

191

how working quickly can bring execution to a crawl

It goes without saying that pattern matching is good; more than that, it’s a large part of
what we are, and, generally, the faster we are at it, the better. Not always, though.
Sometimes insufficient information really is insufficient, and, in our haste to get the
heady rush of coming up with a solution, incorrect or less-thanaptimal conclusions
are reached, as anyone who has ever done the Tims Sunday crossword will attest. Still,
my grandfather does that puzzle every Sunday in ink. What’s his secret? Patience and
discipline. He never fills a word in until he’s confirmed it in his head via intersecting
words, no matter how strong the urge may be to put something down where he can see
it and feel like he’s getting somewhere.
There’s a surprisingly close parallel to programming here. Programming is certainly
a sort of pattern matching in the sense I’ve described above, and, as with crossword
puzzles, following your programming instincts too quickly can be a liability. For many
programmers, myself included, there’s a strong urge to find a workable approach to
a particular problem and start coding it right now, what some people call “hacking” a
program. Going with the first thing your programming pattern matcher comes up
with can be a lot of fun; there’s instant gratification and a feeling of unbounded
creativity. Personally, I’ve always hungered to get results from my work as soon as
possible; I gravitated toward graphics for its instant and very visible gratification.
Over time, however, I’ve learned patience.

I t e come to spend an increasingly large portion of my time choosing algorithms,
designing, and simply giving my mind quiet time in which to work on problems and
come up with non-obvious approaches before coding; and I’ve found that the extra
time up front more than pays for itseIfin both decreased coding time and superior
programs.

In this chapter, I’m going to walk you through a simple but illustrative case history
that nicely points up the wisdom of delaying gratification when faced with program-
ming problems, so that your mind has time to chew on the problems from other
angles. The alternative solutions you find by doing this may seem obvious, once you’ve
come up with them. They may not even differ greatly from your initial solutions.
Often, however, they will be much better-and you’ll never even have the chance to
decide whether they’re better or not if you take the first thing that comes into your
head and run with it.

The Case for Delayed Gratification
Once upon a time, I set out to read AZgrnzthm, by Robert Sedgewick (Addison-Wesley) ,
which turned out to be a wonderful, stimulating, and most useful book, one that I rec-
ommend highly. My story, however, involves only what happened in the first 12 pages, for
it was in those pages that Sedgewick discussed Euclid’s algorithm.

1 92 Chapter 10

Euclid’s algorithm (discovered by Euclid, of Euclidean geometry fame, a very long
time ago, way back when computers still used core memory) is a straightforward
algorithm that solves one of the simplest problems imaginable: finding the greatest
common integer divisor (GCD) of two positive integers. Sedgewick points out that
this is useful for reducing a fraction to its lowest terms. I’m sure it’s useful for other
things, as well, although none spring to mind. (A long time ago, I wrote an article
about optimizing a bit of code that wasn’t even vaguely time-critical, and got swamped
with letters telling me so. I knew it wasn’t time-critical; it was just a good example. So
for now, close your eyes and imagine that finding the GCD is not only necessary but
must also be done as quickly as possible, because it’s perfect for the point I want to
make here and now. Okay?)
The problem at hand, then, is simply this: Find the largest integer value that evenly
divides two arbitrary positive integers. That’s all there is to it. So warm up your pat-
tern matchers.. .and go!

