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New  Complications 
This chapter,  adapte  arlier book Zen of Assembly Language (1989; now out 
of print), provides an Df the 286 and 386, often  contrasting those proces- 
sors with the 8088. &t the time I originally wrote this, the 8088 was the king of 
processors, and  the $36 and 386  were the new  kids on the block. Today,  of course, all 
three processors ar6 past their primes, but many millions of each are still in use, and 
the 386 in partic@r is still well worth considering when optimizing software. 
This cha  des  an  interesting look at  the evolution of the x86 architecture, to 
a  greater  degree th$n you might  expect,  for  the x86  family came into full maturity 
with the 386; the  486hnd  the  Pentium  are really nothing  more  than faster 386s,  with 
very little in  the way of  new functionality. In contrast, the 286 added  a  number of 
instructions, respectable performance, and protected  mode to the 8088's capabili- 
ties, and  the 386 added  more instructions and a whole new set of addressing modes, 
and  brought  the x86  family into  the 32-bit  world that  represents  the  future (and, 
increasingly, the  present) of personal  computing. This chapter also provides insight 
into  the effects on optimization of the variations in processors and memory architec- 
tures that  are  common  in  the PC world. So, although the 286 and 386 no longer 
represent  the mainstream of computing, this chapter is a useful mix  of history les- 
son, x86 overview, and details on two workhorse processors that  are still in wide use. 
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Fa m i I y Matters 
While the x86  family is a large one, only a few members of the family-which in- 
cludes the 8088, 8086, 80188,  80186,  286,  386SX,  386DX, numerous  permutations 
of the 486, and now the Pentium-really matter. 
The 8088 is now  all but extinct in the PC arena.  The 8086 was used fairly  widely for  a 
while, but has now all but disappeared. The 80186 and 80188 never really caught  on 
for use in PC and  don’t  require  further discussion. 
That leaves  us  with the high-end chips: the 286, the 386SX, the 386, the 486, and  the 
Pentium. At this writing, the 386SX is fast going  the way of the 8088; people  are 
realizing that its  relatively  small  cost advantage over the 386 isn’t enough to  offset  its 
relatively large performance disadvantage. After all, the 386SX suffers from  the  same 
debilitating problem  that looms over the 8088-a too-small  bus. Internally, the 386SX 
is a 32-bit processor, but externally, it’s a 16-bit processor, a non-optimal architec- 
ture, especially for 32-bit code. 
I’m not  going to  discuss the 386SX in detail. If  you do find yourself programming  for 
the 386SX,  follow the same general rules you should follow for  the 8088:  use short 
instructions, use the registers as  heavily  as possible, and don’t  branch. In  other words, 
avoid memory, since the 386SX is by definition better  at processing data internally 
than it is at accessing  memory. 
The 486 is a world unto itself for the  purposes of optimization, and  the  Pentium is a 
universe unto itself. We’ll treat  them separately in later  chapters. 
This leaves  us  with just two processors: the 286 and  the 386. Each was the PC standard 
in its day. The 286  is no longer used in new  systems, but  there  are millions of 286- 
based systems  still in daily use. The 386 is still being used in new  systems, although 
it’s on  the downhill leg of its lifespan, and it is in even wider use than  the 286. The 
future clearly belongs to the 486 and  Pentium,  but  the 286 and 386 are still  very 
much  a  part of the present-day landscape. 

Crossing the Gulf to the 286 and the 386 
Apart from vastly improved performance,  the biggest difference between the 8088 
and the 286 and 386 (as well  as the later Intel CPUs) is that  the 286 introduced pro- 
tected mode,  and  the 386  greatly expanded  the capabilities  of protected  mode. We’re 
only going to  talk about real-mode operation of the 286 and 386  in  this book, however. 
Protected mode offers a whole  new memory management scheme, one that isn’t s u p  
ported by the 8088.  Only code specifically  written for  protected  mode can run in that 
mode; it’s an alien and hostile environment for MS-DOS programs. 
In particular, segments are different  creatures  in  protected  mode. They’re selectors-“ 
indexes into  a table of segment descriptors-rather than plain old registers, and 
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can’t  be  set  to  arbitrary values. That means  that  segments  can’t  be  used  for  tempo- 
rary storage or as part of a fast indivisible 32-bit load  from memory,  as in 

l e s  ax.dword p t r   [ L o n g V a r l  
mov dx .es  

which loads LongVar into DX:AX faster  than this: 

mov a x . w o r d   p t r  [ LongVar l  
mov d x . w o r d   p t r  [LongVar+21 

Protected  mode uses those  altered  segment registers to offer access to  a  great  deal 
more memory than  real  mode: The 286 supports  16 megabytes of  memory,  while the 
386 supports 4 gigabytes (4K megabytes) of  physical  memory and 64 terabytes (64K 
gigabytes!) of virtual memory. 
In  protected  mode, your programs generally run  under  an  operating system (OS/2, 
Unix, Windows  NT or the  like)  that  exerts  much more  control over the  computer 
than  does MS-DOS. Protected  mode  operating systems can generally run multiple 
programs simultaneously, and  the  performance of any one  program may depend  far 
less on code quality than  on how efficiently the  program uses operating system  ser- 
vices and how often and  under what circumstances the  operating system preempts 
the  program.  Protected  mode  programs  are  often mostly collections of operating 
system  calls, and  the  performance of whatever code isn’t operating-system oriented 
may depend primarily on how large  a time slice the  operating system  gives that  code 
to  run  in. 
In  short, taken as a whole, protected  mode  programming is a  different  kettle of fish 
altogether  from what  I’ve been  describing  in this book. There’s certainly a knack to 
optimizing specifically for  protected  mode  under  a given operating system.. .but it’s 
not what we’ve been  learning,  and now  is not  the time to  pursue  it  further.  In  gen- 
eral,  though,  the optimization strategies discussed in this book still hold  true  in 
protected  mode; it’s just issues specific to  protected  mode  or  a  particular  operating 
system that we won’t discuss. 

