
$Id: concepts_notations_software_art.tex,v 1.1 2002/03/25 01:09:31 paragram Exp $

CONCEPTS, NOTATIONS, SOFTWARE, ART

FLORIAN CRAMER

SOFTWARE AND CONCEPTNOTATIONS

Software in the Arts. To date, critics and scholars in the arts and human-
ities have considered computers primarily as storage and display media, as
something which transmits and reformats images, sound and typography.
Reflection of the as such invisible layer of software is rare. Likewise, the
term “digital art” has been associated primarily with digital images, music
or audiovisual installations using digital technology. The software which
controls the audio and the visuals is frequently neglected, working as a
black box behind the scenes. “Interactive” room installations, for example,
get perceived as a interactions of a viewer, an exhibition space and an image
projection, not as systems running on code. This observation all the more
applies to works in which it is not obvious at all that their production relied
on programmation and computing. John Cage’s 1981 radio play “Roarato-
rio”, for example, appears to be a tape montage of a spoken text based on
James Joyce’s “Finnegans Wake”, environmental sounds recorded in sev-
eral cities of the world and Irish folk music, edited with analog recording
technology. Yet at the same time it is an algorithmic artwork; the spoken
text was extracted from the novel using a purely syntactical, formal method
(mesostychs of the name “James Joyce”), and the montage was done ac-
cording to a random score generated on a computer at the Parisian IRCAM
studios. While the book-plus-CD set of “Roarotorio” documents the whole
composition extensively, containing the audio piece itself, a recording and a
reprint of John Cage’s reading, a recording and a reprint of an interview, an
inventory of the cities where sound was recorded, it includes the computer-
generated score itself only in a one-page excerpt and nothing at all of the
computer program code which generated the random score.1

The history of the digital and computer-aided arts could be told as a history
of ignorance against programming and programmers. Computer programs
get locked into black boxes, and programmers are frequently considered to
be mere factota, coding slaves who execute other artist’s concepts. Given

Date: March 23rd, 2002.
1[Cag82] — Regarding randomness generated with computers, the software artist Ulrike

Gabriel says that it doesn’t exist because the machine as a fact by itself is not accidental.
1

CONCEPTS, NOTATIONS, SOFTWARE, ART 2

that software codeis a conceptual notation, this is not without its own irony.
In fact, it is a straight continuation of romanticist philosophy and its privi-
leging of aisthesis (perception) over poeisis (construction),2 cheapened into
a restrained concept of art as only that what is tactile, audible and visible.
The digital arts themselves participate in this accomplicity when they call
themselves [new] “media art”. There’s nothing older than “new media”, a
term which is little more than a superficial justification for lumping together
a bunch of largely unrelated technologies, such as analog video and com-
puting, just because they were “new” at a particular time. If one defines as
a medium something that it is between a sender and a receiver, then com-
puters are not only media, but also senders and receivers which themselves
are capable of writing and reading, interpreting and composing messages
within the limitations of the rule sets inscribed into them. The computer
programs for example which calculate the credit line of checking accounts
or control medical instruments in an emergency station can’t be meaning-
fully called “media”. If at all, computer processes become “media” only by
the virtue that computers can emulate any machine, including all technical
media, and by the virtue of the analog interfaces which transform the digital
zeros and ones into analog sound waves, video signals, print type and vice
versa.

A Crash Course in Programming. A piece of software is a set of formal
instructions, or, algorithms; it is a logical score put down in a code. It
doesn’t matter at all which particular sign system is used as long as it is a
code, whether digital zeros and ones, the Latin alphabet, Morse code or, like
in a processor chip, an exactly defined set of registers controlling discrete
currents of electricity. If a piece of software is a score, is it then by definition
an outline, a blueprint of an executed work?

Imagine a Dadaist poem which makes random variations of Hugo Ball’s
sound poem “Karawane” (“Caravan”):

KARAWANE
jolifanto bambla ô falli bambla
grossiga m’pfa habla horem
égiga goramen
higo bloiko russula huju
hollaka hollala
anlogo bung
blago bung
blago bung

2A similar angle is taken in the paper “The Aesthetic of Generative Code” by Geoff
Cox, Adrian Ward and Alex McLean, [CWM01]

CONCEPTS, NOTATIONS, SOFTWARE, ART 3

bosso fataka
ü üü ü
schampa wulla wussa ólobo
hej taat gôrem
eschige zunbada
wulebu ssubudu uluw ssubudu
tumba ba-umpf
kusagauma
ba-umpf

The new Dada poem could simply consists of eight variations of the line
“tumba ba-umpf”. The author/performer could throw a coin twice for each
line and, depending on the result, choose to write down either the word
“tumba” or “ba-umpf”, so that the result would look like:

tumba tumba
ba-umpf tumba
tumba ba-umpf
tumba ba-umpf
ba-umpf ba-umpf
ba-umpf tumba
tumba ba-umpf
tumba ba-umpf

The instruction code for this poem could be written as follows:

(1) Take a coin of any kind with two distinct sides.
(2) Repeat the following set of instructions eight times:

(a) Repeat the following set of instructions twice:
(i) Throw the coin.