The Brute-Force Syndrome
I have a funny feeling that you’d already figured out how to find the GCD before I
even said “go.” That’s what I did when reading Algorithms; before I read another
word, I had to figure it out for myself. Programmers are like that; give them a prob-
lem and their eyes immediately glaze over as they try to solve it before you’ve even
shut your mouth. That sort of instant response can certainly be impressive, but it can
backfire, too, as it did in my case.
You see, I fell victim to a common programming pitfall, the “brute-force” syndrome.
The basis of this syndrome is that there are many problems that have obvious, brute-
force solutions-with one small drawback. The drawback is that if you were to try to
apply a brute-force solution by hand-that is, work a single problem out with pencil
and paper or a calculator-it would generally require that you have the patience and
discipline to work on the problem for approximately seven hundred years, not count-
ing eating and sleeping, in order to get an answer. Finding all the prime numbers
less than 1,000,000 is a good example; just divide each number up to 1,000,000 by
every lesser number, and see what’s left standing. For most of the history of human-
kind, people were forced to think of cleverer solutions, such as the Sieve of
Eratosthenes (we’d have been in big trouble if the ancient Greeks had had comput-
ers), mainly because after about five minutes of brute force-type work, people’s
attention gets diverted to other important matters, such as how far a paper airplane
will fly from a second-story window.
Not so nowadays, though. Computers love boring work; they’re very patient and
disciplined, and, besides, one human year = seven dog years = two zillion computer
years. So when we’re faced with a problem that has an obvious but exceedingly lengthy

Patient Coding, Faster Code 193

solution, we’re apt to say, “Ah, let the computer do that, it’s fast,” and go back to
making paper airplanes. Unfortunately, brute-force solutions tend to be slow even
when performed by modern-day microcomputers, which are capable of several MIPS
except when I’m late for an appointment and want to finish a compile and run just
one more test before I leave, in which case the crystal in my computer is apparently
designed to automatically revert to 1 Hz.)
The solution that I instantly came up with to finding the GCD is about as brute- force
as you can get: Divide both the larger integer (iL) and the smaller integer (is) by every
integer equal to or less than the smaller integer, until a number is found that divides
both evenly, as shown in Figure 10.1. This works, but it’s a lousy solution, requiring as
many as iS*2 divisions; uery expensive, especially for large values of is. For example,
finding the GCD of 30,001 and 30,002 would require 60,002 divisions, which alone,
disregarding tests and branches, would take about 2 seconds on an 8088, and more
than 50 milliseconds even on a 25 MHz 486-a very long time in computer years, and
not insignificant in human years either.
Listing 10.1 is an implementation of the brute-force approach to CCD calculation.
Table 10.1 shows how long it takes this approach to find the GCD for several integer
pairs. As expected, performance is extremely poor when is is large.

1 94 Chapter IO

LISTING 10.1 11 0- 1 .C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o p o s i t i v e

i n t e g e r s . Works by t r y i n g e v e r y i n t e g r a l d i v i s o r b e t w e e n t h e
s m a l l e r o f t h e t w o i n t e g e r s a n d 1. u n t i l a d i v i s o r t h a t d i v i d e s
b o t h i n t e g e r s e v e n l y i s f o u n d . A l l C c o d e t e s t e d w i t h M i c r o s o f t
a n d B o r l a n d c o m p i l e r s . * /

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) {
u n s i g n e d i n t t e m p . t r i a l - d i v i s o r ;
/ * Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >= i n t 2 * I
i f (i n t l < i n t 2) {

temp = i n t l ;
i n t l = i n t 2 ;
i n t 2 - temp;

Patient Coding, Faster Code 195

I* Now j u s t t r y e v e r y d i v i s o r f r o m i n t 2 on down, u n t i l a common
d i v i s o r i s f o u n d . T h i s c a n n e v e r be an i n f i n i t e l o o p b e c a u s e
1 d i v i d e s e v e r y t h i n g e v e n l y *I

f o r (t r i a l - d i v i s o r - i n t 2 ; ((i n t l X t r i a l - d i v i s o r) !- 0) I I
((i n t 2 X t r i a l - d i v i s o r) !- 0); t r i a l - d i v i s o r -)

r e t u r n (t r i a 1 L d i v i s o r) ;
I

Wasted Breakthroughs
Sedgewick's first solution to the GCD problem was pretty much the one I came up
with. He then pointed out that the GCD of iL and is is the same as the GCD of iLiS
and is. This was obvious (once Sedgewick pointed it out); by the very nature of
division, any number that divides iL evenly nL times and is evenly nS times must
divide iL-iS evenly nLnS times. Given that insight, I immediately designed a new,
faster approach, shown in Listing 10.2.

