if you do

13

the job well.” This is a subtle and important point. The reputation incentives continue to operate whether
or not a craftsman is aware of them; thus, ultimately, whether or not a hacker understands his own
behavior as part of the reputation game, his behavior will be shaped by that game.

Other respondents related peer-esteem rewards and the joy of hacking to the levels above subsistence
needs in Abraham Maslow’s well-known ‘hierarchy of values’ model of human motivation [MH]. On
this view, the joy of hacking is a self-actualization or transcendence need which will not be consistently
expressed until lower-level needs (including those for physical security and for ‘belongingness’ or peer
esteem) have been at least minimally satisfied. Thus, the reputation game may be critical in providing a
social context within which the joy of hacking can in fact become the individual’s primary motive.

8. The Many Faces of Reputation

There are reasons general to every gift culture why peer repute (prestige) is worth playing for:

First and most obviously, good reputation among one’s peers is a primary reward. We’re wired to
experience it that way for evolutionary reasons touched on earlier. (Many people learn to redirect their
drive for prestige into various sublimations that have no obvious connection to a visible peer group, such
as “honor”, “ethical integrity”, “piety” etc.; this does not change the underlying mechanism.)

Secondly, prestige is a good way (and in a pure gift economy, the only way) to attract attention and
cooperation from others. If one is well known for generosity, intelligence, fair dealing, leadership ability,
or other good qualities, it becomes much easier to persuade other people that they will gain by
association with you.

Thirdly, if your gift economy is in contact with or intertwined with an exchange economy or a command
hierarchy, your reputation may spill over and earn you higher status there.

Beyond these general reasons, the peculiar conditions of the hacker culture make prestige even more
valuable than it would be in a ‘real world’ gift culture.

The main ‘peculiar condition’ is that the artifacts one gives away (or, interpreted another way, are the
visible sign of one’s gift of energy and time) are very complex. Their value is nowhere near as obvious as
that of material gifts or exchange-economy money. It is much harder to objectively distinguish a fine gift

14

from a poor one. Accordingly, the success of a giver’s bid for status is delicately dependent on the critical
judgement of peers.

Another peculiarity is the relative purity of the open-source culture. Most gift cultures are compromised
– either by exchange-economy relationships such as trade in luxury goods, or by command-economy
relationships such as family or clan groupings. No significant analogues of these exist in the open-source
culture; thus, ways of gaining status other than by peer repute are virtually absent.

9. Ownership Rights and Reputation Incentives

We are now in a position to pull together the previous analyses into a coherent account of hacker
ownership customs. We understand the yield from homesteading the noosphere now; it is peer repute in
the gift culture of hackers, with all the secondary gains and side-effects that implies.

From this understanding, we can analyze the Lockean property customs of hackerdom as a means of
maximizing reputation incentives; of ensuring that peer credit goes where it is due and does not go where
it is not due.

The three taboos we observed above make perfect sense under this analysis. One’s reputation can suffer
unfairly if someone else misappropriates or mangles one’s work; these taboos (and related customs)
attempt to prevent this from happening. (Or, to put it more pragmatically, hackers generally refrain from
forking or rogue-patching others projects in order to be able to deny legitimacy to the same behavior
practiced against themselves.)

• Forking projects is bad because it exposes pre-fork contributors to a reputation risk they can only
control by being active in both child projects simultaneously after the fork. (This would generally be
too confusing or difficult to be practical.)

• Distributing rogue patches (or, much worse, rogue binaries) exposes the owners to an unfair reputation
risk. Even if the official code is perfect, the owners will catch flak from bugs in the patches (but see
[RP]).

• Surreptitiously filing someone’s name off a project is, in cultural context, one of the ultimate crimes. It
steals the victim’s gift to be presented as the thief’s own.

Of course, forking a project or distributing rogue patches for it also directly attacks the reputation of the
original developer’s group. If I fork or rogue-patch your project, I am saying: "you made a wrong
decision [by failing to take the project where I am taking it]"; and Anyone who uses my forked variation

15

is endorsing this challenge. But this in itself would be a fair challenge, albeit extreme; it’s the sharpest
end of peer review. It’s therefore not sufficient in itself to account for the taboos, though it doubtless
contributes force to them.

All three of these taboo behaviors inflict global harm on the open-source community as well as local
harm on the victim(s). Implicitly they damage the entire community by decreasing each potential
contributor’s perceived likelihood that gift/productive behavior will be rewarded.

It’s important to note that there are alternate candidate explanations for two of these three taboos.

First, hackers often explain their antipathy to forking projects by bemoaning the wasteful duplication of
work it would imply as the child products evolved in more-or-less parallel into the future. They may also
observe that forking tends to split the co-developer community, leaving both child projects with fewer
brains to work with than the parent.

A respondent has pointed out that it is unusual for more than one offspring of a fork to survive with
significant ‘market share’ into the long term. This strengthens the incentives for all parties to cooperate
and avoid forking, because it’s hard to know in advance who will be on the losing side and see a lot of
their work either disappear entirely or languish in obscurity.

Dislike of rogue patches is often explained by observing that they can complicate bug-tracking
enormously, and inflict work on maintainers who have quite enough to do catching their own mistakes.

There is considerable truth to these explanations, and they certainly do their bit to reinforce the Lockean
logic of ownership. But while intellectually attractive, they fail to explain why so much emotion and
territoriality gets displayed on the infrequent occasions that the taboos get bent or broken – not just by
the injured parties, but by bystanders and observers who often react quite harshly. Cold-blooded
concerns about duplication of work and maintainance hassles simply do not sufficiently explain the
observed behavior.

Then, too, there is the third taboo. It’s hard to see how anything but the reputation-game analysis can
explain this. The fact that this taboo is seldom analyzed much more deeply than “It wouldn’t be fair” is
revealing in its own way, as we shall see in the next section.

16

10. The Problem of Ego

At the beginning of the paper I mentioned that the unconscious adaptive knowledge of a culture is often
at odds with its conscious ideology. We’ve seen one major example of this already in the fact that
Lockean ownership customs have been widely followed despite the fact that they violate the stated intent
of the standard licenses.

I have observed another interesting example of this phenomenon when discussing the reputation-game
analysis with hackers. This is that many hackers resisted the analysis and showed a strong reluctance to
admit that their behavior was motivated by a desire for peer repute or, as I incautiously labeled it at the
time, ‘ego satisfaction’.

This illustrates an interesting point about the hacker culture. It consciously distrusts and despises egotism
and ego-based motivations; Self-promotion tends to be mercilessly criticized, even when the community
might appear to have something to gain from it. So much so, in fact, that the culture’s ‘big men’ and
tribal elders are required to talk softly and humorously deprecate themselves at every turn in order to
maintain their status. How this attitude meshes with an incentive structure that apparently runs almost
entirely on ego cries out for explanation.