(ii) Catch it with your palm so that it lands on one side.
(iii) If the coin shows the upper side, do the following:

• Say "tumba"
(iv) Else do the following:

• Say "ba-umpf"
(b) Make a brief pause to indicate the end of the line.

(3) Make a long pause to indicate the end of the poem.

Since these instructions are formal and precise enough to be as well exe-
cuted by a machine (imagine this poem implemented into a modified cuckoo
clock), they can be translated line by line into a computer program. Just as
the above instruction looks different depending on the language it is writ-
ten in, a computer program looks different depending on the programming

CONCEPTS, NOTATIONS, SOFTWARE, ART 4

language used. Here I choose the popular language “Perl” whose basic in-
structions are rather simple to read:

for $lines (1 .. 8)
{
for $word (1 .. 2)

{
$random_number = int(rand(2));
if ($random_number == 0)

{
print "tumba"
}

else
{
print "ba-umpf"
}

print " "
}

print "\n"
}

The curly brackets enclose statement blocks executed under certain condi-
tions, the $ prefix designates a variable which can store arbitrary letters or
numbers, the “rand(2)” function generates a random value between 0 and
1.9, “int” rounds its result to either zero or one, “ ” stands for a blank, “
n” for a line break. This program can be run on virtually any computer; it is
a simple piece of software. Complex pieces of software, such as computer
operating systems or even computer games, differ from the above only in
the complexity of their instructions. The control structures — variable as-
signments, loops, conditional statements — are similar in all programming
languages.

Unlike in the instruction for throwing coins, the artists’ work is done once
the code is written. A computer program is a blueprint and its execution
at the same time. Like a pianola roll, it is a score performing itself. The
artistic fascination of computer programming — and the perhaps ecstatic
revelation of any first-time programmer — is the equivalence of architec-
ture and building, the instant gratification given once the concept has been
finished. Computer programming collapses, as it seems, the second and
third of the three steps of concept, concept notation and execution.

CONCEPTS, NOTATIONS, SOFTWARE, ART 5

Contrary to conventional data like digitized images, sound and text docu-
ments, the algorithmic instruction code allows a generative process. It uses
computers for computation, not only as storage and transmission media.
And this precisely distinguishes program code from non-algorithmic digi-
tal code, describing for example the difference between algorithmic com-
position on the one hand and audio CDs/mp3 files on the other, between
algorithmically generated text and “hypertext” (a random access database
model which as such doesn’t require algorithmic computation at all), or be-
tween a graphical computer “demo” and a video tape. Although one can
of course use computers without programming them, it is impossible not to
use programs at all; the question only is who programs. There is, after all,
no such thing as data without programs, and hence no digital arts without
the software layers they either take for granted, or design themselves.

To discuss “software art” simply means to not take software for granted,
but pay attention to how and by whom programs were written. If data
doesn’t exist without programs, it follows that the separation of processed
“data” (like image and sound files) from “programs” is simply a conven-
tion. Instead, data could be directly embedded into the algorithms used for
its transmission and output to external devices. Since a “digital photograph”
for example is bit-mapped information algorithmically transformed into the
electricity controlling a screen or printer, via algorithmic abstraction lay-
ers in the computer operating system, it follows that it could just as well
be coded into a file which contains the whole transformation algorithms
themselves so that the image would display itself even on a computer that
provides no operating system.3

SOFTWARE ART

Executable Code in Art. If software is generally defined as executable for-
mal instructions, logical scores, then the concept of software is by no means
limited to formal instructions for computers. The first, English-language
notation of the Dadaist poem qualifies as software just as much as the three
notations in the Perl programming language. The instructions only have to
meet the requirement of being executable by a human being as well as by
a machine. A piano score, even a 19th century one, is software when its
instruction code can be executed by a human pianist as well as on a player
piano.

3I would not be surprised if in a near future the media industry would embed audiovi-
sual data (like a musical recording) directly into proprietary one-chip hardware players to
prevent digital copies.

CONCEPTS, NOTATIONS, SOFTWARE, ART 6

The Perl code of the Dada poem can be read and executed even without
running it on machines. So my argument is quite contrary to Friedrich Kit-
tler’s media theory according to which there is either no software at all or at
least no software without the hardware it runs on:4 If any algorithm can be
executed mentally, as it was common before computers were invented, then
of course software can exist and run without hardware. — A good example
are programming handbooks. Although they chiefly consist of printed com-
puter code, this code gets rarely ever executed on machines, but provides
examples which readers follow intellectually, following the code listings
step by step and computing them in their minds.

Instead of adapting Dadaist poetry as software, one could regard some his-
torical Dadaist works as software right away; above all, Tristan Tzara’s
generic instruction for writing Dada poems by shuffling the words of a
newspaper article5:

To make a Dadaist poem:
Take a newspaper.
Take a pair of scissors.
Choose an article as long as you are planning to make your
poem. Cut out the article.
Then cut out each of the words that make up this article and
put them in a bag.
Shake it gently.
Then take out the scraps one after the other in the order in
which they left the bag.
Copy conscientiously.
The poem will be like you.
And here you are a writer, infinitely original and endowed
with a sensibility that is charming though beyond the
understanding of the vulgar.

The poem is effectively an algorithm, a piece of software which may as well
be written as a computer program.6. If Tzara’s process would be adapted
as Perl or C code from the original French, it wouldn’t be a transcription of
something into software, but a transcription of non-machine software into
machine software.

4[Kit91]
5[Tza75]
6My own Perl CGI adaption is available underhttp://userpage.

fu-berlin.de/{~}cantsin/permutations/tzara/poeme{\protect\T1\
textunderscore}dadaiste.cgi

http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi
http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi
http://userpage.fu-berlin.de/{~}cantsin/permutations/tzara/poeme{protect T1	extunderscore }dadaiste.cgi

CONCEPTS, NOTATIONS, SOFTWARE, ART 7

Concept Art and Software Art. The question of what software is and how
it relates to non-electronic contemporary art is at least thirty-two years old.
In 1970, the art critic and theorist Jack Burnham curated an exhibition called
"Software" at the Jewish Museum of New York which today is believed to
be first show of concept art. It featured installations of US-American con-
cept artists next installations of computer software Burnham found interest-
ing, such as the first prototype of Ted Nelson’s hypertext system “Xanadu”.
Concept art as an art “of which the material is ‘concepts,’ as the material of
for ex. music is sound” (Henry Flynt’s definition from 19617) and software
art as an art whose material is formal instruction code seem to have at least
two things in common:

(1) the collapsing of concept notation and execution into one piece;
(2) the use of language; instructions in software art, concepts in con-

cept art. Flynt observes: “Since ‘concepts’ are closely bound up
with language, concept art is a kind of art of which the material is
language”.8

It therefore is not accidental that the most examples of pre-
electronic software art cited here are literary. Literature is a concep-
tual art in that is not bound to objects and sites, but only to language.
The trouble the art world has with net.art because it does not display
well in exhibition spaces is foreign to literature which always dif-
ferentiated between an artwork and its material appearance.

Since formal language is a language, software can be seen and
read as a literature.9

If concepts become, to quote Flynt again, artistic“material”, then concept
art differs from other art in that it actually exposes concepts, putting their
notations up front as the artwork proper. In analogy, software art in partic-
ular differs from software-based art in general in that it exposes its instruc-
tions and codedness. Since formal instructions are a subset of conceptual
notations, software art is, formally, a subset of conceptual art.

My favorite example of both concept art in Flynt’s sense and non-computer
software art is La Monte Young’s “Composition 1961”, a piece of paper
containing the written instruction “Draw a straight line and follow it”. The
instruction is unambiguous enough to be executed by a machine. At the
same time, a thorough execution is physically impossible. So the reality of
piece is mental, conceptual.

7[Fly61]
8ibid.
9But since formal language is only a small subset of language as a whole, conclusions

drawn from observing software code can’t be generally applied to all literature.

CONCEPTS, NOTATIONS, SOFTWARE, ART 8

The same duplicity of concept notation and executable code exists in Sol
LeWitt’s 1971 “Plan for a Concept Art Book”, a series of book pages giving
the reader exact instructions to draw lines on them or strike out specific
letters.10 LeWitt’s piece exemplifies that the art called concept art since the
1970s was by far not as rigorous as the older concept art of Henry Flynt,
La Monte Young and Christer Hennix: While the “Composition 1961” is
a concept notation creating an artwork that itself exists only as a concept,
mentally, LeWitt’s “Plan for a Concept Art Book” only is a concept notation
of a material, graphic artwork. Unlike the concept art “of which the material
is ‘concepts”’, LeWitt’s piece belongs to a concept art that rather should be
called a concept notation art or “blueprint art”; an art whose material is
graphics and objects, but which was instead realized in the form of a score.
By thus reducing its its own material complexity, the artwork appears to be
“minimalist” rather than rigorously conceptualist.

A writing which writes itself, LeWitt’s “Plan” could also be seen in a his-
torical continuity of combinatory language speculations: From the permuta-
tional algorithms in the Sefer Jezirah and ecstatic Kabbalah to the medieval
“ars” of Raimundus Lullus to 17th century permutational poetry and Mal-
larmé’s “Livre”. The combinatory most complex known permutation poem,
Quirinus Kuhlmann’s 1771 sonnet “Vom Wechsel menschlicher Sachen”
consists of 13∗ 12 nouns can be arbitrarily shuffled so that they result in
10114 permutations of the text.11 Kuhlmann’s and La Monte Young’s soft-
ware arts meet in their aesthetic extremism; in an afterword, Kuhlmann
claims that there are more permutations of his poem than grains of sand
on the earth.12 If such implications lurk in code, a formal analysis is not
enough. Concept art potentially means terror of the concept, software art
terror of the algorithm; a terror grounded in the simultaneity of minimalist
concept notation and totalitarian execution, helped by the fact that software
collapses the concept notation and execution in the single medium of in-
struction code. — Sade’s “120 days of Sodom” could be read as a recursive
programming of excess and its simultaneous reflection in the medium of
prose.13 The popularity of spamming and denial-of-service code in the con-
temporary digital arts is another practical proof of the perverse double-bind
between software minimalism and self-inflation; the software art pieces
awarded at the transmediale.02 festival, “tracenoizer” and “forkbomb.pl”
also belong to this category.

10[Hon71], p. 132-140
11[Kuh71]
12ibid.
13As Abraham M. Moles noticed already in 1971, [Mol71], p. 124

CONCEPTS, NOTATIONS, SOFTWARE, ART 9

La Monte Young’s “Composition 1961” not only provokes to rethink what
software and software art is. Being the first and still most elegant example
of all artistic jamming and denial-of-service code, it also addresses the aes-
thetics and politics coded into instructions. Two years before Burnham’s
“Software” exhibition, the computer scientist Donald E. Knuth published
the first volume of his famous textbook on computer programming, “The
Art of Computer Programming”.14 Knuth’s wording has adopted in what
Steven Levy calls the hacker credo that “you can create art and beauty with
computers”.15 It is telling that hackers, otherwise an avant-garde of a broad
cultural understanding of digital technology, rehash a late-18th century clas-
sicist notion of art as beauty, rewriting it into a concept of digital art as inner
beauty and elegance of code. But such aesthetic conservativism is wide-
spread in engineering and hard-science cultures; fractal graphics are just
one example of Neo-Pythagorean digital kitsch they promote. As a contem-
porary art, the aesthetics of software art includes ugliness and monstrosity
just as much as beauty, not to mention plain dysfunctionality, pretension
and political incorrectness.16

Above all, software art today no longer writes its programs out of nothing,
but works within an abundance of available software code. This makes it
distinct from works like Tzara’s Dada poem which, all the while it addresses
an abundance of mass media information, contaminates only the data, not its
algorithm; the words become a collage, but the process remains a synthetic
clean-room construct.

Since personal computers and the Internet became popular, software code
in addition to data has come to circulate in abundance. One thus could
say that contemporary software art operates in a postmodern condition in
which it takes pre-existing software as material — reflecting, manipulating
and recontextualizing it. The “mezangelle” writing of mez, an Australian
net artist, for example uses software and protocol code as material for writ-
ings in a self-invented hybrid of English and pseudo-code. Her “net.wurks”
are an unclean, broken software art; instead of constructing program code
synthetically, they use readymade computations, take them apart and read
their syntax as gendered semantics. In similar fashion, much software art
plays with control parameters of software. Software artworks like Joan Le-
andre’s “retroyou” and “Screen Saver” by Eldar Karhalev and Ivan Khimin

14knuth:art
15according Steven Levy [Lev84]; among those who explicitly subscribe to this is the

German Chaos Computer Club with its annual “art and beauty workshop”.
16which is why I think would be wrong to (a) restrict software art to only properly

running code and (b) exclude, for political reasons, proprietary and other questionably
licensed software from software art presentations.

CONCEPTS, NOTATIONS, SOFTWARE, ART 10

are simply surprising, mind-challenging disconfigurations of commercial
user software: a car racing game, the Microsoft Windows desktop interface.
They manage to put their target software upside down although their inter-
ventions are technically simple and don’t involve low-level programming at
all.

Software Formalism vs. Software Culturalism. Much of what is dis-
cussed as contemporary software art and discourse on has its origin in two
semi-coherent London-based groups. The older one around Matthew Fuller,
Graham Harwood and the groups I/O/D and Mongrel is known, among oth-
ers, for the experimental web browser “WebStalker”, which instead of for-
matted pages displays their source code and link structures, the “Linker”,
a piece of “social software” (to use a term by Fuller) designed to em-
power non-literate users to design their own digital information systems,
and “natural selection”, a politically manipulated web search engine. Fuller
also wrote a scrupulous cultural analysis of Microsoft Word’s user inter-
face and an essay with the programmatic title “Software as Culture”. The
other group involves the programmer-artists Adrian Ward (whose “Auto-
Illustrator” won the transmediale.01 software art prize) and Alex McLean
(whose “forkbomb.pl” won the transmediale.02 software art prize), the the-
oretician Geoff Cox and participants in the mailing list “eu-gene”, the web
sitehttp://www.generative.net and the “DorkBot” gatherings in Lon-
don (which involve poetry readings of program code). Both groups take
exactly opposite standpoints to software art and software criticism: While
Fuller/Harwood regard software as first of all a cultural, politically coded
construct, the eu-gene group rather focuses on the formal poetics and aes-
thetics of software code and individual subjectivity expressed in algorithms.

If software art could be generally defined as an art

• of which the material is formal instruction code, and/or
• which addresses cultural concepts of software,

then each of their positions sides with exactly one of the two aspects. If
Software Art would be reduced to only the first, one would risk ending up
a with a neo-classicist understanding of software art as beautiful and ele-
gant code along the lines of Knuth and Levy. Reduced on the other hand to
only the cultural aspect, Software Art could end up being a critical footnote
to Microsoft desktop computing, potentially overlooking its speculative po-
tential at formal experimentation. Formal reflections of software are, like
in this text, inevitable if one considers common-sense notions of software a
problem rather than a point of departure; histories of instruction codes in art

http://www.generative.net

CONCEPTS, NOTATIONS, SOFTWARE, ART 11

and investigations into the relationship of software, text and language still
remain to be written.

REFERENCES

[Cag82] John Cage.Roaratorio. Ein irischer Circus über Finnegans Wake. Athenäum,
Königstein/Taunus, 1982. 1

[CWM01] Geoff Cox, Adrian Ward, and Alex McLean. The Aesthetics of Generative
Code, 2001.http://www.generative.net/papers/aesthetics/index.
html. 2

[Fly61] Henry Flynt. Concept art. In La Monte Young and Jackson MacLow, editors,
An Anthology. Young and MacLow, New York, 1963 (1961). 7

[Hon71] Klaus Honnef, editor.Concept Art. Phaidon, Köln, 1971). 8
[Kit91] Friedrich Kittler. There is no software, 1991.http://textz.gnutenberg.

net/textz/kittler_friedrich_there_is_no_software.txt. 6
[Kuh71] Quirinus Kuhlmann.Himmlische Libes=küsse. ?, Jena, 1671. 8
[Lev84] Steven Levy.Hackers. Project Gutenberg, Champaign, IL, 1986 (1984). 9
[Mol71] Abraham A. Moles.Kunst und Computer. DuMont, Köln, 1973 (1971). 8
[Tza75] Tristan Tzara. Pour fair une poème dadaïste. InOeuvres complètes. Gallimard,

Paris, 1975. 6

c©This document can be freely copied and used according to the terms of
the Open Publication Licensehttp://www.opencontent.org/openpub

C/O FREIE UNIVERSITÄT BERLIN, SEMINAR FÜR ALLGEMEINE UND VERGLEICHENDE

L ITERATURWISSENSCHAFT, HÜTTENWEG9, D-14195 BERLIN, CANTSIN@ZEDAT.FU-
BERLIN.DE, H T T P:// U S E R P A G E. F U- B E R L I N. D E/~ C A N T S I N

http://www.generative.net/papers/aesthetics/index.html
http://www.generative.net/papers/aesthetics/index.html
http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_software.txt
http://textz.gnutenberg.net/textz/kittler_friedrich_there_is_no_software.txt
http://www.opencontent.org/openpub
http://userpage.fu-berlin.de/~cantsin

	Software and Concept Notations
	Software Art
	References