In the  Lair of the  Cycle-Eaters,  Part II 
Under  the  programming  interface, the 286 and 386 differ considerably from  the 8088. 
Nonetheless, with one exception and  one addition,  the cycle-eaters remain much the 
same on computers built around  the 286 and 386. Next, we’ll  review each of the famil- 
iar cycle-eaters I covered in Chapter 4  as they apply to the 286 and 386, and we’ll look 
at  the new member of the gang,  the  data  alignment cycle-eater. 
The  one cycle-eater that vanishes on  the 286 and 386 is the 8-bit bus cycle-eater. The 
286  is a 16-bit processor both internally and externally, and  the 386  is a 32-bit proces- 
sor both internally and externally, so the Execution  Unit/Bus  Interface  Unit size 
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mismatch  that plagues the 8088 is eliminated. Consequently, there’s no longer any 
need to use byte-sized memory variables in preference to word-sized variables, at 
least so long as  word-sized  variables start at even addresses, as  we’ll see shortly. On 
the  other  hand, access  to  byte-sized  variables  still isn’t any slowm than access to word- 
sized variables, so you can use whichever  size  suits a given  task  best. 
You might think  that the elimination of the 8-bit bus cycle-eater  would mean  that  the 
prefetch queue cycle-eater  would  also vanish, since on  the 8088 the prefetch queue 
cycle-eater is a side effect of the 8-bit bus. That would seem all the  more likely  given 
that  both  the 286 and  the 386  have larger  prefetch queues  than  the 8088 (6 bytes for 
the 286, 16 bytes for the 386) and can perform memory accesses, including instruc- 
tion fetches, in  far fewer  cycles than  the 8088. 
However, the prefetch queue cycle-eater doesn’t vanish on either  the 286 or  the 386, 
for several reasons. For one thing, branching instructions still empty the prefetch 
queue, so instruction  fetching still slows things down after most branches; when the 
prefetch queue is empty, it  doesn’t  much  matter how big it is. (Even apart  from 
emptying the prefetch queue,  branches aren’t particularly fast on  the 286 or  the 386, 
at a  minimum of  seven-plus  cycles apiece. Avoid branching whenever possible.) 
After a branch it does matter how  fast the  queue can refill, and  there we come to the 
second reason the prefetch queue cycle-eater lives on:  The 286 and 386 are so fast 
that sometimes the Execution Unit can execute  instructions faster than they can be 
fetched, even though instruction  fetching is much faster on  the 286 and 386 than  on 
the 8088. 
(All other things being  equal, too-slow instruction  fetching is more of a  problem  on 
the 286 than  on  the 386, since the 386 fetches 4 instruction bytes at  a time versus the 
2 instruction bytes fetched per memory access by the 286.  However, the 386  also 
typically runs  at least twice  as fast as the 286, meaning  that  the 386 can easily execute 
instructions faster than they can be fetched unless very high-speed memory is used.) 
The most significant reason that the prefetch queue cycle-eater not only  survives but 
prospers on  the 286 and 386,  however,  lies in the various memory  architectures used 
in  computers built around  the 286 and 386. Due to the memory  architectures, the 8- 
bit bus cycle-eater is replaced by a new form of the wait state cycle-eater:  wait states 
on accesses to normal system  memory. 

System Wait States 
The 286 and 386  were designed to lose  relatively little performance to the prefetch 
queue cycle-eater.. . when used with zero-wait-state memory: memory  that can complete 
memory accesses so rapidly that no wait states are  needed. However, true zero-wait- 
state memory is almost never used with those processors. Why? Because memory  that 
can keep up with a 286  is  fairly expensive, and memory  that can keep up with a 386 
is very expensive. Instead, computer designers use alternative memory  architectures 
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that offer more  performance  for  the dollar-but less performance overall-than 
zero-wait-state  memory. (It is possible to build zero-wait-state  systems for the 286 and 
386; it’s just so expensive that it’s rarely done.) 
The IBM AT and  true compatibles use one-wait-state memory (some AT clones use 
zero-wait-state  memory, but such clones are less common than one-wait-state AT 
clones). The 386  systems  use a wide  variety of memory  systems-including  high-speed 
caches, interleaved memory, and static-column RAM-that insert anywhere  from 0 to 
about 5 wait states (and many more if 8 or  l6bit memory expansion  cards  are  used) ; 
the exact number of  wait states inserted  at any  given time depends  on  the interac- 
tion between the  code  being  executed  and  the memory system  it’s running  on. 

The performance of most 386 memory  systems  can  vary  great&,from one  memory p access to anothel; depending on  factors such as what  data  happens to  be in the  cache 
and  which  interleaved bank and/or RAM column  was  accessed last. 

The many memory systems in use make it impossible for us to optimize  for  286/386 
computers with the precision  that’s  possible on  the 8088. Instead, we must  write code 
that  runs reasonably well under  the varying conditions found in  the 286/386 arena. 
The wait states that  occur  on most  accesses to system  memory in 286 and 386  com- 
puters mean that nearly every  access to system  memory-memory in the DOS’s normal 
640K memory area-is  slowed down. (Accesses in  computers with high-speed caches 
may be wait-state-free if the desired  data is already in the  cache,  but will certainly 
encounter wait states if the  data isn’t cached; this phenomenon  produces highly 
variable instruction  execution times.) While this is our first encounter with  system 
memory wait states, we  have run  into  a wait-state  cycle-eater before: the display adapter 
cycle-eater,  which we discussed along with the  other 8088 cycle-eaters way back in 
Chapter 4.  System memory generally has fewer  wait states per access than display 
memory. However, system memory is also accessed far  more  often  than display 
memory, so system memory wait states hurt plenty-and the place they hurt most is 
instruction  fetching. 
Consider this: The 286 can  store  an  immediate value to memory, as in MOV 
[WordVar],O, in just 3 cycles.  However, that  instruction is 6 bytes long. The 286  is 
capable of fetching 1 word  every 2 cycles;  however, the one-wait-state architecture of 
the AT stretches  that to 3 cycles. Consequently, nine cycles are  needed  to fetch the 
six instruction bytes. On  top of that, 3 cycles are  needed  to write to memory, bring- 
ing  the  total  memory  access  time  to 1 2  cycles. On  balance,  memory  access 
time-especially instruction prefetching-greatly exceeds  execution  time,  to  the 
extent  that this particular  instruction  can take up to four times as long to run as it 
does  to  execute  in  the  Execution  Unit. 
And that, my friend, is unmistakably the  prefetch queue cycle-eater. I  might add  that 
the  prefetch  queue cycle-eater is in  rare  good  form  in  the above example: A 440-1 
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ratio of instruction fetch time to execution time is in a class  with the best (or worst!) 
that’s found  on  the 8088. 
Let’s check out  the prefetch queue cycle-eater in action. Listing 11.1 times MOV 
WordVar1,O. The Zen timer reports  that  on a one-wait-state 10 MHz  286-based AT 
clone (the  computer used for all  tests in this chapter), Listing 11.1 runs in 1.27 ps 
per instruction.  That’s 12.7 cycles per instruction, just as we calculated. (That extra 
seven-tenths of a cycle comes  from DRAM refresh, which we’ll get to  shortly.) 

LISTING 1 1.1 11 1-1 .ASM 

: *** L i s t i n g  11.1 *** 

: M e a s u r e s   t h e   p e r f o r m a n c e   o f   a n   i m m e d i a t e  move t o  
: memory. i n   o r d e r   t o   d e m o n s t r a t e   t h a t   t h e   p r e f e t c h  
: q u e u e   c y c l e - e a t e r   i s   a l i v e   a n d   w e l l  on t h e  AT. 

j m p   S k i p  

even   : a lways  make s u r e   w o r d - s i z e d  memory 
: v a r i a b l e s   a r e   w o r d - a l i g n e d !  

WordVar dw 0 

S k i p :  
c a l l  ZTimerOn 
r e p t  1000 
mov CWordVarl  .O 
endm 
c a l l   Z T i m e r O f f  

What  does this mean?  It means  that, practically speaking, the 286  as used in the AT 
doesn’t have a 16-bit  bus. From a performance perspective, the 286 in an AT has two- 
thirds of a 16-bit bus (a 10.7-bit bus?), since every bus access on  an AT takes 50 
percent  longer  than it  should. A 286 running  at 10 MHz should be able to access 
memory at a maximum  rate of 1 word every  200 ns; in a 10 MHz  AT, however, that 
rate is reduced to 1 word  every  300 ns by the one-wait-state  memory. 
In short, a close  relative  of our old friend  the 8-bit  bus  cycleeater-the system memory 
wait state cycle-eater-haunts  us  still on all but zero-wait-state  286 and 386 computers, 
and that means that the prefetch queue cycleeater is  alive and well. (The system memory 
wait state cycle-eater isn’t really a new cycleeater, but  rather a variant of the  general 
wait state cycleeater, of  which the display adapter cycleeater is yet another variant.) 
While the 286 in the AT can fetch instructions much faster than can the 8088 in the 
PC, it can execute those instructions faster still. 
The picture is less clear in the 386  world since there  are so many different  memory 
architectures, but similar problems can occur  in any computer built around a 286 or 
386. The prefetch queue cycle-eater is even a factor-albeit a lesser  one-on zero- 
wait-state machines, both because branching  empties  the  queue  and because some 
instructions can outrun even  zero-wait-state instruction  fetching. (Listing 11.1 would 
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take at least 8 cycles per instruction on a  zero-wait-state AT-5 cycles longer  than the 
official execution  time.) 
To summarize: 

Memory-accessing  instructions  don’t  run  at  their  official  speeds  on  non-zero- 
wait-state  286/386  computers. 

particularly  when  non-zero-wait-state  memory is used. 

the  prefetch  queue  is  emptied. 

from  one  286/386  computer  to  another,  making  precise  optimization  impossible. 

The  prefetch  queue  cycle-eater  reduces  performance  on 286/386 computers, 

Branches  often  execute  at  less  than  their  rated  speeds  on  the  286  and  386  since 

The  extent  to  which  the  prefetch  queue  and  wait  states  affect  performance  varies 

What’s to be  learned  from all this? Several  things: 
Keep  your  instructions  short. 
Keep  it  in  the  registers;  avoid  memory,  since  memory  generally  can’t  keep  up 

Don’t  jump. 
with  the  processor. 

Of course,  those  are exactly the rules that apply to 8088 optimization as  well. Isn’t it 
convenient that  the same general  rules apply  across the  board? 

Data  Alignment 
Thanks  to its l6bit  bus, the 286 can access  word-sized memory variables just as  fast  as 
byte-sized  variables. There’s a catch, however:  That’s  only true  for word-sized  variables 
that  start at even  addresses. When the 286  is asked to  perform a  word-sized  access 
starting at  an  odd address, it actually performs two separate accesses, each of which 
fetches 1 byte, just as the 8088 does for all  word-sized  accesses. 
Figure 11.1 illustrates  this phenomenon. The conversion  of  word-sized  accesses  to odd 
addresses into double byte-sized  accesses  is transparent  to  memory-accessing  instructions; 
all  any instruction knows  is that  the requested word has  been accessed, no matter 
whether 1 word-sized  access or 2  byte-sized  accesses  were required  to accomplish it. 
The penalty for  performing a  word-sized  access starting at  an odd address is  easy to 
calculate: Two accesses take twice  as long as one access. 

In other  words,  the  effective  capacity of the 286 j .  external  data bus is  halved  when .p a  word-sized  access to  an odd  address  is  performed. 

That,  in a nutshell, is the data  alignment cycle-eater, the  one new  cycle-eater  of the 
286 and 386. (The  data alignment cycle-eater  is  a  close relative of the 8088’s 8-bit bus 
cycle-eater, but since it behaves  differently-occurring  only at odd addresses-and  is 
avoided  with  a different  workaround, we’ll consider it to be a new  cycle-eater.) 
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69 
To 

286 

0 
To 

286 

Memory - 
The 80286 reads  the  word  value 
838217 at  address 20000h with  a 2003 2o02 w 
single  word-sized  access  since  that 
word  value  starts at  an  even  address. 

Memory - 
2002 

The 80286 reads  the  word  value 
8382h at  address 1 FFFFh with two 2003 
byte-sized  accesses  since  that  word 
value  starts  at an  odd  address. 

85 

The data alignment cycle-eater: 
Figure 1 1.1 

The way to deal with the data  alignment cycle-eater  is straightforward: Don’t perform 
word-sized accesses to odd addmses on the 284 ifyou can he& it. The easiest way to  avoid the 
data alignment cycleeater is to  place the directive EVEN before each of  your  word-sized 
variables. EVEN forces the offset  of the  next byte assembled to be even by inserting 
a NOP if the  current offset is odd; consequently, you can ensure  that any  word-sized 
variable can be accessed  efficiently by the 286 simply by preceding  it with EVEN. 
Listing 11.2, which  accesses memory a word at a time with each  word  starting at  an 
odd address, runs on a 10 MHz AT clone in 1.27 ps per repetition of MOVW, or 0.64 ps 
per word-sized memory access. That’s 6plus cycles per word-sized  access,  which breaks 
down to two separate  memory accesses-3  cycles to access the high byte  of each 
word and 3 cycles to access the low  byte  of each word, the inevitable result of non- 
word-aligned word-sized memory accesses-plus a bit extra  for DRAM refresh. 
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LISTING 1 1.2 11 1 -2.ASM 

; *** L i s t i n g   1 1 . 2  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a c c e s s e s   t o   w o r d - s i z e d  
; v a r i a b l e s   t h a t   s t a r t   a t  o d d   a d d r e s s e s   ( a r e   n o t  
; w o r d - a l i g n e d ) .  

S k i p :  
push 
P O P  
mov 
mov 
mov 
c l  d 
c a l l  
r e p  
c a l l  

ds 
es 
s i . l   ; s o u r c e   a n d   d e s t i n a t i o n   a r e   t h e  same 
d i . s i  ; a n d   b o t h   a r e   n o t   w o r d - a l i g n e d  
cx .1000 ;move 1000  words 

ZTimerOn 
movsw 
ZT imerOf f  

On  the  other  hand, Listing 11.3, which is exactly the same  as Listing 11.2 save that 
the memory accesses are word-aligned (start  at even addresses),  runs  in 0.64 ps per 
repetition of MOVSW, or 0.32 ps per word-sized memory access. That’s 3 cycles per 
word-sized  access-exactly  twice  as fast as the non-word-aligned accesses of Listing 
11.2, just as  we predicted. 

LISTING 1 1.3  11 1 -3.ASM 

; *** L i s t i n g   1 1 . 3  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a c c e s s e s   t o   w o r d - s i z e d  
; v a r i a b l e s   t h a t   s t a r t   a t   e v e n   a d d r e s s e s   ( a r e   w o r d - a l i g n e d ) .  

S k i p :  
push  ds 
POP es 
sub s i . s i   ; s o u r c e   a n d   d e s t i n a t i o n   a r e   t h e  same 
mov d i . s i  ; a n d   b o t h   a r e   w o r d - a l i g n e d  
mov cx .1000 :move  1000  words 
cl d 
c a l l  ZTimerOn 
r e p  movsw 
c a l l   Z T i m e r O f f  

The  data  alignment cycle-eater has  intriguing  implications  for  speeding  up 286/386 
code.  The  expenditure of a little care  and a few  bytes to make sure  that word-sized 
variables and memory blocks are word-aligned can literally double  the  performance 
of certain  code running  on  the 286.  Even if it  doesn’t  double  performance, word 
alignment usually helps and never hurts. 

Code Alignment 
Lack  of  word alignment  can also interfere with instruction  fetching on  the 286, al- 
though  not  to  the  extent  that  it  interferes with  access to word-sized memoryvariables. 
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The 286 prefetches  instructions  a  word at a time; even if a given instruction doesn’t 
begin at  an even address, the 286  simply fetches the first byte  of that  instruction at 
the same time that it fetches the last  byte  of the previous instruction, as  shown in 
Figure 11.2, then separates the bytes internally. That means  that in most cases, in- 
structions run  just as  fast whether they’re word-aligned or not. 
There is, however, a non-word-alignment penalty on branches to odd addresses. On a 
branch to an  odd address, the 286 is only able to fetch 1 useful  byte  with the first 
instruction fetch following the  branch, as  shown in Figure 11.3. In  other words,  lack 
of word  alignment of the target instruction  for any branch effectively cuts the in- 
struction-fetching power of the 286 in half for the first instruction fetch after that 
branch. While that may not  sound like much, you’d be surprised  at what it can do to 
tight loops; in fact, a brief story is in  order. 
When I was developing the Zen  timer, I used my trusty 10 MHz 286based AT clone 
to verify the basic functionality of the timer by measuring  the  performance of simple 
instruction sequences. I was cruising along with no  problems until I timed the fol- 
lowing code: 

mov cx. 1000 
c a l l  ZTimerOn 

1 oop LoopTop 
c a l l  ZTimerOff 

LoopTop: 

Memory 

A 201 00 

20101 

201 02 

201 03 

201 04 

The last byte of mov  ax, 1 and the  first 201 O5 
byte of mov  bx,2, which together 
form a worduligned word, are 
prefetched with a single word-sized 
access;  the 286 later splits  the  bytes 
apart internally in the  prefetch  queue. 

E 02 00 

mov ax, 1 

I mov bx,2 

J 

Word-aligned  prefetching on the 286. 
Figure 1 1.2 

21 6 Chapter 1 1 



~ 

Memory 

20 1 00 c3 
20101 68 

201 02 05 

201 03 00 

201 04 28 

On a branch to 201 01, only 201 05 D2 
one  useful  instruction byte is 
fetched by the  first  instruction 
fetch  after  the branch, since 
the  other byte in the word- 
aligned word that  covers 
address 20 1 0 1 precedes  the 
branch destination and is 
therefore of no use  as an 
instruction byte after the 
branch. 

286 

’I ret 

I mov ax,5 

sub dl,dl 

How instruction bytes are fetched after a branch. 
Figure 1 1.3 

Now, this code should run  in, say, about 12 cycles per  loop  at most. Instead,  it took 
over 14 cycles per loop, an execution time that I could not explain in any way. After 
rolling i t  around in my head  for a while, I took  a  look at  the  code  under a 
debugger ... and the answer leaped  out  at me. The loop  begun ut a n  odd  address! That 
meant that two instruction fetches were required  each time through  the  loop;  one to 
get the  opcode byte of the LOOP instruction, which resided at  the  end of one word- 
aligned word, and  another to get the  displacement byte,  which resided at the start of 
the  next word-aligned word. 
One simple change  brought the execution time down to a reasonable 12.5 cycles per 
loop: 

mov cx.  1000 
call ZTimerOn 
even 

1 oop LoopTop 
call Z T i m e r O f f  

LoopTop: 

While word-aligning branch destinations can improve branching  performance, it’s a 
nuisance and can increase code size a  good  deal, so it’s not worth doing in  most 
code. Besides, EVEN inserts a NOP instruction if necessary, and  the time required to 
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execute  a NOP can sometimes cancel the  performance advantage of having a word- 
aligned branch destination. 

Consequently, it b best  to  word-align  only  those branch destinations  that  can  be p reached  solely  by  branching. 

I recommend that you  only go out of your way to word-align the start offsets  of your 
subroutines, as in: 

even 
FindChar  proc near 

In my experience, this simple practice is the  one  form of code alignment  that consis- 
tently  provides a reasonable return  for bytes and effort expended, although sometimes 
it also pays to  word-align tight time-critical loops. 

Alignment  and  the 386 
So far we’ve only  discussed alignment as it  pertains to the 286. What, you  may  well 
ask,  of the 386? 
The 386 adds  the issue  of doubleword alignment  (that is, alignment to addresses that 
are multiples of four.) The rule  for the 386  is:  Word-sized memory accesses should 
be  word-aligned  (it’s  impossible  for  word-aligned word-sized accesses to cross 
doubleword  boundaries) , and  doubleword-sized  memory accesses should  be 
doubleword-aligned. However, in  real (as opposed  to 32-bit protected)  mode, 
doubleword-sized memory accesses are  rare, so the simple word-alignment rule we’ve 
developed for  the 286  serves for  the 386 in real mode as  well. 
As for  code  alignment.. . the subroutine-start word-alignment rule of the 286  serves 
reasonably well there too since it avoids the worst case, where just 1 byte is fetched on 
entry to a  subroutine. While optimum  performance would dictate  doubleword align- 
ment of subroutines,  that takes 3 bytes, a  high price to pay for an optimization that 
improves performance only on  the post 286 processors. 

Alignment  and the Stack 
One side-effect  of the data  alignment cycle-eater of the 286 and 386 is that you should 
nmerallow the stack pointer to become  odd. (You can make the stack pointer  odd by 
adding  an  odd value to it or subtracting an  odd value from it, or by loading  it with an 
odd value.) An odd stack pointer  on  the 286 or 386 (or a  nondoubleword-aligned 
stack in 32-bit protected mode  on  the  386,486, or Pentium) will significantly reduce 
the  performance of PUSH, POP, C A L L ,  and RET, as  well as INT and IRET, which 
are  executed to invoke DOS and BIOS functions, handle keystrokes and  incoming 
serial characters, and  manage  the mouse. I know  of a  Forth  programmer who vastly 
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improved the  performance of a  complex  application on  the AT simply by forcing the 
Forth interpreter  to maintain an even stack pointer  at all times. 
An interesting corollary to this rule is that you shouldn’t INC SP twice to add 2, even 
though  that takes fewer  bytes than ADD SP,2. The stack pointer is odd between the 
first and  second INC, so any interrupt  occurring between the two instructions will be 
serviced more slowly than it normally would. The same goes for  decrementing twice; 
use SUB SP,2 instead. 

P Keep the stuckpointer aligned ut all times. 

The DRAM Refresh Cycle-Eater: Still an Act of God 
The DRAM refresh cycle-eater is the cycle-eater that’s least changed  from its 8088 form 
on the 286 and 386. In  the AT,  DRAM refresh uses a little over  five percent of all 
available  memory  accesses,  slightly less than it uses in the PC, but in  the same ballpark. 
While the DRAM refresh penalty varies  somewhat on various AT clones and 386 com- 
puters  (in fact, a few computers  are built around static RAM, which requires no refresh 
at all;  likewise, caches are made of static RAM so cached systems generally suffer less 
from DRAM refresh),  the 5 percent figure is a  good rule of thumb. 
Basically, the effect of the DRAM refresh cycle-eater is pretty much the same through- 
out  the PC-compatible  world:  fairly small, so it doesn’t greatly affect performance; 
unavoidable, so there’s no point in worrying about it anyway; and a nuisance since it 
results in fractional cycle counts when using the Zen  timer. Just as  with the PC, a given 
code  sequence on  the AT can execute  at varying speeds at  different times as a result of 
the  interaction between the  code and DRAM refresh. 
There’s nothing much new  with  DRAM refresh on 286/386 computers, then. Be  aware 
of it, but  don’t overly concern yourself-DRAM refresh is  still an act of God, and there’s 
not a blessed thing you can do  about it. Happily, the  internal  caches of the 486 and 
Pentium make DRAM refresh largely a  performance non-issue on those processors. 

The Display Adapter Cycle-Eater 
Finally  we come to the last  of the cycle-eaters, the display adapter cycle-eater. There  are 
two ways of looking at this cycle-eater on 286/386 computers: (1) It’s much worse than 
it was on the PC, or (2) it’s just  about  the same  as it was on  the PC. 
Either way, the display adapter cycle-eater is extremely bad news on 286/386 com- 
puters  and  on 486s and Pentiums as  well. In fact, this cycle-eater on those systems  is 
largely responsible  for the popularity of VESA local bus (VLB) . 
The two ways  of looking at  the display adapter cycle-eater on 286/386 computers  are 
actually the  same. As you’ll recall from my earlier discussion of the  matter  in  Chap- 
ter 4, display adapters offer only a  limited number of  accesses to display memory 
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during any  given period of time. The 8088 is capable of making use of most but  not 
all  of those slots  with REP  MOVSW, so the  number of memory accesses  allowed by a 
display adapter such as a standard VGA is reasonably well-matched to an 8088’s 
memory access speed.  Granted, access to a VGA  slows the 8088 down considerably- 
but, as  we’re about to find  out, “considerably” is a relative term.  What  a VGA does to 
PC performance is nothing  compared to what  it  does to faster computers. 
Under ideal conditions,  a 286 can access memory  much,  much faster than  an 8088. 
A 10 MHz 286 is capable of  accessing a word  of  system memory every  0.20 ps with 
REP  MOVSW, dwarfing the 1 byte  every 1.31 ps that  the 8088 in  a PC can manage. 
However,  access to display memory is anything but ideal for a 286. For one thing, 
most display adapters are 8-bit  devices, although  newer  adapters  are 16-bit in nature. 
One  consequence of that is that only 1 byte can be read or written per access to 
display memory; word-sized  accesses to 8-bit  devices are automatically split into 2 
separate byte-sized  accesses by the AT’s bus. Another  consequence is that accesses 
are simply  slower; the AT’s bus inserts additional wait states on accesses to 8-bit de- 
vices since it  must assume that such devices  were designed for PCs and may not  run 
reliably at AT speeds. 
However, the 8-bit  size  of most display adapters is but  one of the two factors that 
reduce  the  speed with  which the 286 can access  display  memory.  Far more cycles are 
eaten by the  inherent memory-access limitations of  display adapters-that is, the 
limited number of  display memory accesses that display adapters  make available to 
the 286. Look at it this way:  If REP  MOVSW on a PC can use more  than half of all 
available  accesses to display memory, then how much faster can code  running  on a 
286 or 386  possibly run when accessing  display memory? 
That’s right-less than twice  as fast. 
In  other words, instructions  that access  display memory won’t run a whole lot faster 
on ATs and faster computers  than they do  on PCs. That explains one of the two 
viewpoints expressed at  the  beginning of this section: The display adapter cycle-eater 
is just  about  the same on high-end computers as it is on  the PC, in the sense that  it 
allows instructions  that access  display memory to run  atjust  about  the same  speed  on 
all computers. 
Of course, the picture is quite  a bit different  when you compare  the  performance of 
instructions  that access  display memory to the maximum performance of those in- 
structions. Instructions  that access  display memory receive many more wait states 
when running  on a 286 than they do  on  an 8088. Why? While the 286 is capable of 
accessing memory much  more  often  than  the 8088, we’ve seen that  the frequency of 
access to display memory is determined  not by processor speed  but by the display 
adapter itself. As a result, both processors are actually  allowed just  about  the same 
maximum number of  accesses to display memory in any  given time. By definition, 
then,  the 286 must spend many more cycles  waiting than  does  the 8088. 
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And that explains the second viewpoint expressed above regarding  the display adapter 
cycle-eater vis-a-vis the 286 and 386. The display adapter cycle-eater,  as measured in 
cycles lost to wait states, is indeed  much worse on AT-class computers  than  it is on  the 
PC, and it’s  worse  still on  more powerful computers. 

How bad is the  display  adapter cycle-eater on an AT? It’s this bad: Based on  my  (not 
inconsiderable) experience in timing  display  adapter  access,  I’ve found that the  dis- 
play adapter  cycle-eater can slow an AT-r even a 386 computer-to near-PC 
speeds  when  display  memory  is  accessed. 

I know that’s hard to believe, but  the display adapter cycle-eater gives out  just so 
many  display memory accesses in  a given time, and  no  more,  no  matter how fast the 
processor is. In fact, the faster the processor, the  more  the display adapter cycleeater 
hurts  the  performance of instructions that access  display  memory. The display adapter 
cycle-eater is not only still present  in  286/386  computers, it’s  worse than ever. 
What can we do  about this new, more  virulent  form of the display adapter cycle- 
eater?  The workaround is the same as it was on  the PC: Access display memory as 
little as  you  possibly can. 

New Instructions and Features:  The 286 
The 286 and 386 offer a number of  new instructions. The 286 has a relatively small 
number of instructions  that the 8088 lacks,  while the 386 has those  instructions and 
quite  a few more,  along with  new addressing  modes and  data sizes.  We’ll  discuss the 
286 and  the 386 separately in this regard. 
The 286 has  a number of instructions  designed  for  protected-mode  operations. As 
I’ve said, we’re not going to discuss protected  mode  in this book; in any case, pro- 
tected-mode  instructions are generally used only by operating systems. (I should 
mention  that  the 286’s protected  mode brings with it the ability to address  16 MB  of 
memory, a  considerable  improvement over the 8088’s 1 MB. In real mode, however, 
programs are still limited to 1 MB  of addressable memory on  the 286. In either 
mode, each  segment is still limited to 64K.) 
There  are also a  handful of  286-specific real-mode  instructions, and they can  be 
quite useful. BOUND checks array bounds. ENTER and LEAVE support compact 
and speedy stack frame construction and removal, ideal for  interfacing to high-level 
languages  such as C and Pascal (although these  instructions  are actually relatively 
slow on  the 386 and its successors, and  should be used with caution when perfor- 
mance matters). INS and OUTS are new string  instructions  that support efficient 
data  transfer between  memory and 1 / 0  ports. Finally, PUSHA and POPA push and 
pop all eight  general-purpose registers. 
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A couple of old  instructions gain new features on the 286. For one, the 286  version 
of PUSH is capable of pushing  a  constant on the stack.  For another,  the 286  allows 
all shifts and rotates  to be performed for notjust 1 bit or the number of bits specified 
by  CL, but  for any constant number of bits. 

New Instructions and Features:  The 386 
The 386  is somewhat  more  complex  than  the 286 regarding new features.  Once 
again, we won’t discuss protected  mode, which on  the 386 comes with the ability to 
address up to  4 gigabytes per  segment and 64 terabytes in all. In  real  mode (and in 
virtual-86 mode, which  allows the 386 to multitask MS-DOS applications, and which 
is identical  to  real  mode so far as MS-DOS programs  are concerned), programs  run- 
ning on the 386 are still limited to 1 MB of addressable memory and  64Kper segment. 
The 386 has many new instructions, as  well  as  new registers, addressing  modes and 
data sizes that have trickled down from  protected  mode. Let’s take a  quick look at 
these new real-mode  features. 
Even in real  mode, it’s possible to access many of the 386’s  new and  extended regis- 
ters. Most of these registers are simply  32-bit extensions of the 16-bit registers of the 
8088. For example, EAX is a 32-bit register  containing AX as its lower 16 bits, EBX  is 
a 32-bit register  containing BX as its lower 16 bits, and so on.  There  are also two new 
segment registers: FS and GS. 
The 386  also  comes  with a slew  of  new real-mode instructions beyond  those supported by 
the 8088 and 286. These  instructions  can scan data  on  a bit-by-bit  basis, set  the Carry 
flag to the value of a specified bit, sign-extend or zero-extend  data as  it’s  moved, set 
a  register or memory variable to 1 or 0 on the basis of any of the  conditions  that  can 
be tested with conditional  jumps, and more. (Again, beware: Many  of these  complex 
386-specific instructions are slower than  equivalent  sequences of simple instructions 
on the 486 and especially on the  Pentium.) What’s more,  both  old  and new instruc- 
tions  support 32-bit operations on the 386.  For example, it’s  relatively simple to copy 
data in chunks of 4 bytes on a 386,  even in  real  mode, by using the MOVSD (“move 
string  double”)  instruction,  or  to  negate  a 32-bit  value  with NEG EAX. 
Finally, it’s possible in  real mode to use the 386’s  new addressing  modes, in which 
any 32-bit general-purpose register or pair of registers can be used  to address memory. 
What’s more,  multiplication of memory-addressing registers by 2,4,  or 8 for look-ups 
in word, doubleword, or  quadword tables can be built  right  into  the  memory  ad- 
dressing mode. (The 32-bit addressing  modes  are discussed further  in  later  chapters.) 
In  protected  mode, these new addressing modes allow  you to address a full 4 gigabytes 
per  segment, but in  real  mode you’re still limited  to 64K,  even  with  32-bit registers 
and the new addressing  modes, unless you  play some unorthodox tricks  with the 
segment registers. 
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p Note well: Those tricks don ’t necessarily  work  with  system  sofmare  such  as Win- 
dows, so Ih’ recommend  against  using  them. Ifyou want  $-gigabyte  segments,  use 
a  32-bit  environment  such as Win32. 

Optimization Rules:  The More Things Change.. . 
Let’s see what we’ve learned  about 286/386 optimization. Mostly what we’ve learned 
is that our familiar PC cycle-eaters  still  apply, although in somewhat  different forms, 
and that the major optimization rules for the PC hold  true  on ATs and 386-based 
computers. You won’t go wrong on any  of these computers if you keep your instruc- 
tions short, use the registers heavily and avoid  memory, don’t  branch, and avoid 
accessing  display memory like the plague. 
Although we haven’t touched on them,  repeated  string instructions are still desir- 
able on the 286 and 386  since  they  provide a  great deal of functionality per instruction 
byte and eliminate both  the  prefetch  queue cycle-eater and branching. However, 
string instructions are  not quite so spectacularly superior on the 286 and 386  as  they 
are on  the 8088 since non-string memory-accessing instructions have been  speeded 
up considerably on  the newer processors. 
There’s one cycle-eater  with  new implications on the 286 and 386, and that’s the data 
alignment cycle-eater. From  the data alignment cycle-eater we get  a new rule: Word- 
align  your  word-sized  variables, and start your subroutines at even  addresses. 

Detailed Optimization 
While the major  8088 optimization rules hold true on computers built around the 286 
and 386,  many of the instruction-specific optimizations no longer hold,  for the execu- 
tion  times  of  most instructions are quite different on the 286 and 386 than on the 
8088. We have  already seen one such example of the sometimes vast difference be- 
tween  8088 and 286/386 instruction execution times: MOV  [wordvar],O, which  has 
an Execution Unit execution time of 20  cycles on  the 8088,  has an EU execution time 
ofjust  3 cycles on the 286 and 2 cycles on  the 386. 
In fact, the  performance of  virtually  all  memory-accessing instructions has been im- 
proved enormously on  the 286 and 386. The key to this improvement is the  near 
elimination of effective address (EA) calculation time. Where an 8088  takes from 5 
to 12 cycles  to calculate an EA, a 286 or 386  usually  takes no time whatsoever to 
perform  the calculation. If a base+index+displacement addressing mode, such as 
MOV  AX,[WordArray+BX+SI], is used on a 286 or 386, 1 cycle is taken to perform 
the EA calculation, but that’s both  the worst  case and  the only  case in which there’s 
any EA overhead at all. 
The elimination of EA calculation time means  that  the EU execution time of memory- 
addressing instructions is much closer to the EU execution time of register-only 
instructions. For instance, on  the 8088 ADD [wordVar],lOOH is a 31-cycle instruc- 
tion, while ADD  DX,lOOH is a 4cycle instruction-a ratio of nearly 8 to 1. By contrast, 
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on  the 286ADD  wordVar1,lOOH  is a kycle instruction, while  ADD  DX,lOOH  is a 3-cycle 
instruction-a ratio ofjust 2.3 to 1. 
It would seem,  then,  that it’s  less necessary to use the registers on  the 286 than  it was 
on  the 8088, but that’s simply not  the case, for reasons we’ve already seen.  The key  is 
this: The 286 can  execute memory-addressing instructions so fast that  there’s no 
spare  instruction  prefetching time during those  instructions, so the  prefetch  queue 
runs dry, especially on  the AT, with  its one-wait-state memory. On the AT, the 6-byte 
instruction ADD  [WordVar],lOOH  is effectively at least a 15-cycle instruction,  because 
3 cycles are  needed  to fetch  each of the  three instruction words and 6 more cycles 
are  needed  to  read WordVar and write the result back to memory. 
Granted,  the register-only instruction ADD  DX,lOOH also slows  down-to 6 cycles- 
because  of instruction prefetching, leaving a ratio of 2.5 to 1. Now,  however, let’s look at 
the  performance of the same code on  an 8088. The register-only code would run in 16 
cycles (4 instruction bytes at 4 cycles per  byte), while the memory-accessing code would 
run  in 40  cycles (6 instruction bytes at 4 cycles per byte, plus 2 word-sized memory 
accesses at 8 cycles per  word). That’s  a  ratio of 2.5 to 1, exactly  the  same  as on the 286. 
This is all theoretical. We put  our trust not in  theory but in  actual  performance, so 
let’s run this code  through  the Zen timer. On a PC, Listing 11.4, which performs 
register-only addition,  runs  in 3.62 ms, while Listing 11.5, which performs  addition 
to  a memory variable, runs  in 10.05 ms. On a  10 MHz  AT clone, Listing 11.4 runs  in 
0.64 ms, while Listing 11.5 runs in 1.80 ms. Obviously, the AT  is much  faster.. .but  the 
ratio of Listing 11.5 to Listing 11.4 is virtually identical on  both  computers,  at 2.78 
for  the PC and 2.81 for  the AT.  If anything, the register-only form of  ADD has  a 
slightly  Zurgeradvantage on  the AT than  it  does on the PC in this case. 
Theory  confirmed. 

LISTING 1 1.4  11 1 -4.ASM 

: *** L i s t i n g   1 1 . 4  *** 

; M e a s u r e s   t h e   p e r f o r m a n c e   o f   a d d i n g   a n   i m m e d i a t e   v a l u e  
; t o  a r e g i s t e r ,   f o r   c o m p a r i s o n   w i t h   L i s t i n g   1 1 . 5 ,   w h i c h  
: a d d s   a n   i m m e d i a t e   v a l u e   t o  a memory v a r i a b l e .  

c a l l  ZTimerOn 
r e p t   1 0 0 0  
add  dx.100h 
endm 
c a l l   Z T i m e r O f f  

LISTING 1 1.5 11 1 -5.ASM 

: *** L i s t i n g   1 1 . 5  *** 

: Measures   t he   pe r fo rmance  o f  add ing   an   immed ia te   va lue  
: t o  a memory v a r i a b l e ,   f o r   c o m p a r i s o n   w i t h   L i s t i n g   1 1 . 4 ,  
; wh ich   adds   an   immedia te   va lue  t o  a r e g i s t e r .  

224 Chapter 1 1 



j v  

even 

WordVar dw 

S k i p :  
c a l l  
r e p t  
add 
endm 
c a l l  

S k i p  

: a lways  make s u r e   w o r d - s i z e d  memory 
: v a r i a b l e s   a r e   w o r d - a l i g n e d !  

0 

ZTimerOn 
1000 
[WordVar l lOOh 

Z T i m e r O f f  

What’s going on? Simply  this: Instruction  fetching is controlling overall execution 
time on both processors.  Both the 8088 in a PC and the 286 in an AT can execute the bytes 
of the instructions  in Listings 11.4 and 11.5 faster than they can  be  fetched. Since the 
instructions  are exactly the same lengths on  both processors, it  stands to reason that 
the  ratio of the overall execution times of the instructions  should be the same on 
both processors as  well. Instruction  length  controls  execution  time, and  the instruc- 
tion lengths  are  the same-therefore the ratios of the execution times are  the same. 
The 286 can both fetch and execute  instruction bytes faster  than the 8088 can, so 
code  executes  much faster on  the 286; nonetheless, because the 286 can also ex- 
ecute  those  instruction bytes much faster than it can  fetch them, overall performance 
is still largely determined by the size  of the instructions. 
Is this always the case? No. When the  prefetch  queue is full, memory-accessing in- 
structions on the 286 and 386 are  much  faster (relative to register-only instructions) 
than they are on  the 8088. Given the system  wait states prevalent on 286 and 386 
computers, however, the prefetch queue is  likely to  be  empty  quite a bit, especially 
when code consisting of instructions with short EU execution times is executed. Of 
course, that’s just  the  sort of code we’re likely  to  write  when we’re optimizing, so the 
performance of high-speed  code is more likely to  be  controlled by instruction size 
than by EU execution time on most 286 and 386 computers,  just as it is on  the PC. 
All of which is just a way of  saying that faster memory access and EA calculation 
notwithstanding,  it’sjust as desirable  to  keep  instructions  short and memory accesses 
to  a  minimum  on  the 286 and 386  as it is on  the 8088. And the way to do that is to use 
the registers as  heavily  as possible, use string  instructions, use short  forms of instruc- 
tions, and  the like. 
The  more things  change,  the  more they remain  the  same.. . . 

POPF and the 286 
We’ve one final 286-related item to discuss: the  hardware  malfunction of POPF un- 
der certain  circumstances on the 286. 
The  problem is this: Sometimes POPF permits interrupts to occur when interrupts 
are initially off and  the setting popped  into  the  Interrupt flag from  the stack keeps 
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interrupts off. In  other words, an  interrupt can happen even though  the  Interrupt 
flag is never  set  to 1. Now, I don’t want to blow this particular  bug  out of proportion. 
It only causes problems  in  code  that  cannot  tolerate  interrupts  under any circum- 
stances, and that’s  a  rare  sort of code, especially in user  programs. However, some 
code really does  need  to have interrupts absolutely disabled, with no  chance of an 
interrupt  sneaking  through. For example,  a critical portion of a disk  BIOS might 
need  to  retrieve  data  from the disk controller  the  instant  it  becomes available;  even 
a few hundred microseconds of delay could  result  in  a sector’s worth of data mis- 
read.  In this case, one misplaced interrupt  during  a POPF could  result  in  a  trashed 
hard disk if that  interrupt occurs while the disk  BIOS  is reading  a  sector of the File 
Allocation Table. 
There is a  workaround  for  the POPF bug. While the  workaround is  easy to use, it’s 
considerably slower than POPF, and costs a few bytes  as  well, so you won’t want to 
use it  in  code that can tolerate  interrupts.  On  the  other  hand,  in  code  that truly 
cannot  be  interrupted, you should view those  extra cycles and bytes  as cheap insur- 
ance  against mysterious and  erratic  program  crashes. 
One obvious reason  to discuss the POPF workaround is that it’s useful. Another 
reason is that  the  workaround is an  excellent  example of  Zen-level  assembly coding, 
in  that there’s  a well-defined goal  to be achieved but  no obvious way to do so. The 
goal is to  reproduce  the  functionality of the POPF instruction  without using POPF, 
and  the place  to  start is by asking exactly  what POPF does. 
All POPF does is pop  the word on  top of the stack into  the FLAGS register, as  shown 
in  Figure 11.4. How can we do  that  without POPF? Of course,  the 286’s designers 
intended us  to use POPF for this purpose,  and  didn’t  intentionally  provide any alter- 
native approach, so we’ll  have to devise an alternative  approach of our own. To do 
that, we’ll have to  search  for  instructions  that  contain some of the same functionality 
as POPF, in  the  hope  that  one of those  instructions  can be used in  some way to 
replace POPF. 
Well, there’s only one  instruction  other  than POPF that loads the FLAGS register 
directly  from  the stack, and that’s IRET, which loads  the FLAGS register  from  the 
stack as it  branches, as shown in Figure 11.5. IRET has no known bugs of the sort 
that plague POPF, so it’s certainly  a  candidate  to  replace POPF in non-interruptible 
applications.  Unfortunately, IRET loads  the FLAGS register with the third word  down 
on  the stack, not  the word on  top of the stack, as  is the case  with POPF; the far return 
address  that IRET pops  into CS:IP lies between the  top of the stack and  the word 
popped  into  the FLAGS register. 
Obviously, the segment:offset that IRET expects to find  on  the stack  above the  pushed 
flags  isn’t present when the stack is set up  for POPF, so we’ll  have to  adjust the stack 
a  bit  before we can substitute IRET for POPF. What we’ll  have to do is push the 
segment:offset of the  instruction  after  our  workaround  code  onto  the stack right 
above the  pushed flags. IRET will then  branch  to  that  address  and  pop  the flags, 
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ending up at the instruction after the workaround  code  with the flags popped. That’s 
just  the result that would  have occurred had we executed POPF-with the bonus 
that no interrupts can accidentally occur when the  Interrupt flag  is 0 both before 
and after the pop. 
How can we push the segment:offset of the next instruction? Well, finding the offset 
of the next instruction by performing a near call to that instruction is a tried-and- 
true trick. We can do something similar here, but in  this case we need a far call,  since 
IRE’” requires both a  segment and an offset. We’ll  also branch backward so that the 
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ss 31800 05 

31801 90 

31802 10 

31803  18 

31804 95 

FLAGS 31805 02 

31806 57 

I P  

cs 

Memory 

31800 05 

31801 90 

31802 10 

18 

31804 95 

02 

31806 57 

Memory 

31800 05 

31801 90 

31802  10 

31803  18 

31804 95 

FLAGS 31805 02 

+ 31806 57 

IP 

The operation of IRET 
Figure 1 1.5 
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address  pushed on  the stack will point to the instruction we want to  continue with. 
The  code works out like this: 

j m p   s h o r t   p o p f s k i p  

i r e t   : b r a n c h e s  t o  t h e   i n s t r u c t i o n   a f t e r   t h e  
p o p f i r e t :  

; c a l l ,   p o p p i n g   t h e   w o r d   b e l o w   t h e   a d d r e s s  
: pushed  by CALL i n t o   t h e  FLAGS r e g i s t e r  

p o p f s k i p :  
c a l l   f a r   p t r   p o p f i r e t  

; p u s h e s   t h e   s e g m e n t : o f f s e t  o f  t h e   n e x t  
; i n s t r u c t i o n  on t h e   s t a c k   j u s t   a b o v e  
; t h e   f l a g s   w o r d ,   s e t t i n g   t h i n g s   u p  s o  
: t h a t  IRET will b r a n c h   t o   t h e   n e x t  
; i n s t r u c t i o n  a n d   p o p   t h e   f l a g s  

; When e x e c u t i o n   r e a c h e s   t h e   i n s t r u c t i o n   f o l l o w i n g   t h i s  comment, 
; t h e   w o r d   t h a t  was on t o p   o f   t h e   s t a c k  when JMP  SHORT P O P F S K I P  
: was r e a c h e d   h a s   b e e n   p o p p e d   i n t o   t h e  FLAGS r e g i s t e r ,   j u s t  as 
: i f  a POPF i n s t r u c t i o n   h a d   b e e n   e x e c u t e d .  

The  operation of this code is illustrated  in Figure 11.6. 
The POPF workaround can best be  implemented as a  macro; we can also emulate  a 
far call by pushing CS and  performing a near call, thereby  shrinking  the  workaround 
code by 1 byte: 

EMULATELPOPF macro 
l o c a l   p o p f s k i p .   p o p f i r e t  
j m p   s h o r t   p o p f s k i p  

i r e t  

push   cs  
c a l l   p o p f i   r e t  
endm 

p o p f  i r e t :  

p o p f s k i p :  

By the way, the flags can  be  popped  much  more quickly if you’re willing to  alter  a 
register in the process. For example, the following macro  emulates POPF with just 
one  branch,  but wipes out AX: 

EMULATE-POPFLTRASHLAX macro 
push   cs  
mov a x . o f f s e t  $+5 
push  ax 
i r e t  
endm 

It’s not a  perfect  substitute  for POPF, since POPF doesn’t  alter any registers, but it’s 
faster and  shorter  than EMULATE-POPF when  you can  spare  the register. If you’re 
using 286-specific instructions, you can use 

.286 

EMULATE-POPF macro 
push   cs  
p u s h   o f f s e t  $+4 
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i r e t  
endm 

which is shorter still, alters no registers, and  branches  just  once. (Of course, this 
version of EMULATE-POPF won't work on  an 8088.) 

IP 1 o f f s e t   p o p f s k i p  

cs 1 s e g m e n t   p o p f s k i p  b 

FLAGS 1 ? ? ?  b 

c s  1 segmen t   pop fsk ip  C 

FLAGS -1 ? ? ?  

cs  I segmen t   pop fsk ip  

'L 
Memory 

317FA 

317FC 

317FE 

4 31800 

31802 

H ? ? ?  

? ? ?  

? ? ?  

I ???  I 

Memory 

317FA ? ? ?  

317FC o f f s e t   p o p f s k i p + 5  

317FE o f f s e t   p o p f s k i p  

31800   pushed   f l ags  

31802 ? ? ?  

3- 
Memory 

317FA 

317FA 

317FE 

31800 

31802 

Workaround code for the POPF bug. 
Figure 1 1.6 
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The standard version  of EMULATE-POPF is 6 bytes longer than POPF and  much 
slower,  as  you’d expect given that  it involves three branches. Anyone in his/her right 
mind would prefer POPF to a larger,  slower, three-branch macro-given  a choice. In 
non-interruptible code, however, there’s no choice here;  the safer-if  slower-approach 
is the best. (Having people associate your programs with crashed computers is nota 
desirable situation, no matter how unfair the circumstances under which it occurs.) 
And now you know the  nature of and  the workaround  for the POPF bug. Whether 
you  ever need  the workaround or  not, it’s a neatly packaged example of the tremen- 
dous flexibility of the x86 instruction set. 
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