A large part of it, certainly, stems from the generally negative Europo-American attitude towards ‘ego’.
The cultural matrix of most hackers teaches them that desiring ego satisfaction is a bad (or at least
immature) motivation; that ego is at best an eccentricity tolerable only in prima-donnas and often an
actual sign of mental pathology. Only sublimated and disguised forms like “peer repute”, “self-esteem”,
“professionalism” or “pride of accomplishment” are generally acceptable.

I could write an entire other essay on the unhealthy roots of this part of our cultural inheritance, and the
astonishing amount of self-deceptive harm we do by believing (against all the evidence of psychology
and behavior) that we ever have truly ‘selfless’ motives. Perhaps I would, if Friedrich Wilhelm Nietzsche
and Ayn Rand had not already done an entirely competent job (whatever their other failings) of
deconstructing ‘altruism’ into unacknowledged kinds of self-interest.

But I am not doing moral philosophy or psychology here, so I will simply observe one minor kind of
harm done by the belief that ego is evil, which is this: it has made it emotionally difficult for many
hackers to consciously understand the social dynamics of their own culture!

But we are not quite done with this line of investigation. The surrounding culture’s taboo against visibly

17

ego-driven behavior is so much intensified in the hacker (sub)culture that one must suspect it of having
some sort of special adaptive function for hackers. Certainly the taboo is weaker (or nonexistent) among
many other gift cultures, such as the peer cultures of theater people or the very wealthy!

11. The Value of Humility

Having established that prestige is central to the hacker culture’s reward mechanisms, we now need to
understand why it has seemed so important that this fact remain semi-covert and largely unadmitted.

The contrast with the pirate culture is instructive. In that culture, status-seeking behavior is overt and
even blatant. These crackers seek acclaim for releasing “zero-day warez” (cracked software redistributed
on the day of the original uncracked version’s release) but are closemouthed about how they do it. These
magicians don’t like to give away their tricks. And, as a result, the knowledge base of the cracker culture
as a whole increases only slowly.

In the hacker community, by contrast, one’s work is one’s statement. There’s a very strict meritocracy
(the best craftsmanship wins) and there’s a strong ethos that quality should (indeed must) be left to speak
for itself. The best brag is code that “just works”, and that any competent programmer can see is good
stuff. Thus, the hacker culture’s knowledge base increases rapidly.

The taboo against ego-driven posturing therefore increases productivity. But that’s a second-order effect;
what is being directly protected here is the quality of the information in the community’s peer-evaluation
system. That is, boasting or self-importance is suppressed because it behaves like noise tending to
corrupt the vital signals from experiments in creative and cooperative behavior.

For very similar reasons, attacking the author rather than the code is not done. There is an interesting
subtlety here that reinforces the point; hackers feel very free to flame each other over ideological and
personal differences, but it is unheard of for any hacker to publicly attack another’s competence at
technical work (even private criticism is unusual and tends to be muted in tone). Bug-hunting and
criticism are always project-labeled, not person-labeled.

Furthermore, past bugs are not automatically held against a developer; the fact that a bug has been fixed is
generally considered more important than the fact that one used to be there. As one respondent observed,
one can gain status by fixing ‘Emacs bugs’, but not by fixing ‘Richard Stallman’s bugs’ – and it would be
considered extremely bad form to criticize Stallman for old Emacs bugs that have since been fixed.

18

This makes an interesting contrast with many parts of academia, in which trashing putatively defective
work by others is an important mode of gaining reputation. In the hacker culture, such behavior is rather
heavily tabooed – so heavily, in fact, that the absence of such behavior did not present itself to me as a
datum until that one respondent with an unusual perspective pointed it out nearly a full year after this
paper was first published!

The taboo against attacks on competence (not shared with academia) is even more revealing than the
(shared) taboo on posturing, because we can relate it to a difference between academia and hackerdom in
their communications and support structures.

The hacker culture’s medium of gifting is intangible, its communications channels are poor at expressing
emotional nuance, and face-to-face contact among its members is the exception rather than the rule. This
gives it a lower tolerance of noise than most other gift cultures, and goes a long way to explain the taboo
against attacks on competence. Any significant incidence of flames over hackers’ competence would
intolerably disrupt the culture’s reputation scoreboard.

The same vulnerability to noise goes for to explain the example in public humility required of the hacker
community’s tribal elders. They must be seen to be free of boast and posturing so the taboo against
dangerous noise will hold. [DC]

Talking softly is also functional if one aspires to be a maintainer of a successful project; one must
convince the community that one has good judgement, because most of the maintainer’s job is going to
be judging other people’s code. Who would be inclined to contribute work to someone who clearly can’t
judge the quality of their own code, or whose behavior suggests they will attempt to unfairly hog the
reputation return from the project? Potential contributors want project leaders with enough humility and
class be able to to say, when objectively appropriate, “Yes, that does work better than my version, I’ll use
it” – and to give credit where credit is due.

Yet another reason for humble behavior is that in the open source world, you seldom want to give the
impression that a project is ‘done’. This might lead a potential contributor not to feel needed. The way to
maximize your leverage is to be humble about the state of the program. If one does one’s bragging
through the code, and then says “Well shucks, it doesn’t do x, y, and z, so it can’t be that good”, patches
for x, y, and z will often swiftly follow.

Finally, I have personally observed that the self-deprecating behavior of some leading hackers reflects a
real (and not unjustified) fear of becoming the object of a personality cult. Linus Torvalds and Larry Wall
both provide clear and numerous examples of such avoidance behavior. Once, on a dinner expedition

19

with Larry Wall, I joked “You’re the alpha hacker here – you get to pick the restaurant”. He flinched
audibly. And rightly so; failing to distinguish their shared values from the personalities of their leaders
has ruined a good many voluntary communities, a pattern of which Larry and Linus cannot fail to be
fully aware. On the other hand, most hackers would love to have Larry’s problem, if they could but bring
themselves to admit it.

12. Global Implications of the Reputation-Game Model

The reputation-game analysis has some more implications that may not be immediately obvious. Many
of these derive from the fact that one gains more prestige from founding a successful project than from
cooperating in an existing one. One also gains more from projects which are strikingly innovative, as
opposed to being ‘me, too’ incremental improvements on software that already exists. On the other hand,
software that nobody but the author understands or has a need for is a non-starter in the reputation game,
and it’s often easier to attract good notice by contributing to an existing project than it is to get people to
notice a new one. Finally, it’s much harder to compete with an already successful project than it is to fill
an empty niche.

Thus, there’s an optimum distance from one’s neighbors (the most similar competing projects). Too close
and one’s product will be a “me, too!” of limited value, a poor gift (one would be better off contributing
to an existing project). Too far away, and nobody will be able to use, understand, or perceive the
relevance of one’s effort (again, a poor gift). This creates a pattern of homesteading in the noosphere that
rather resembles that of settlers spreading into a physical frontier – not random, but like a
diffusion-limited fractal. Projects tend to get started to fill functional gaps near the frontier (see [NO] for
further discussion of the lure of novelty).

Some very successful projects become ‘category killers’; nobody wants to homestead anywhere near
them because competing against the established base for the attention of hackers would be too hard.
People who might otherwise found their own distinct efforts end up, instead, adding extensions for these
big, successful projects. The classic ‘category killer’ example is GNU Emacs; its variants fill the
ecological niche for a fully-programmable editor so completely that no competitor has gotten much
beyond the one-man project stage since the early 1980s. Instead, people write Emacs modes.

Globally, these two tendencies (gap-filling and category-killers) have driven a broadly predictable trend
in project starts over time. In the 1970s most of the open source that existed was toys and demos. In the
1980s the push was in development and Internet tools. In the 1990s the action shifted to operating
systems. In each case, a new and more difficult level of problems was attacked when the possibilities of
the previous one had been nearly exhausted.

20

This trend has interesting implications for the near future. In early 1998, Linux looks very much like a
category-killer for the niche ‘open-source operating systems’ – people who might otherwise write
competing operating systems are now writing Linux device drivers and extensions instead. And most of
the lower-level tools the culture ever imagined having as open-source already exist. What’s left?

Applications. As the year 2000 approaches, it seems safe to predict that open-source development effort
will increasingly shift towards the last virgin territory – programs for non-techies. A clear early indicator
is the development of GIMP (http://www.gimp.org), the Photoshop-like image workshop that is open
source’s first major application with the kind of end-user-friendly GUI interface considered de rigueur in
commercial applications for the last decade. Another is the amount of buzz surrounding
application-toolkit projects like KDE (http://www.kde.org) and GNOME (http://www.gnome.org).

A respondent to this paper has pointed out that the homesteading analogy also explains why hackers
react with such visceral anger to Microsoft’s “embrace and extend” policy of complexifying and then
closing up Internet protocols. The hacker culture can coexist with most closed software; the existence of
Adobe Photoshop, for example, does not make the territory near GIMP (its open-source equivalent)
significantly less attractive. But when Microsoft succeeds at de-commoditizing [HD] a protocol so that
only Microsoft’s own programmers can write software for it, they do not merely harm customers by
extending their monopoly. They also reduce the amount and quality of noosphere available for hackers to
homestead and cultivate. No wonder hackers often refer to Microsoft’s strategy as “protocol pollution”;
they are reacting exactly like farmers watching someone poison the river they water their crops with!

Finally, the reputation-game analysis explains the oft-cited dictum that you do not become a hacker by
calling yourself a hacker – you become a hacker when other hackers call you a hacker. A ‘hacker’,
considered in this light, is somebody who has shown (by contributing gifts) that he or she both has
technical ability and understands how the reputation game works. This judgement is mostly one of
awareness and acculturation, and can only be delivered by those already well inside the culture.

13. How Fine a Gift?

There are consistent patterns in the way the hacker culture values contributions and returns peer esteem
for them. It’s not hard to observe the following rules:

1. If it doesn’t work as well as I have been led to expect it will, it’s no good – no matter how clever and original
it is.

21

Note the ‘led to expect’. This rule is not a demand for perfection; beta and experimental software is
allowed to have bugs. It’s a demand that the user be able to accurately estimate risks from the stage of the
project and the developers’ representations about it.

This rule underlies the fact that open-source software tends to stay in beta for a long time, and not get
even a 1.0 version number until the developers are very sure it will not hand out a lot of nasty surprises.
In the closed-source world, Version 1.0 means “Don’t touch this if you’re prudent.”; in the open-source
world it reads something more like “The developers are willing to bet their reputations on this.”

2. Work that extends the noosphere is better than work that duplicates an existing piece of functional territory.

The naive way to put this would have been: Original work is better than duplicating the functions of
existing software. But it’s not actually quite that simple. Duplicating the functions of existing closed
software counts as highly as original work if by doing so you break open a closed protocol or format and
make that territory newly available.

Thus, for example, one of the highest-prestige projects in the present open-source world is Samba – the
code that allows Unix machines to act as clients or servers for Microsoft’s proprietary SMB file-sharing
protocol. There is very little creative work to be done here; it’s mostly an issue of getting the
reverse-engineered details right. Nevertheless, the members of the Samba group are perceived as heroes
because they neutralize a Microsoft effort to lock in whole user populations and cordon off a big section
of the noosphere.

3. Work that makes it into a major distribution is better than work that doesn’t. Work carried in all major
distributions is most prestigious.

The major distributions include not just the big Linux distributions like Red Hat, Debian, Caldera, and
S.u.S.E., but other collections that are understood to have reputations of their own to maintain and thus
implicitly certify quality – like BSD distributions or the Free Software Foundation source collection.

4. Utilization is the sincerest form of flattery – and category killers are better than also-rans.

Trusting the judgment of others is basic to the peer-review process. It’s necessary because nobody has
time to review all possible alternatives. So work used by lots of people is considered better than work
used by a few,

22

To have done work so good that nobody cares to use the alternatives any more is therefore to have earned
huge prestige. The most possible peer esteem comes from having done widely popular, category-killing
original work that is carried by all major distributions. People who have pulled this off more than once
are half-seriously referred to as ‘demigods’.

5. Continued devotion to hard, boring work (like debugging, or writing documentation) is more praiseworthy
than cherrypicking the fun and easy hacks.

This norm is how the community rewards necessary tasks that hackers would not naturally incline
towards. It is to some extent contradicted by:

6. Nontrivial extensions of function are better than low-level patches and debugging.

The way this seems to work is that on a one-shot basis, adding a feature is likely to get more reward than
fixing a bug – unless the bug is exceptionally nasty or obscure, such that nailing it is itself a
demonstration of unusual skill and cleverness. But when these behaviors are extended over time, a
person with a long history of paying attention to and nailing even ordinary bugs may well rank someone
who has spent a similar amount of effort adding easy features.

A respondent has pointed out that these rules interact in interesting ways and do not necessarily reward
highest possible utility all the time. Ask a hacker whether he’s likely to become better known for a brand
new tool of his own or for extensions to someone else’s and the answer “new tool” will not be in doubt.
But ask about

(a) a brand new tool which is only used a few times a day invisibly by the OS but which rapidly becomes
a category killer

versus

(b) several extensions to an existing tool which are neither especially novel nor category-killers, but are
daily used and daily visible to a huge number of users

and you are likely to get some hesitation before the hacker settles on (a). These alternatives are about
evenly stacked.

23

Said respondent gave this question point for me by adding “Case (a) is fetchmail; case (b) is your many
Emacs extensions, like vc.el and gud.el.” And indeed he is correct; I am more likely to be tagged ‘the
author of fetchmail’ than ‘author of a boatload of Emacs modes’, even though the latter probably have
had higher total utility over time.

What may be going on here is simply that work with a novel ‘brand identity’ gets more notice than work
aggregated to an existing ‘brand’. Elucidation of these rules, and what they tell us about the hacker
culture’s scoreboarding system, would make a good topic for further investigation.

14. Noospheric Property and the Ethology of Territory

To understand the causes and consequences of Lockean property customs, it will help us to look at them
from yet another angle; that of animal ethology, specifically the ethology of territory.

Property is an abstraction of animal territoriality, which evolved as a way of reducing intra-species
violence. By marking his bounds, and respecting the bounds of others, a wolf diminishes his chances of
being in a fight that could weaken or kill him and make him less reproductively successful. Similarly, the
function of property in human societies is to prevent inter-human conflict by setting bounds that clearly
separate peaceful behavior from aggression.

It is fashionable in some circles to describe human property as an arbitrary social convention, but this is
dead wrong. Anybody who has ever owned a dog who barked when strangers came near its owner’s
property has experienced the essential continuity between animal territoriality and human property. Our
domesticated cousins of the wolf know, instinctively, that property is no mere social convention or game,
but a critically important evolved mechanism for the avoidance of violence. (This makes them smarter
than a good many human political theorists.)

Claiming property (like marking territory) is a performative act, a way of declaring what boundaries will
be defended. Community support of property claims is a way to minimize friction and maximize
cooperative behavior. These things remain true even when the “property claim” is much more abstract
than a fence or a dog’s bark, even when it’s just the statement of the project maintainer’s name in a
README file. It’s still an abstraction of territoriality, and (like other forms of property) based in
territorial instincts evolved to assist conflict resolution.

This ethological analysis may at first seem very abstract and difficult to relate to actual hacker behavior.
But it has some important consequences. One is in explaining the popularity of World Wide Web sites,

24

and especially why open-source projects with websites seem so much more ‘real’ and substantial than
those without them.

Considered objectively, this seems hard to explain. Compared to the effort involved in originating and
maintaining even a small program, a web page is easy, so it’s hard to consider a web page evidence of
substance or unusual effort.

Nor are the functional characteristics of the Web itself sufficient explanation. The communication
functions of a web page can be as well or better served by a combination of an FTP site, a mailing list,
and Usenet postings. In fact it’s quite unusual for a project’s routine communications to be done over the
Web rather than via a mailing list or newsgroup. Why, then, the popularity of Web sites as project homes?

The metaphor implicit in the term ‘home page’ provides an important clue. While founding an
open-source project is a territorial claim in the noosphere (and customarily recognized as such) it is not a
terribly compelling one on the psychological level. Software, after all, has no natural location and is
instantly reduplicable. It’s assimilable to our instinctive notions of ‘territory’ and ‘property’, but only
after some effort.

A project home page concretizes an abstract homesteading in the space of possible programs by
expressing it as ‘home’ territory in the more spatially-organized realm of the World Wide Web.
Descending from the noosphere to ‘cyberspace’ doesn’t get us all the way to the real world of fences and
barking dogs yet, but it does hook the abstract property claim more securely to our instinctive wiring
about territory. And this is why projects with web pages seem more ‘real’.

This point is much strengthened by hyperlinks and the existence of good search engines. A project with a
web page is much more likely to be noticed by somebody exploring its neighborhood in the noosphere;
others will link to it, searches will find it. A web page is therefore a better advertisement, a more
effective performative act, a stronger claim on territory.

This ethological analysis also encourages us to look more closely at mechanisms for handling conflict in
the open-source culture. It leads us to expect that, in addition to maximizing reputation incentives,
ownership customs should also have a role in preventing and resolving conflicts.

15. Causes of Conflict

25

In conflicts over open-source software we can identify four major issues:

• Who gets to make binding decisions about a project?

• Who gets credit or blame for what?

• How to reduce duplication of effort and prevent rogue versions from complicating bug tracking?

• What is the Right Thing, technically speaking?

If we take a second look at the “What is the Right Thing” issue, however, it tends to vanish. For any such
question, either there is an objective way to decide it accepted by all parties or there isn’t. If there is,
game over and everybody wins. If there isn’t, it reduces to “who decides?”.

Accordingly, the three problems a conflict-resolution theory has to resolve about a project are (A) where
the buck stops on design decisions, (B) how to decide which contributors are credited and how, and (C)
how to keep a project group and product from fissioning into multiple branches.

The role of ownership customs in resolving issues (A) and (C) is clear. Custom affirms that the owners of
the project make the binding decisions. We have previously observed that custom also exerts heavy
pressure against dilution of ownership by forking.

It’s instructive to notice that these customs make sense even if one forgets the reputation game and
examines them from within a pure ‘craftmanship’ model of the hacker culture. In this view these customs
have less to do with the dilution of reputation incentives than with protecting a craftsman’s right to
execute his vision in his chosen way.

The craftsmanship model is not, however, sufficient to explain hacker customs about issue (B), who gets
credit for what (because a pure craftsman, one unconcerned with the reputation game, would have no
motive to care). To analyze these, we need to take the Lockean theory one step further and examine
conflicts and the operation of property rights within projects as well as between them.

16. Project Structures and Ownership

The trivial case is that in which the project has a single owner/maintainer. In that case there is no possible
conflict. The owner makes all decisions and collects all credit and blame. The only possible conflicts are
over succession issues – who gets to be the new owner if the old one disappears or loses interest. The
community also has an interest, under issue (C), in preventing forking. These interests are expressed by a

26

cultural norm that an owner/maintainer should publicly hand title to someone if he or she can no longer
maintain the project.

The simplest non-trivial case is when a project has multiple co-maintainers working under a single
‘benevolent dictator’ who owns the project. Custom favors this mode for group projects; it has been
shown to work on projects as large as the Linux kernel or Emacs, and solves the “who decides” problem
in a way that is not obviously worse than any of the alternatives.

Typically, a benevolent-dictator organization evolves from an owner-maintainer organization as the
founder attracts contributors. Even if the owner stays dictator, it introduces a new level of possible
disputes over who gets credited for what parts of the project.

In this situation, custom places an obligation on the owner/dictator to credit contributors fairly (through,
for example, appropriate mentions in README or history files). In terms of the Lockean property model,
this means that by contributing to a project you earn part of its reputation return (positive or negative).

Pursuing this logic, we see that a ‘benevolent dictator’ does not in fact own his entire project
unqualifiedly. Though he has the right to make binding decisions, he in effect trades away shares of the
total reputation return in exchange for others’ work. The analogy with sharecropping on a farm is almost
irresistible, except that a contributor’s name stays in the credits and continues to ‘earn’ to some degree
even after that contributor is no longer active.

As benevolent-dictator projects add more participants, they tend to develop two tiers of contributors;
ordinary contributors and co-developers. A typical path to becoming a co-developer is taking
responsibility for a major subsystem of the project. Another is to take the role of ‘lord high fixer’,
characterizing and fixing many bugs. In this way or others, co-developers are the contributors who make
a substantial and continuing investment of time in the project.

The subsystem-owner role is particularly important for our analysis and deserves further examination.
Hackers like to say that ‘authority follows responsibility’. A co-developer who accepts maintainance
responsibility for a given subsystem generally gets to control both the implementation of that subsystem
and its interfaces with the rest of the project, subject only to correction by the project leader (acting as
architect). We observe that this rule effectively creates enclosed properties on the Lockean model within
a project, and has exactly the same conflict-prevention role as other property boundaries.

By custom, the ‘dictator’ or project leader in a project with co-developers is expected to consult with
those co-developers on key decisions. This is especially so if the decision concerns a subsystem which a

27

co-developer ‘owns’ (that is, has invested time in and taken responsibility for). A wise leader,
recognizing the function of the project’s internal property boundaries, will not lightly interfere with or
reverse decisions made by subsystem owners.

Some very large projects discard the ‘benevolent dictator’ model entirely. One way to do this is turn the
co-developers into a voting committee (as with Apache). Another is rotating dictatorship, in which
control is occasionally passed from one member to another within a circle of senior co-developers; the
Perl developers organize themselves this way.

Such complicated arrangements are widely considered unstable and difficult. Clearly this perceived
difficulty is largely a function of the known hazards of design-by-committee, and of committees
themselves; these are problems the hacker culture consciously understands. However, I think some of the
visceral discomfort hackers feel about committee or rotating-chair organizations is because they’re hard
to fit into the unconscious Lockean model hackers use for reasoning about the simpler cases. It’s
problematic, in these complex organizations, to do an accounting of either ownership in the sense of
control or ownership of reputation returns. It’s hard to see where the internal boundaries are, and thus
hard to avoid conflict unless the group enjoys an exceptionally high level of harmony and trust.

17. Conflict and Conflict Resolution

We’ve seen that within projects, an increasing complexity of roles is expressed by a distribution of design
authority and partial property rights. While this is an efficient way to distribute incentives, it also dilutes
the authority of the project leader – most importantly, it dilutes the leader’s authority to squash potential
conflicts.

While technical arguments over design might seem the most obvious risk for internecine conflict, they
are seldom a serious cause of strife. These are usually relatively easily resolved by the territorial rule that
authority follows responsibility.

Another way of resolving conflicts is by seniority – if two contributors or groups of contributors have a
dispute, and the dispute cannot be resolved objectively, and neither owns the territory of the dispute, the
side that has put the most work into the project as a whole (that is, the side with the most property rights
in the whole project) wins.

(Equivalently, the side with the least invested loses. Interestingly this happens to be the same heuristic
that many relational database engines resolve deadlocks. When two threads are deadlocked over

28

resources, the side with the least invested in the current transaction is selected as the deadlock victim and
is terminated. This usually selects the longest running transaction, or the more senior, as the victor.)

These rules generally suffice to resolve most project disputes. When they do not, fiat of the project leader
usually suffices. Disputes that survive both these filters are rare.

Conflicts do not as a rule become serious unless these two criteria ("authority follows responsibility" and
"seniority wins") point in different directions, and the authority of the project leader is weak or absent.
The most obvious case in which this may occur is a succession dispute following the disappearance of
the project lead. I have been in one fight of this kind. It was ugly, painful, protracted, only resolved when
all parties became exhausted enough to hand control to an outside person, and I devoutly hope I am never
anywhere near anything of the kind again.

Ultimately, all of these conflict-resolution mechanisms rest on the wider hacker community’s willingness
to enforce them. The only available enforcement mechanisms are flaming and shunning – public
condemnation of those who break custom, and refusal to cooperate with them after they have done so.

18. Acculturation Mechanisms and the Link to Academia

An early version of this paper posed the following research question: How does the community inform
and instruct its members as to its customs? Are the customs self-evident or self-organizing at a
semi-conscious level, are they taught by example, are they taught by explicit instruction?

Teaching by explicit instruction is clearly rare, if only because few explicit descriptions of the culture’s
norms have existed to be used up to now.

Many norms are taught by example. To cite one very simple case, there is a norm that every software
distribution should have a file called README or READ.ME that contains first-look instructions for
browsing the distribution. This convention has been well established since at least the early 1980s; it has
even, occasionally, been written down. But one normally derives it from looking at many distributions.

On the other hand, some hacker customs are self-organizing once one has acquired a basic (perhaps
unconscious) understanding of the reputation game. Most hackers never have to be taught the three
taboos I listed earlier in this paper, or at least would claim if asked that they are self-evident rather than

29

transmitted. This phenomenon invites closer analysis – and perhaps we can find its explanation in the
process by which hackers acquire knowledge about the culture.

Many cultures use hidden clues (more precisely ‘mysteries’ in the religio/mystical sense) as an
acculturation mechanism. These are secrets which are not revealed to outsiders, but are expected to be
discovered or deduced by the aspiring newbie. To be accepted inside, one must demonstrate that one both
understands the mystery and has learned it in a culturally approved way.

The hacker culture makes unusually conscious and extensive use of such clues or tests. We can see this
process operating at at least three levels:

• Password-like specific mysteries. As one example, there is a USENET newsgroup called
alt.sysadmin.recovery that has a very explicit such secret; you cannot post without knowing it, and
knowing it is considered evidence you are fit to post. The regulars have a strong taboo against
revealing this secret.

• The requirement of initiation into certain technical mysteries. One must absorb a good deal of
technical knowledge before one can give valued gifts (e.g. one must know at least one of the major
computer languages). This requirement functions in the large in the way hidden clues do in the small,
as a filter for qualities (such as capability for abstract thinking, persistence, and mental flexibility)
which are necessary to function in the culture.

• Social-context mysteries. One becomes involved in the culture through attaching oneself to specific
projects. Each project is a live social context of hackers which the would-be contributor has to
investigate and understand socially as well as technically in order to function. (Concretely, a common
way one does this is by reading the project’s Web pages and/or email archives.) It is through these
project groups that newbies experience the behavioral example of experienced hackers.

In the process of acquiring these mysteries, the would-be hacker picks up contextual knowledge which
(after a while) does make the three taboos and other customs seem ‘self-evident’.

One might, incidentally, argue that the structure of the hacker gift culture itself is its own central mystery.
One is not considered acculturated (concretely: no one will call you a hacker) until one demonstrates a
gut-level understanding of the reputation game and its implied customs, taboos, and usages. But this is
trivial; all cultures demand such understanding from would-be joiners. Furthermore the hacker culture
evinces no desire to have its internal logic and folkways kept secret – or, at least, nobody has ever flamed
me for revealing them!

30

Respondents to this paper too numerous to list have pointed out that hacker ownership customs seem
intimately related to (and may derive directly from) the practices of the academic world, especially the
scientific research commmunity. This research community has similar problems in mining a territory of
potentially productive ideas, and exhibits very similar adaptive solutions to those problems in the ways it
uses peer review and reputation.

Since many hackers have had formative exposure to academia (it’s common to learn how to hack while
in college) the extent to which academia shares adaptive patterns with the hacker culture is of more than
casual interest in understanding how these customs are applied.

Obvious parallels with the hacker ‘gift culture’ as I have characterized it abound in academia. Once a
researcher achieves tenure, there is no need to worry about survival issues. (Indeed, the concept of tenure
can probably be traced back to an earlier gift culture in which “natural philosophers” were primarily
wealthy gentlemen with time on their hands to devote to research.) In the absence of survival issues,
reputation enhancement becomes the driving goal, which encourages sharing of new ideas and research
through journals and other media. This makes objective functional sense because scientific research, like
the hacker culture, relies heavily on the idea of ‘standing upon the shoulders of giants’, and not having to
rediscover basic principles over and over again.

Some have gone so far as to suggest that hacker customs are merely a reflection of the research
community’s folkways and have actually (in most cases) been acquired there by individual hackers. This
probably overstates the case, if only because hacker custom seems to be readily acquired by intelligent
high-schoolers!

19. Gift Outcompetes Exchange

There is a more interesting possibility here. I suspect academia and the hacker culture share adaptive
patterns not because they’re genetically related, but because they’ve both evolved the one most optimal
social organization for what they’re trying to do, given the laws of nature and and the instinctive wiring
of human beings. The verdict of history seems to be that free-market capitalism is the globally optimal
way to cooperate for economic efficiency; perhaps, in a similar way, the reputation-game gift culture is
the globally optimal way to cooperate for generating (and checking!) high-quality creative work.

Support for this theory becomes from a large body of psychological studies on the interaction between
art and reward [GNU]. These studies have received less attention than they should, in part perhaps
because their popularizers have shown a tendency to overinterpret them into general attacks against the

31

free market and intellectual property. Nevertheless, their results do suggest that some kinds of
scarcity-economics rewards actually decrease the productivity of creative workers such as programmers.

Psychologist Theresa Amabile of Brandeis University, cautiously summarizing the results of a 1984
study of motivation and reward, observed “It may be that commissioned work will, in general, be less
creative than work that is done out of pure interest.”. Amabile goes on to observe that “The more
complex the activity, the more it’s hurt by extrinsic reward.” Interestingly, the studies suggest that flat
salaries don’t demotivate, but piecework rates and bonuses do.

Thus, it may be economically smart to give performance bonuses to people who flip burgers or dug
ditches, but it’s probably smarter to decouple salary from performance in a programming shop and let
peeople choose their own projects (both trends that the open-source world takes to their logical
conclusions). Indeed, these results suggest that the only time it is a good idea to reward performance in
programming is when the programmer is so motivated that he or she would have worked without the
reward!

Other researchers in the field are willing to point a finger straight at the issues of autonomy and creative
control that so preoccupy hackers. “To the extent one’s experience of being self-determined is limited,”
said Richard Ryan, associate psychology professor at the University of Rochester, “one’s creativity will
be reduced as well.”

In general, presenting any task as a means rather than an end in itself seems to demotivate. Even winning
a competition with others or gaining peer esteem can be demotivating in this way if it is experienced as
work for reward (which may explain why hackers are culturally prohibited from explicitly seeking or
claiming that esteem).

To complicate the management problem further, controlling verbal feedback seems to be just as
demotivating as piecework payment. Ryan found that corporate employees who were told, “Good, you’re
doing as you should” were “significantly less intrinsically motivated than those who received feedback
informationally.”

It may still be intelligent to offer incentives, but they have to come without attachments to avoid
gumming up the works. There is a criticl difference (Ryan observes) between saying, “I’m giving you
this reward because I recognize the value of your work” and “You’re getting this reward because you’ve
lived up to my standards.” The first does not demotivate; the second does.

32

In these psychological observations we can ground a case that an open-source development group will be
substantially more productive (especially over the long term, in which creativity becomes more critical
as a productivity multiplier) than an equivalently sized and skilled group of closed-source programmers
(de)motivated by scarcity rewards.

This suggests from a slightly different angle one of the speculations in The Cathedral And The Bazaar;
that, ultimately, the industrial/factory mode of software production was doomed to be outcompeted from
the moment capitalism began to create enough of a wealth surplus that many programmers could live in a
post-scarcity gift culture.

Indeed, it seems the prescription for highest software productivity is almost a Zen paradox; if you want
the most efficient production, you must give up trying to make programmers produce. Handle their
subsistence, give them their heads, and forget about deadlines. To a conventional manager this sounds
crazily indulgent and doomed – but it is exactly the recipe with which the open-source culture is now
clobbering its competition.

20. Conclusion: From Custom to Customary Law

We have examined the customs which regulate the ownership and control of open-source software. We
have seen how they imply an underlying theory of property rights homologous to the Lockean theory of
land tenure. We have related that to an analysis of the hacker culture as a ‘gift culture’ in which
participants compete for prestige by giving time, energy, and creativity away. We have examined the
implications of this analysis for conflict resolution in the culture.

The next logical question to ask is "Why does this matter?" Hackers developed these customs without
conscious analysis and (up to now) have followed them without conscious analysis. It’s not immediately
clear that conscious analysis has gained us anything practical – unless, perhaps, we can move from
description to prescription and deduce ways to improve the functioning of these customs.

We have found a close logical analogy for hacker customs in the theory of land tenure under the
Anglo-American common-law tradition. Historically [Miller], the European tribal cultures that invented
this tradition improved their dispute-resolution systems by moving from a system of unarticulated,
semi-conscious custom to a body of explicit customary law memorized by tribal wisemen – and
eventually, written down.

33

Perhaps, as our population rises and acculturation of all new members becomes more difficult, it is time
for the hacker culture to do something analogous – to develop written codes of good practice for
resolving the various sorts of disputes that can arise in connection with open-source projects, and a
tradition of arbitration in which senior members of the community may be asked to mediate disputes.

The analysis in this paper suggests the outlines of what such a code might look like, making explicit that
which was previously implicit. No such codes could be imposed from above; they would have to be
voluntarily adopted by the founders or owners of individual projects. Nor could they be completely rigid,
as the pressures on the culture are likely to change over time. Finally, for enforcement of such codes to
work, they would have to reflect a broad consensus of the hacker tribe.

I have begun work on such a code, tentatively titled the "Malvern Protocol" after the little town where I
live. If the general analysis in this paper becomes sufficiently widely accepted, I will make the Malvern
Protocol publicly available as a model code for dispute resolution. Parties interested in critiquing and
developing this code, or just offering feedback on whether they think it’s a good idea or not, are invited
to contact me by email (mailto:esr@thyrsus.com).

21. Questions for Further Research

The culture’s (and my own) understanding of large projects that don’t follow a benevolent-dictator model
is weak. Most such projects fail. A few become spectacularly successful and important (Perl, Apache,
KDE). Nobody really understands where the difference lies. There’s a vague sense abroad that each such
project is sui generis and stands or falls on the group dynamic of its particular members, but is this true
or are there replicable strategies a group can follow?

22. Bibliography

[Miller] Miller, William Ian; Bloodtaking and Peacemaking: Feud, Law, and Society in Saga Iceland;
University of Chicago Press 1990, ISBN 0-226-52680-1. A fascinating study of Icelandic folkmoot law,
which both illuminates the ancestry of the Lockean theory of property and describes the later stages of a
historical process by which custom passed into customary law and thence to written law.

[Mal] Malaclypse the Younger; Principia Discordia, or How I Found Goddess and What I Did To Her
When I Found Her; Loompanics, ISBN 1-55950-040-9. There is much enlightening silliness to be found

34

in Discordianism. Amidst it, the ‘SNAFU principle’ provides a rather trenchant analysis of why
command hierarchies don’t scale well. There’s a browseable HTML version
(http://www.cs.cmu.edu/~tilt/principia/).

[BCT] J. Barkow, L. Cosmides, and J. Tooby (Eds.); The adapted mind: Evolutionary psychology and the
generation of culture. New York: Oxford University Press 1992. An excellent introduction to
evolutionary psychology. Some of the papers bear directly on the three cultural types I discuss
(command/exchange/gift), suggesting that these patterns are wired into the human psyche fairly deep.

[MHG] Goldhaber, Michael K.; The Attention Economy and the Net
(http://www.firstmonday.dk/issues/issue2_4/goldhaber). I discovered this paper after my version 1.7. It
has obvious flaws (Goldhaber’s argument for the inapplicability of economic reasoning to attention does
not bear close examination), but Goldhaber nevertheless has funny and perceptive things to say about the
role of attention-seeking in organizing behavior. The prestige or peer repute I have discussed can
fruitfully be viewed as a particular case of attention in his sense.

23. Endnotes

[N] The term ‘noosphere’ is an obscure term of art in philosophy It is pronounced KNOW-uh-sfeer (two
o-sounds, one long and stressed, one short and unstressed tending towards schwa). If one is being
excruciatingly correct about one’s orthography, it is properly spelled with a diaresis over the second ‘o’
to mark it as a separate vowel.

In more detail; this term for “the sphere of human thought” derives from the Greek ‘nous’ meaning
‘mind’, ‘spirit’, or ‘breath’. It was invented by E. LeRoy in Les origines humaines et l’evolution de
l’intelligence (Paris 1928). It was popularized first by the Russian biologist and pioneering ecologist
Vladimir Ivanovich Vernadsky, (1863-1945), then by the Jesuit paleontologist/philosopher Pierre
Teilhard de Chardin (1881-1955). It is with de Chardin’s theory of future human evolution to a form of
pure mind culminating in union with the Godhead that the term is now primarily associated.

[DF] David Friedman, one of the most lucid and accessible thinkers in contemporary economics, has
written an excellent outline
(http://www.best.com/~ddfr/Academic/Course_Pages/L_and_E_LS_98/Why_Is_Law/Why_Is_Law_Chapter_11.html)
of the history and logic of intellectual-property law. I recommend it as a starting point to anyone
interested in these issues.

35

[SP] One interesting difference between the Linux and BSD worlds is that the Linux kernel (and
associated OS core utilities) have never forked, but BSD’s has, at least three times. What makes this
interesting is that the social structure of the BSD groups is centralized in a way intended to define clear
lines of authority and to prevent forking, while the decentralized and amorphous Linux community takes
no such measures. It appears that the projects which open up development the most actually have the
least tendency to fork!

Henry Spencer � henry@spsystems.net � suggests that, in general, the stability of a political system is
inversely proportional to the height of the entry barriers to its political process. His analysis is worth
quoting here:

One major strength of a relatively open democracy is that most potential revolutionaries find it easier to make
progress toward their objectives by working via the system rather by attacking it. This strength is easily
undermined if established parties act together to ‘raise the bar’, making it more difficult for small dissatisfied
groups to see some progress made toward their goals.

(A similar principle can be found in economics. Open markets have the strongest competition, and generally
the best and cheapest products. Because of this, it’s very much in the best interests of established companies to
make market entry more difficult – for example, by convincing governments to require elaborate RFI testing on
computers, or by creating ‘consensus’ standards which are so complex that they cannot be implemented
effectively from scratch without large resources. The markets with the strongest entry barriers are the ones that
come under the strongest attack from revolutionaries, e.g. the Internet and the Justice Dept. vs. the Bell
System.)

An open process with low entry barriers encourages participation rather than secession, because one can get
results without the high overheads of secession. The results may not be as impressive as what could be
achieved by seceding, but they come at a lower price, and most people will consider that an acceptable tradeoff.
(When the Spanish government revoked Franco’s anti-Basque laws and offered the Basque provinces their own
schools and limited local autonomy, most of the Basque Separatist movement evaporated almost overnight.
Only the hard-core Marxists insisted that it wasn’t good enough.)

[RP] There are some subtleties about rogue patches. One can divide them into ‘friendly’ and ‘unfriendly’
types. A ‘friendly’ patch is designed to be merged back into the project’s main-line sources under the
maintainer’s control (whether or not that merge actually happens); an ‘unfriendly’ one is intended to yank
the project in a direction the maintainer doesn’t approve. Some projects (notably the Linux kernel itself)
are pretty relaxed about friendly patches and even encourage independent distribution of them as part of
their beta-test phase. An unfriendly patch, on the other hand, represents a decision to compete with the
original and is a serious matter. Maintaining a whole raft of unfriendly patches tends to lead to forking.

36

[LW] I am indebted to Michael Funk � mwfunk@uncc.campus.mci.net � for pointing out how instructive
a contrast with hackers the pirate culture is. Linus Walleij has posted an analysis of their cultural
dynamics that differs from mine (describing them as a scarcity culture) in A Comment on ‘Warez D00dz’
Culture (http://www.df.lth.se/~triad/papers/Raymond_D00dz.html)

The contrast may not last. Former cracker Andrej Brandt � andy@pilgrim.cs.net.pl � reports that he
believes the cracker/warez d00dz culture is now withering away, with its brightest people and leaders
assimilating to the open-source world. Independent evidence for this view may be provided by a
precedent-breaking July 1999 action of the cracker group calling itself ‘Cult of the Dead Cow’. They
have released their ‘Back Orifice 2000’ for breaking Microsoft Windows security tools under the GPL.

[HT] In evolutionary terms, the craftsman’s urge itself may (like internalized ethics) be a result of the
high risk and cost of deception. Evolutionary psychologists have collected experimental evidence [BCT]
that human beings have brain logic specialized for detecting social deceptions, and it is fairly easy to see
why our ancestors should have been selected for ability to detect cheating. Therefore, if one wishes to
have a reputation for personality traits which confer advantage but are risky or costly, it may actually be
better tactics to actually have these traits than to fake them. (“Honesty is the best policy”)

Evolutionary psychologists have suggested that this explains behavior like barroom fights. Among
younger adult male humans, having a reputation for ‘toughness’ is both socially and (even in today’s
feminist-influenced climate) sexually useful. Faking "toughness", however, is extremely risky; the
negative result of being found out leaves one in a worse position than never having claimed the trait. The
cost of deception is so high that it is sometimes better minimaxing to internalize ‘toughness’ and risk
serious injury in a fight to prove it. Parallel observations have been made about less controversial traits
like ‘honesty’.

Though the primary meditation-like rewards of creative work should not be underestimated, the
craftsman’s urge is probably at least in part just such an internalization (where the base trait is ‘capacity
for painstaking work’ or something similar).

[MH] A concise summary of Maslow’s hierarchy and related theories is available on the Web at
Maslow’s Hierarchy of Needs (http://www.valdosta.peachnet.edu/~whuitt/psy702/regsys/maslow.html)

[DC] However, demanding humility from leaders may be a more general characteristic of gift or
abundance cultures. David Christie � dc@netscape.com � reports on a trip through the outer islands of
Fiji: “In Fijian village chiefs, we observed the same sort of self-deprecating, low-key leadership style
that you attribute to open source project leaders. [...] Though accorded great respect and of course all of

37

whatever actual power there is in Fiji, the chiefs we met demonstrated genuine humility and often a
saint-like acceptance of their duty. This is particularly interesting given that being chief is a hereditary
role, not an elected position or a popularity contest. Somehow they are trained to it by the culture itself,
although they are born to it, not chosen by their peers.” He goes on to emphasize that he believes the
characteristic style of Fijian chiefs springs from the difficulty of compelling cooperation: a chief has “no
big carrot or big stick”.

[NO] As a matter of observable fact, people who found successful projects gather more prestige than
people who do arguably equal amounts of work debugging and assisting with successful projects. An
earlier version of this paprer asked “Is this a rational valuation of comparative effort, or is it a
second-order effect of the unconscious territorial model we have adduced here?” Several respondents
suggested persuasive and essentially equivalent theories. The following analysis by Ryan Waldron

� rew@erebor.com � puts the case well:

In the context of the Lockean land theory, one who establishes a new and successful project has essentially
discovered or opened up new territory on which others can homestead. For most successful projects, there is a
pattern of declining returns, so that after a while, the credit for contributions to a project has become so diffuse
that it is hard for significant reputation to accrete to a late participant, regardless of the quality of his work.

For instance, how good a job would I have to do making modifications to the perl code to have even a fraction
of the recognition for my participation that Larry, Tom, Randall, and others have achieved?

However, if a new project is founded [by someone else] tomorrow, and I am an early and frequent participant in
it, my ability to share in the respect generated by such a successful project is greatly enhanced by my early
participation therein (assuming similar quality of contributions). I reckon it to be similar to those who invest in
Microoft stock early and those who invest in it later. Everyone may profit, but early participants profit more.
Therefore, at some point I will be more interested in a new and successful IPO than I will be in participating in
the continual increase of an existing body of corporate stock.

Ryan Waldron’s analogy can be extended. The project founder has to a missionary sell of a new idea
which may or may not be acceptable or of use to others. Thus the founder incurs something analogous to
an IPO risk (of possible damage to their reputation), more so than others who assist with a project that
has already garnered some acceptance by their peers. The founder’s reward is consistent despite the fact
that the assistants may be putting in more work in real terms. This is easily seen as analogous to the
relationship between risk and rewards in an exchange economy.

Other respondents have observed that our nervous system is tuned to perceive differences, not steady
state. The revolutionary change evidenced by the creation of a new project is therefore much more

38

noticeable than the cumulative effect of constant incremental improvement. Thus Linus is revered as the
father of Linux, although the net effect of improvements by thousands of other contributors have done
more to contribute to the success of the OS than one man’s work ever could.

[HD] The phrase “de-commoditizing” is a reference to the Halloween Documents
(http://www.opensource.org/halloween/) in which Microsoft used “de-commoditize” quite frankly to
refer to their most effective long-term strategy for maintaining an exploitative monopoly lock on
customers.

[GNU] The Free Software Foundation’s main web site carries an article
(http://www.gnu.org/philosophy/motivation.html) that summarizes the results of many of these studies.
The quotes in this paper are excerpted from there.

24. Acknowledgements

Robert Lanphier � robla@real.com � contributed much to the discussion of egoless behavior. Eric Kidd
� eric.kidd@pobox.com � highlighted the role of valuing humility in preventing cults of personality. The
section on global effects was inspired by comments from Daniel Burn

� daniel@tsathoggua.lab.usyd.edu.au � . Mike Whitaker � mrw@entropic.co.uk � inspired the main
thread in the section on acculturation. Chris Phoenix � cphoenix@best.com � pointed out the importance
of the fact that hackers cannot gain reputation by doing other hackers down.

I am solely responsible for what has gone into this paper, and any errors or misconceptions. However, I
have welcomed comments and feedback and used them to improve the paper – a process which I do not
expect to end at any predefined time.

39