LISTING 10.2 11 0-2.C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o p o s i t i v e

i n t e g e r s . Works by s u b t r a c t i n g t h e s m a l l e r i n t e g e r f r o m t h e
l a r g e r i n t e g e r u n t i l e i t h e r t h e v a l u e s m a t c h (i n w h i c h c a s e
t h a t ' s t h e g c d) , o r t h e l a r g e r i n t e g e r becomes t h e s m a l l e r o f
t h e t w o , i n w h i c h c a s e t h e t w o i n t e g e r s swap r o l e s and t h e
s u b t r a c t i o n p r o c e s s c o n t i n u e s . * /

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) I
u n s i g n e d i n t t e m p ;
I* I f t h e t w o i n t e g e r s a r e t h e same, t h a t ' s t h e g c d a n d w e ' r e

done *I
i f (i n t l - i n t 2) I

1
r e t u r n (i n t 1) ;

/ * Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t i ! * /
i f (i n t l < i n t 2) {

temp - i n t l :
i n t l - i n t 2 ;
i n t 2 - temp;

1

I* S u b t r a c t i n t 2 f r o m i n t l u n t i l i n t l i s no l o n g e r t h e l a r g e r o f

do (

1 w h i l e (i n t l > i n t i !) :
I* Now r e c u r s i v e l y c a l l t h i s f u n c t i o n t o c o n t i n u e t h e p r o c e s s * /
r e t u r n (g c d (i n t 1 , i n t 2)) ;

t h e t w o *I

i n t l - - i n t i ? ;

}

Listing 10.2 repeatedly subtracts is from iL until iL becomes less than or equal to is.
If iL becomes equal to is, then that's the GCD; alternatively, if iL becomes less than
is, iL and is switch values, and the process is repeated, as shown in Figure 10.2. The
number of iterations this approach requires relative to Listing 10.1 depends heavily
on the values of iL and is, so it's not always faster, but, as Table 10.1 indicates, Listing
10.2 is generally much better code.

196 Chapter IO

Listing 10.2 is a far graver misstep than Listing 10.1, for all that it’s faster. Listing 10.1
is obviously a hacked-up, brute-force approach; no one could mistake it for anything
else. It could be speeded up in any of a number of ways with a little thought. (Simply
skipping testing all the divisors between is and iS/2, not inclusive, would cut the
worst-case time in half, for example; that’s not a particularly good optimization, but it
illustrates how easily Listing 10.1 can be improved.) Listing 10.1 is a hack job, crying
out for inspiration.
Listing 10.2, on the other hand, has gotten the inspiration-and largely wasted it
through haste. Had Sedgewick not told me otherwise, I might well have assumed
that Listing 10.2 was optimized, a mistake I would never have made with Listing 10.1.
I experienced a conceptual breakthrough when I understood Sedgewick’s point: A
smaller number can be subtracted from a larger number without affecting their GCD,
thereby inexpensively reducing the scale of the problem. And, in my hurry to make
this breakthrough reality, I missed its full scope. As Sedgewick says on the very next

Patient Coding, Faster Code 197

page, the number that one gets by subtracting is from iL until iL is less than is is
precisely the same as the remainder that one gets by dividing iL by i s a g a i n , this is
inherent in the nature of division-and that is the basis for Euclid’s algorithm, shown
in Figure 10.3. Listing 10.3 is an implementation of Euclid’s algorithm.

LISTING 10.3 11 0-3.C
/* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .

Uses E u c l i d ’ s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
s m a l l e r ; i f t h e r e m a i n d e r i s 0. t h e s m a l l e r i n t e g e r i s t h e GCD,
o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
rema inder becomes t h e s m a l l e r i n t e g e r , and t h e p r o c e s s i s
repea ted . *I

s t a t i c u n s i g n e d i n t g c d - r e c u r s (u n s i g n e d i n t . u n s i g n e d i n t) ;

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) {
u n s i g n e d i n t t e m p ;
/ *

i f

1
/ *
i f

1

I*

I f t h e t w o i n t e g e r s a r e t h e same, t h a t ’ s t h e GCO and we’ re
done *I
(i n t l - i n t 2) {
r e t u r n (i n t 1) ;

Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t 2 * /
(i n t l < i n t 2) {
temp - i n t l ;
i n t l - i n t 2 ;
i n t 2 - temp;

Now c a l l t h e r e c u r s i v e f o r m of t h e f u n c t i o n , w h i c h assumes
t h a t t h e f i r s t D a r a m e t e r i s t h e l a r g e r o f t h e t w o *I

1

s t a t i c u n s i g n e d i n t g c d - r e c u r s (u n s i g n e d i n t l a r g e r - i n t .

I

r e t u r n (g c d - r e c u r s (; n t l . i n t 2)) ;

u n s i g n e d i n t s m a l l e r - i n t)

i n t temp;

/ * I f t h e r e m a i n d e r o f l a r g e r - i n t d i v i d e d b y s m a l l e r - i n t i s 0 .

i f ((t e m p - l a r g e r - i n t % s m a l l e r - i n t) - 0) {
1
/* Make s m a l l e r - i n t t h e l a r g e r i n t e g e r a n d t h e r e m a i n d e r t h e

s m a l l e r i n t e g e r , and c a l l t h i s f u n c t i o n r e c u r s i v e l y t o
c o n t i n u e t h e p r o c e s s *I

t h e n s m a l l e r - i n t i s t h e g c d */

r e t u r n (s m a 1 l e r - i n t) ;

1
return(gcd-recurs(smaller-int, t e m p)) ;

As you can see from Table 10.1, Euclid’s algorithm is superior, especially for large
numbers (and imagine if we were working with large longs.?.

Had I been implementing GCD determination without Sedgewicks help, I would P surely not have settledfor Listing I O . I-but I might well have ended up with Listing
10.2 in my enthusiasm over the “brilliant” discovery of subtracting the lesser

198 Chapter 10

number from the greater: In a commercial product, my lack of patience and disci-
pline could have been costly indeed.

Give your mind time and space to wander around the edges of important program-
ming problems before you settle on any one approach. I titled this book’s first chapter
“The Best Optimizer Is between Your Ears,” and that’s still true; what’s even more
true is that the optimizer between your ears does its best work not at the implemen-
tation stage, but at the very beginning, when you try to imagine how what you want
to do and what a computer is capable of doing can best be brought together.

Recursion
Euclid’s algorithm lends itself to recursion beautifully, so much so that an imple-
mentation like Listing 10.3 comes almost without thought. Again, though, take a
moment to stop and consider what’s really going on, at the assembly language level,
in Listing 10.3. There’s recursion and then there’s recursion; code recursion and
data recursion, to be exact. Listing 10.3 is code recursion-recursion through calls-

Patient Coding, Faster Code 199

the sort most often used because it is conceptually simplest. However, code recur-
sion tends to be slow because it pushes parameters and calls a subroutine for every
iteration. Listing 10.4, which uses data recursion, is much faster and no more com-
plicated than Listing 10.3. Actually, you could just say that Listing 10.4 uses a loop
and ignore any mention of recursion; conceptually, though, Listing 10.4 performs
the same recursive operations that Listing 10.3 does.

LISTING 10.4 11 0-4.C
I* F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .

Uses E u c l i d ' s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
s m a l l e r ; i f t h e r e m a i n d e r i s 0 . t h e s m a l l e r i n t e g e r i s t h e GCD.
o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
r e m a i n d e r b e c o m e s t h e s m a l l e r i n t e g e r , a n d t h e p r o c e s s i s
r e p e a t e d . A v o i d s c o d e r e c u r s i o n . *I

u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) I
u n s i g n e d i n t t e m p ;

I* Swap i f necessary t o make s u r e t h a t i n t l >- i n t 2 *I
i f (i n t l < i n t 2) {

temp - i n t l ;
i n t l - i n t 2 ;
i n t 2 - temp;

1
I* Now l o o p , d i v i d i n g i n t l b y i n t 2 and check ing t he rema inder ,

u n t i l t h e r e m a i n d e r i s 0. A t each s tep , i f t h e r e m a i n d e r i s n ' t
0 , a s s i g n i n t 2 t o i n t l .
r e p e a t *I

I* I f t h e r e m a i n d e r o f i

i f ((t e m p - i n t l % i n t 2)

1
I* Make i n t 2 t h e l a r g e r

s m a l l e r i n t e g e r , a n d
i n t l - i n t 2 ;
i n t 2 - temp;

f o r (: ;) {

t h e g c d *I

r e t u r n (i n t 2) ;

1
1

a n d t h e r e m a i n d e r t o i n t 2 . t h e n

n t l d i v i d e d b y i n t 2 i s 0 . t h e n i n t 2 i s

- 0) {

i n t e g e r a n d t h e r e m a i n d e r t h e
r e p e a t t h e p r o c e s s * /

Patient Optimization
At long last, we're ready to optimize GCD determination in the classic sense. Table
10.1 shows the performance of Listing 10.4 with and without Microsoft C/C++'s maxi-
mum optimization, and also shows the performance of Listing 10.5, an assembly
language version of Listing 10.4. Sure, the optimized versions are faster than the
unoptimized version of Listing 10.4-but the gains are small compared to those real-
ized from the higher-level optimizations in Listings 10.2 through 10.4.

LISTING 10.5 11 0-5.ASM
; F i n d s a n d r e t u r n s t h e g r e a t e s t common d i v i s o r o f t w o i n t e g e r s .
; Uses E u c l i d ' s a l g o r i t h m : d i v i d e s t h e l a r g e r i n t e g e r b y t h e
; s m a l l e r ; i f t h e r e m a i n d e r i s 0 . t h e s m a l l e r i n t e g e r i s t h e GCD.

200 Chapter 10

; o t h e r w i s e t h e s m a l l e r i n t e g e r becomes t h e l a r g e r i n t e g e r , t h e
: r e m a i n d e r b e c o m e s t h e s m a l l e r i n t e g e r , a n d t h e p r o c e s s i s
: repea ted . Avo ids code recu rs ion .

: C n e a r - c a l l a b l e a s :
: u n s i g n e d i n t g c d (u n s i g n e d i n t i n t l . u n s i g n e d i n t i n t 2) :

: P a r a m e t e r s t r u c t u r e :
pa rms s t ruc

dw ? :pushed B P
dw ? : p u s h e d r e t u r n a d d r e s s

i n t l dw ? : i n t e g e r s f o r w h i c h t o f i n d
i n t 2 dw ? : t h e GCD
parms ends

.model smal l

.code
pub1 i c -gcd
a l i g n 2

p u s h b p : p r e s e r v e c a l l e r ' s s t a c k f r a m e
mov b p . s p ; s e t u p o u r s t a c k f r a m e
p u s h s i : p r e s e r v e c a l l e r ' s r e g i s t e r v a r i a b l e s
p u s h d i

_gcd p roc nea r

:Swap i f n e c e s s a r y t o make s u r e t h a t i n t l >- i n t 2
mov a x . i n t l [b p l
mov b x . i n t 2 C b p l
cmp a x . b x : i s i n t l >- i n t 2 ?
j n b I n t s S e t : y e s . s o w e ' r e a l l s e t
xchg ax.bx :no. so swap i n t l and i n t 2

I n t s S e t :

: Now l o o p , d i v i d i n g i n t l b y i n t 2 a n d c h e c k i n g t h e r e m a i n d e r , u n t i l
: t h e r e m a i n d e r i s 0 . A t each s tep , i f t h e r e m a i n d e r i s n ' t 0 . a s s i g n
: i n t 2 t o i n t l , a n d t h e r e m a i n d e r t o i n t 2 , t h e n r e p e a t .
GCDLoop:

; i f t h e r e m a i n d e r o f i n t l d i v i d e d b y
: i n t Z i s 0 . t h e n i n t 2 i s t h e g c d

sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 : r e m a i n d e r i s i n D X
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done : yes . s o i n t 2 (B X) i s t h e g c d

:no. so move i n t 2 t o i n t l and t he
; r e m a i n d e r t o i n t 2 , and r e p e a t t h e
: process

mov ax .bx : i n t l = i n t 2 :
mov bx ,dx : i n t 2 - rema inder f rom D I V

: - s t a r t o f l o o p u n r o l l i n g : t h e a b o v e i s r e p e a t e d t h r e e t i m e s -
sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 ; r e m a i n d e r i s i n D X
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done ;yes. s o i n t 2 (B X) i s t h e g c d
mov ax.bx : i n t l - i n t 2 ;
mov bx .dx : i n t 2 = rema inder f rom D I V

sub dx.dx ; p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x ; i n t l / i n t 2 ; r e m a i n d e r i s i n D X

._

Patient Coding, Faster Code 201

and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done :yes . s o i n t 2 (B X) i s t h e gcd
mov ax.bx : i n t l = i n t 2 :
mov bx.dx : i n t 2 = rema inder f rom D I V

sub dx.dx : p r e p a r e i n t l i n D X : A X f o r d i v i s i o n
d i v b x : i n t l / i n t 2 : r e m a i n d e r i s i n DX
and dx.dx : i s t h e r e m a i n d e r z e r o ?
j z Done :yes . so i n t 2 (B X) i s t h e g c d
mov ax.bx : i n t l = i n t 2 :
mov bx,dx ; i n t 2 = rema inder f rom D I V

:-end o f l o o p u n r o l l i n g -
jmp GCDLoop

a l i g n 2

mov a x . b x : r e t u r n t h e GCD
pop d i : r e s t o r e c a l l e r ’ s r e g i s t e r v a r i a b l e s
pop s i
POP b p : r e s t o r e c a l l e r ’ s s t a c k f r a m e
r e t

end

._

Done:

_gcd endp

Assembly language optimization is pattern matching on a local scale. Frankly, it’s
also the sort of boring, brute-force work that people are lousy at; compilers could
out-optimize you at this level with one pass tied behind their back ifthey knew as
much about the code you’re writing as you do, which they don’t.

p Design optimization-conceptual breakthroughs in understanding the relationships
between the needs of an application, the nature of the data the application works
with, and what the computer can do-is global pattern matching.

Computers are much worse at that sort of pattern matching than humans; computers
have no way to integrate vast amounts of disparate information, much of it only
vaguely defined or subject to change. People, oddly enough, are betterat global opti-
mization than at local optimization. For one thing, it’s more interesting. For another,
it’s complex and imprecise enough to allow intuition and inspiration, two vastly un-
derrated programming tools, to come to the fore. And, as I pointed out earlier, people
tend to perform instantaneous solutions to even the most complex problems, while
computers bog down in geometrically or exponentially increasing execution times.
Oh, it may take days or weeks for a person to absorb enough information to be able
to reach a solution, and the solution may only be near-optimal-but the solution
itself (or, at least, each of the pieces of the solution) arrives in a flash.
Those flashes are your programming pattern matcher doing its job. Yourjob is to
give your pattern matcher the opportunity to get to know each problem and run
through it two or three times, from different angles, to see what unexpected solu-
tions it can come up with.

202 Chapter IO

Pull back the reins a little. Don’t measure progress by lines of code written today;
measure it instead by overall progress and by quality. Relax and listen to that quiet
inner voice that provides the real breakthroughs. Stop, look, listen-and think. Not
only will you find that it’s a more productive and creative way to program-but you’ll
also find that it’s more fun.
And think what you could do with all those extra computer years!

Patient Coding, Faster Code 203

	next:
	home:
	previous:

