

4
::$ '_ .b

ers, New Instructions, New Timings,
.%

New Complications
This chapter, adapte arlier book Zen of Assembly Language (1989; now out
of print), provides an Df the 286 and 386, often contrasting those proces-
sors with the 8088. &t the time I originally wrote this, the 8088 was the king of
processors, and the $36 and 386 were the new kids on the block. Today, of course, all
three processors ar6 past their primes, but many millions of each are still in use, and
the 386 in partic@r is still well worth considering when optimizing software.
This cha des an interesting look at the evolution of the x86 architecture, to
a greater degree th$n you might expect, for the x86 family came into full maturity
with the 386; the 486hnd the Pentium are really nothing more than faster 386s, with
very little in the way of new functionality. In contrast, the 286 added a number of
instructions, respectable performance, and protected mode to the 8088's capabili-
ties, and the 386 added more instructions and a whole new set of addressing modes,
and brought the x86 family into the 32-bit world that represents the future (and,
increasingly, the present) of personal computing. This chapter also provides insight
into the effects on optimization of the variations in processors and memory architec-
tures that are common in the PC world. So, although the 286 and 386 no longer
represent the mainstream of computing, this chapter is a useful mix of history les-
son, x86 overview, and details on two workhorse processors that are still in wide use.

207

new registers, new instructions, new timings, new complications

Fa m i I y Matters
While the x86 family is a large one, only a few members of the family-which in-
cludes the 8088, 8086, 80188, 80186, 286, 386SX, 386DX, numerous permutations
of the 486, and now the Pentium-really matter.
The 8088 is now all but extinct in the PC arena. The 8086 was used fairly widely for a
while, but has now all but disappeared. The 80186 and 80188 never really caught on
for use in PC and don’t require further discussion.
That leaves us with the high-end chips: the 286, the 386SX, the 386, the 486, and the
Pentium. At this writing, the 386SX is fast going the way of the 8088; people are
realizing that its relatively small cost advantage over the 386 isn’t enough to offset its
relatively large performance disadvantage. After all, the 386SX suffers from the same
debilitating problem that looms over the 8088-a too-small bus. Internally, the 386SX
is a 32-bit processor, but externally, it’s a 16-bit processor, a non-optimal architec-
ture, especially for 32-bit code.
I’m not going to discuss the 386SX in detail. If you do find yourself programming for
the 386SX, follow the same general rules you should follow for the 8088: use short
instructions, use the registers as heavily as possible, and don’t branch. In other words,
avoid memory, since the 386SX is by definition better at processing data internally
than it is at accessing memory.
The 486 is a world unto itself for the purposes of optimization, and the Pentium is a
universe unto itself. We’ll treat them separately in later chapters.
This leaves us with just two processors: the 286 and the 386. Each was the PC standard
in its day. The 286 is no longer used in new systems, but there are millions of 286-
based systems still in daily use. The 386 is still being used in new systems, although
it’s on the downhill leg of its lifespan, and it is in even wider use than the 286. The
future clearly belongs to the 486 and Pentium, but the 286 and 386 are still very
much a part of the present-day landscape.

Crossing the Gulf to the 286 and the 386
Apart from vastly improved performance, the biggest difference between the 8088
and the 286 and 386 (as well as the later Intel CPUs) is that the 286 introduced pro-
tected mode, and the 386 greatly expanded the capabilities of protected mode. We’re
only going to talk about real-mode operation of the 286 and 386 in this book, however.
Protected mode offers a whole new memory management scheme, one that isn’t s u p
ported by the 8088. Only code specifically written for protected mode can run in that
mode; it’s an alien and hostile environment for MS-DOS programs.
In particular, segments are different creatures in protected mode. They’re selectors-“
indexes into a table of segment descriptors-rather than plain old registers, and

208 Chapter 1 1

can’t be set to arbitrary values. That means that segments can’t be used for tempo-
rary storage or as part of a fast indivisible 32-bit load from memory, as in

l e s ax.dword p t r [L o n g V a r l
mov dx .es

which loads LongVar into DX:AX faster than this:

mov a x . w o r d p t r [LongVar l
mov d x . w o r d p t r [LongVar+21

Protected mode uses those altered segment registers to offer access to a great deal
more memory than real mode: The 286 supports 16 megabytes of memory, while the
386 supports 4 gigabytes (4K megabytes) of physical memory and 64 terabytes (64K
gigabytes!) of virtual memory.
In protected mode, your programs generally run under an operating system (OS/2,
Unix, Windows NT or the like) that exerts much more control over the computer
than does MS-DOS. Protected mode operating systems can generally run multiple
programs simultaneously, and the performance of any one program may depend far
less on code quality than on how efficiently the program uses operating system ser-
vices and how often and under what circumstances the operating system preempts
the program. Protected mode programs are often mostly collections of operating
system calls, and the performance of whatever code isn’t operating-system oriented
may depend primarily on how large a time slice the operating system gives that code
to run in.
In short, taken as a whole, protected mode programming is a different kettle of fish
altogether from what I’ve been describing in this book. There’s certainly a knack to
optimizing specifically for protected mode under a given operating system.. .but it’s
not what we’ve been learning, and now is not the time to pursue it further. In gen-
eral, though, the optimization strategies discussed in this book still hold true in
protected mode; it’s just issues specific to protected mode or a particular operating
system that we won’t discuss.

In the Lair of the Cycle-Eaters, Part II
Under the programming interface, the 286 and 386 differ considerably from the 8088.
Nonetheless, with one exception and one addition, the cycle-eaters remain much the
same on computers built around the 286 and 386. Next, we’ll review each of the famil-
iar cycle-eaters I covered in Chapter 4 as they apply to the 286 and 386, and we’ll look
at the new member of the gang, the data alignment cycle-eater.
The one cycle-eater that vanishes on the 286 and 386 is the 8-bit bus cycle-eater. The
286 is a 16-bit processor both internally and externally, and the 386 is a 32-bit proces-
sor both internally and externally, so the Execution Unit/Bus Interface Unit size

Pushing the 286 and 386 209

mismatch that plagues the 8088 is eliminated. Consequently, there’s no longer any
need to use byte-sized memory variables in preference to word-sized variables, at
least so long as word-sized variables start at even addresses, as we’ll see shortly. On
the other hand, access to byte-sized variables still isn’t any slowm than access to word-
sized variables, so you can use whichever size suits a given task best.
You might think that the elimination of the 8-bit bus cycle-eater would mean that the
prefetch queue cycle-eater would also vanish, since on the 8088 the prefetch queue
cycle-eater is a side effect of the 8-bit bus. That would seem all the more likely given
that both the 286 and the 386 have larger prefetch queues than the 8088 (6 bytes for
the 286, 16 bytes for the 386) and can perform memory accesses, including instruc-
tion fetches, in far fewer cycles than the 8088.
However, the prefetch queue cycle-eater doesn’t vanish on either the 286 or the 386,
for several reasons. For one thing, branching instructions still empty the prefetch
queue, so instruction fetching still slows things down after most branches; when the
prefetch queue is empty, it doesn’t much matter how big it is. (Even apart from
emptying the prefetch queue, branches aren’t particularly fast on the 286 or the 386,
at a minimum of seven-plus cycles apiece. Avoid branching whenever possible.)
After a branch it does matter how fast the queue can refill, and there we come to the
second reason the prefetch queue cycle-eater lives on: The 286 and 386 are so fast
that sometimes the Execution Unit can execute instructions faster than they can be
fetched, even though instruction fetching is much faster on the 286 and 386 than on
the 8088.
(All other things being equal, too-slow instruction fetching is more of a problem on
the 286 than on the 386, since the 386 fetches 4 instruction bytes at a time versus the
2 instruction bytes fetched per memory access by the 286. However, the 386 also
typically runs at least twice as fast as the 286, meaning that the 386 can easily execute
instructions faster than they can be fetched unless very high-speed memory is used.)
The most significant reason that the prefetch queue cycle-eater not only survives but
prospers on the 286 and 386, however, lies in the various memory architectures used
in computers built around the 286 and 386. Due to the memory architectures, the 8-
bit bus cycle-eater is replaced by a new form of the wait state cycle-eater: wait states
on accesses to normal system memory.

System Wait States
The 286 and 386 were designed to lose relatively little performance to the prefetch
queue cycle-eater.. . when used with zero-wait-state memory: memory that can complete
memory accesses so rapidly that no wait states are needed. However, true zero-wait-
state memory is almost never used with those processors. Why? Because memory that
can keep up with a 286 is fairly expensive, and memory that can keep up with a 386
is very expensive. Instead, computer designers use alternative memory architectures

21 0 Chapter 1 1

that offer more performance for the dollar-but less performance overall-than
zero-wait-state memory. (It is possible to build zero-wait-state systems for the 286 and
386; it’s just so expensive that it’s rarely done.)
The IBM AT and true compatibles use one-wait-state memory (some AT clones use
zero-wait-state memory, but such clones are less common than one-wait-state AT
clones). The 386 systems use a wide variety of memory systems-including high-speed
caches, interleaved memory, and static-column RAM-that insert anywhere from 0 to
about 5 wait states (and many more if 8 or l6bit memory expansion cards are used) ;
the exact number of wait states inserted at any given time depends on the interac-
tion between the code being executed and the memory system it’s running on.

The performance of most 386 memory systems can vary great&,from one memory p access to anothel; depending on factors such as what data happens to be in the cache
and which interleaved bank and/or RAM column was accessed last.

The many memory systems in use make it impossible for us to optimize for 286/386
computers with the precision that’s possible on the 8088. Instead, we must write code
that runs reasonably well under the varying conditions found in the 286/386 arena.
The wait states that occur on most accesses to system memory in 286 and 386 com-
puters mean that nearly every access to system memory-memory in the DOS’s normal
640K memory area-is slowed down. (Accesses in computers with high-speed caches
may be wait-state-free if the desired data is already in the cache, but will certainly
encounter wait states if the data isn’t cached; this phenomenon produces highly
variable instruction execution times.) While this is our first encounter with system
memory wait states, we have run into a wait-state cycle-eater before: the display adapter
cycle-eater, which we discussed along with the other 8088 cycle-eaters way back in
Chapter 4. System memory generally has fewer wait states per access than display
memory. However, system memory is also accessed far more often than display
memory, so system memory wait states hurt plenty-and the place they hurt most is
instruction fetching.
Consider this: The 286 can store an immediate value to memory, as in MOV
[WordVar],O, in just 3 cycles. However, that instruction is 6 bytes long. The 286 is
capable of fetching 1 word every 2 cycles; however, the one-wait-state architecture of
the AT stretches that to 3 cycles. Consequently, nine cycles are needed to fetch the
six instruction bytes. On top of that, 3 cycles are needed to write to memory, bring-
ing the total memory access time to 1 2 cycles. On balance, memory access
time-especially instruction prefetching-greatly exceeds execution time, to the
extent that this particular instruction can take up to four times as long to run as it
does to execute in the Execution Unit.
And that, my friend, is unmistakably the prefetch queue cycle-eater. I might add that
the prefetch queue cycle-eater is in rare good form in the above example: A 440-1

Pushing the 286 and 386 21 1

ratio of instruction fetch time to execution time is in a class with the best (or worst!)
that’s found on the 8088.
Let’s check out the prefetch queue cycle-eater in action. Listing 11.1 times MOV
WordVar1,O. The Zen timer reports that on a one-wait-state 10 MHz 286-based AT
clone (the computer used for all tests in this chapter), Listing 11.1 runs in 1.27 ps
per instruction. That’s 12.7 cycles per instruction, just as we calculated. (That extra
seven-tenths of a cycle comes from DRAM refresh, which we’ll get to shortly.)

LISTING 1 1.1 11 1-1 .ASM

: *** L i s t i n g 11.1 ***

: M e a s u r e s t h e p e r f o r m a n c e o f a n i m m e d i a t e move t o
: memory. i n o r d e r t o d e m o n s t r a t e t h a t t h e p r e f e t c h
: q u e u e c y c l e - e a t e r i s a l i v e a n d w e l l on t h e AT.

j m p S k i p

even : a lways make s u r e w o r d - s i z e d memory
: v a r i a b l e s a r e w o r d - a l i g n e d !

WordVar dw 0

S k i p :
c a l l ZTimerOn
r e p t 1000
mov CWordVarl .O
endm
c a l l Z T i m e r O f f

What does this mean? It means that, practically speaking, the 286 as used in the AT
doesn’t have a 16-bit bus. From a performance perspective, the 286 in an AT has two-
thirds of a 16-bit bus (a 10.7-bit bus?), since every bus access on an AT takes 50
percent longer than it should. A 286 running at 10 MHz should be able to access
memory at a maximum rate of 1 word every 200 ns; in a 10 MHz AT, however, that
rate is reduced to 1 word every 300 ns by the one-wait-state memory.
In short, a close relative of our old friend the 8-bit bus cycleeater-the system memory
wait state cycle-eater-haunts us still on all but zero-wait-state 286 and 386 computers,
and that means that the prefetch queue cycleeater is alive and well. (The system memory
wait state cycle-eater isn’t really a new cycleeater, but rather a variant of the general
wait state cycleeater, of which the display adapter cycleeater is yet another variant.)
While the 286 in the AT can fetch instructions much faster than can the 8088 in the
PC, it can execute those instructions faster still.
The picture is less clear in the 386 world since there are so many different memory
architectures, but similar problems can occur in any computer built around a 286 or
386. The prefetch queue cycle-eater is even a factor-albeit a lesser one-on zero-
wait-state machines, both because branching empties the queue and because some
instructions can outrun even zero-wait-state instruction fetching. (Listing 11.1 would

21 2 Chapter 1 1

take at least 8 cycles per instruction on a zero-wait-state AT-5 cycles longer than the
official execution time.)
To summarize:

Memory-accessing instructions don’t run at their official speeds on non-zero-
wait-state 286/386 computers.

particularly when non-zero-wait-state memory is used.

the prefetch queue is emptied.

from one 286/386 computer to another, making precise optimization impossible.

The prefetch queue cycle-eater reduces performance on 286/386 computers,

Branches often execute at less than their rated speeds on the 286 and 386 since

The extent to which the prefetch queue and wait states affect performance varies

What’s to be learned from all this? Several things:
Keep your instructions short.
Keep it in the registers; avoid memory, since memory generally can’t keep up

Don’t jump.
with the processor.

Of course, those are exactly the rules that apply to 8088 optimization as well. Isn’t it
convenient that the same general rules apply across the board?

Data Alignment
Thanks to its l6bit bus, the 286 can access word-sized memory variables just as fast as
byte-sized variables. There’s a catch, however: That’s only true for word-sized variables
that start at even addresses. When the 286 is asked to perform a word-sized access
starting at an odd address, it actually performs two separate accesses, each of which
fetches 1 byte, just as the 8088 does for all word-sized accesses.
Figure 11.1 illustrates this phenomenon. The conversion of word-sized accesses to odd
addresses into double byte-sized accesses is transparent to memory-accessing instructions;
all any instruction knows is that the requested word has been accessed, no matter
whether 1 word-sized access or 2 byte-sized accesses were required to accomplish it.
The penalty for performing a word-sized access starting at an odd address is easy to
calculate: Two accesses take twice as long as one access.

In other words, the effective capacity of the 286 j . external data bus is halved when .p a word-sized access to an odd address is performed.

That, in a nutshell, is the data alignment cycle-eater, the one new cycle-eater of the
286 and 386. (The data alignment cycle-eater is a close relative of the 8088’s 8-bit bus
cycle-eater, but since it behaves differently-occurring only at odd addresses-and is
avoided with a different workaround, we’ll consider it to be a new cycle-eater.)

Pushing the 286 and 386 21 3

69
To

286

0
To

286

Memory -
The 80286 reads the word value
838217 at address 20000h with a 2003 2o02 w
single word-sized access since that
word value starts at an even address.

Memory -
2002

The 80286 reads the word value
8382h at address 1 FFFFh with two 2003
byte-sized accesses since that word
value starts at an odd address.

85

The data alignment cycle-eater:
Figure 1 1.1

The way to deal with the data alignment cycle-eater is straightforward: Don’t perform
word-sized accesses to odd addmses on the 284 ifyou can he& it. The easiest way to avoid the
data alignment cycleeater is to place the directive EVEN before each of your word-sized
variables. EVEN forces the offset of the next byte assembled to be even by inserting
a NOP if the current offset is odd; consequently, you can ensure that any word-sized
variable can be accessed efficiently by the 286 simply by preceding it with EVEN.
Listing 11.2, which accesses memory a word at a time with each word starting at an
odd address, runs on a 10 MHz AT clone in 1.27 ps per repetition of MOVW, or 0.64 ps
per word-sized memory access. That’s 6plus cycles per word-sized access, which breaks
down to two separate memory accesses-3 cycles to access the high byte of each
word and 3 cycles to access the low byte of each word, the inevitable result of non-
word-aligned word-sized memory accesses-plus a bit extra for DRAM refresh.

21 4 Chapter 1 1

LISTING 1 1.2 11 1 -2.ASM

; *** L i s t i n g 1 1 . 2 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a c c e s s e s t o w o r d - s i z e d
; v a r i a b l e s t h a t s t a r t a t o d d a d d r e s s e s (a r e n o t
; w o r d - a l i g n e d) .

S k i p :
push
P O P
mov
mov
mov
c l d
c a l l
r e p
c a l l

ds
es
s i . l ; s o u r c e a n d d e s t i n a t i o n a r e t h e same
d i . s i ; a n d b o t h a r e n o t w o r d - a l i g n e d
cx .1000 ;move 1000 words

ZTimerOn
movsw
ZT imerOf f

On the other hand, Listing 11.3, which is exactly the same as Listing 11.2 save that
the memory accesses are word-aligned (start at even addresses), runs in 0.64 ps per
repetition of MOVSW, or 0.32 ps per word-sized memory access. That’s 3 cycles per
word-sized access-exactly twice as fast as the non-word-aligned accesses of Listing
11.2, just as we predicted.

LISTING 1 1.3 11 1 -3.ASM

; *** L i s t i n g 1 1 . 3 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a c c e s s e s t o w o r d - s i z e d
; v a r i a b l e s t h a t s t a r t a t e v e n a d d r e s s e s (a r e w o r d - a l i g n e d) .

S k i p :
push ds
POP es
sub s i . s i ; s o u r c e a n d d e s t i n a t i o n a r e t h e same
mov d i . s i ; a n d b o t h a r e w o r d - a l i g n e d
mov cx .1000 :move 1000 words
cl d
c a l l ZTimerOn
r e p movsw
c a l l Z T i m e r O f f

The data alignment cycle-eater has intriguing implications for speeding up 286/386
code. The expenditure of a little care and a few bytes to make sure that word-sized
variables and memory blocks are word-aligned can literally double the performance
of certain code running on the 286. Even if it doesn’t double performance, word
alignment usually helps and never hurts.

Code Alignment
Lack of word alignment can also interfere with instruction fetching on the 286, al-
though not to the extent that it interferes with access to word-sized memoryvariables.

Pushing the 286 and 386 21 5

The 286 prefetches instructions a word at a time; even if a given instruction doesn’t
begin at an even address, the 286 simply fetches the first byte of that instruction at
the same time that it fetches the last byte of the previous instruction, as shown in
Figure 11.2, then separates the bytes internally. That means that in most cases, in-
structions run just as fast whether they’re word-aligned or not.
There is, however, a non-word-alignment penalty on branches to odd addresses. On a
branch to an odd address, the 286 is only able to fetch 1 useful byte with the first
instruction fetch following the branch, as shown in Figure 11.3. In other words, lack
of word alignment of the target instruction for any branch effectively cuts the in-
struction-fetching power of the 286 in half for the first instruction fetch after that
branch. While that may not sound like much, you’d be surprised at what it can do to
tight loops; in fact, a brief story is in order.
When I was developing the Zen timer, I used my trusty 10 MHz 286based AT clone
to verify the basic functionality of the timer by measuring the performance of simple
instruction sequences. I was cruising along with no problems until I timed the fol-
lowing code:

mov cx. 1000
c a l l ZTimerOn

1 oop LoopTop
c a l l ZTimerOff

LoopTop:

Memory

A 201 00

20101

201 02

201 03

201 04

The last byte of mov ax, 1 and the first 201 O5
byte of mov bx,2, which together
form a worduligned word, are
prefetched with a single word-sized
access; the 286 later splits the bytes
apart internally in the prefetch queue.

E 02 00

mov ax, 1

I mov bx,2

J

Word-aligned prefetching on the 286.
Figure 1 1.2

21 6 Chapter 1 1

~

Memory

20 1 00 c3
20101 68

201 02 05

201 03 00

201 04 28

On a branch to 201 01, only 201 05 D2
one useful instruction byte is
fetched by the first instruction
fetch after the branch, since
the other byte in the word-
aligned word that covers
address 20 1 0 1 precedes the
branch destination and is
therefore of no use as an
instruction byte after the
branch.

286

’I ret

I mov ax,5

sub dl,dl

How instruction bytes are fetched after a branch.
Figure 1 1.3

Now, this code should run in, say, about 12 cycles per loop at most. Instead, it took
over 14 cycles per loop, an execution time that I could not explain in any way. After
rolling i t around in my head for a while, I took a look at the code under a
debugger ... and the answer leaped out at me. The loop begun ut a n odd address! That
meant that two instruction fetches were required each time through the loop; one to
get the opcode byte of the LOOP instruction, which resided at the end of one word-
aligned word, and another to get the displacement byte, which resided at the start of
the next word-aligned word.
One simple change brought the execution time down to a reasonable 12.5 cycles per
loop:

mov cx. 1000
call ZTimerOn
even

1 oop LoopTop
call Z T i m e r O f f

LoopTop:

While word-aligning branch destinations can improve branching performance, it’s a
nuisance and can increase code size a good deal, so it’s not worth doing in most
code. Besides, EVEN inserts a NOP instruction if necessary, and the time required to

Pushing the 286 and 386 21 7

execute a NOP can sometimes cancel the performance advantage of having a word-
aligned branch destination.

Consequently, it b best to word-align only those branch destinations that can be p reached solely by branching.

I recommend that you only go out of your way to word-align the start offsets of your
subroutines, as in:

even
FindChar proc near

In my experience, this simple practice is the one form of code alignment that consis-
tently provides a reasonable return for bytes and effort expended, although sometimes
it also pays to word-align tight time-critical loops.

Alignment and the 386
So far we’ve only discussed alignment as it pertains to the 286. What, you may well
ask, of the 386?
The 386 adds the issue of doubleword alignment (that is, alignment to addresses that
are multiples of four.) The rule for the 386 is: Word-sized memory accesses should
be word-aligned (it’s impossible for word-aligned word-sized accesses to cross
doubleword boundaries) , and doubleword-sized memory accesses should be
doubleword-aligned. However, in real (as opposed to 32-bit protected) mode,
doubleword-sized memory accesses are rare, so the simple word-alignment rule we’ve
developed for the 286 serves for the 386 in real mode as well.
As for code alignment.. . the subroutine-start word-alignment rule of the 286 serves
reasonably well there too since it avoids the worst case, where just 1 byte is fetched on
entry to a subroutine. While optimum performance would dictate doubleword align-
ment of subroutines, that takes 3 bytes, a high price to pay for an optimization that
improves performance only on the post 286 processors.

Alignment and the Stack
One side-effect of the data alignment cycle-eater of the 286 and 386 is that you should
nmerallow the stack pointer to become odd. (You can make the stack pointer odd by
adding an odd value to it or subtracting an odd value from it, or by loading it with an
odd value.) An odd stack pointer on the 286 or 386 (or a nondoubleword-aligned
stack in 32-bit protected mode on the 386,486, or Pentium) will significantly reduce
the performance of PUSH, POP, C A L L , and RET, as well as INT and IRET, which
are executed to invoke DOS and BIOS functions, handle keystrokes and incoming
serial characters, and manage the mouse. I know of a Forth programmer who vastly

21 8 Chapter 1 1

improved the performance of a complex application on the AT simply by forcing the
Forth interpreter to maintain an even stack pointer at all times.
An interesting corollary to this rule is that you shouldn’t INC SP twice to add 2, even
though that takes fewer bytes than ADD SP,2. The stack pointer is odd between the
first and second INC, so any interrupt occurring between the two instructions will be
serviced more slowly than it normally would. The same goes for decrementing twice;
use SUB SP,2 instead.

P Keep the stuckpointer aligned ut all times.

The DRAM Refresh Cycle-Eater: Still an Act of God
The DRAM refresh cycle-eater is the cycle-eater that’s least changed from its 8088 form
on the 286 and 386. In the AT, DRAM refresh uses a little over five percent of all
available memory accesses, slightly less than it uses in the PC, but in the same ballpark.
While the DRAM refresh penalty varies somewhat on various AT clones and 386 com-
puters (in fact, a few computers are built around static RAM, which requires no refresh
at all; likewise, caches are made of static RAM so cached systems generally suffer less
from DRAM refresh), the 5 percent figure is a good rule of thumb.
Basically, the effect of the DRAM refresh cycle-eater is pretty much the same through-
out the PC-compatible world: fairly small, so it doesn’t greatly affect performance;
unavoidable, so there’s no point in worrying about it anyway; and a nuisance since it
results in fractional cycle counts when using the Zen timer. Just as with the PC, a given
code sequence on the AT can execute at varying speeds at different times as a result of
the interaction between the code and DRAM refresh.
There’s nothing much new with DRAM refresh on 286/386 computers, then. Be aware
of it, but don’t overly concern yourself-DRAM refresh is still an act of God, and there’s
not a blessed thing you can do about it. Happily, the internal caches of the 486 and
Pentium make DRAM refresh largely a performance non-issue on those processors.

The Display Adapter Cycle-Eater
Finally we come to the last of the cycle-eaters, the display adapter cycle-eater. There are
two ways of looking at this cycle-eater on 286/386 computers: (1) It’s much worse than
it was on the PC, or (2) it’s just about the same as it was on the PC.
Either way, the display adapter cycle-eater is extremely bad news on 286/386 com-
puters and on 486s and Pentiums as well. In fact, this cycle-eater on those systems is
largely responsible for the popularity of VESA local bus (VLB) .
The two ways of looking at the display adapter cycle-eater on 286/386 computers are
actually the same. As you’ll recall from my earlier discussion of the matter in Chap-
ter 4, display adapters offer only a limited number of accesses to display memory

Pushing the 286 and 386 21 9

during any given period of time. The 8088 is capable of making use of most but not
all of those slots with REP MOVSW, so the number of memory accesses allowed by a
display adapter such as a standard VGA is reasonably well-matched to an 8088’s
memory access speed. Granted, access to a VGA slows the 8088 down considerably-
but, as we’re about to find out, “considerably” is a relative term. What a VGA does to
PC performance is nothing compared to what it does to faster computers.
Under ideal conditions, a 286 can access memory much, much faster than an 8088.
A 10 MHz 286 is capable of accessing a word of system memory every 0.20 ps with
REP MOVSW, dwarfing the 1 byte every 1.31 ps that the 8088 in a PC can manage.
However, access to display memory is anything but ideal for a 286. For one thing,
most display adapters are 8-bit devices, although newer adapters are 16-bit in nature.
One consequence of that is that only 1 byte can be read or written per access to
display memory; word-sized accesses to 8-bit devices are automatically split into 2
separate byte-sized accesses by the AT’s bus. Another consequence is that accesses
are simply slower; the AT’s bus inserts additional wait states on accesses to 8-bit de-
vices since it must assume that such devices were designed for PCs and may not run
reliably at AT speeds.
However, the 8-bit size of most display adapters is but one of the two factors that
reduce the speed with which the 286 can access display memory. Far more cycles are
eaten by the inherent memory-access limitations of display adapters-that is, the
limited number of display memory accesses that display adapters make available to
the 286. Look at it this way: If REP MOVSW on a PC can use more than half of all
available accesses to display memory, then how much faster can code running on a
286 or 386 possibly run when accessing display memory?
That’s right-less than twice as fast.
In other words, instructions that access display memory won’t run a whole lot faster
on ATs and faster computers than they do on PCs. That explains one of the two
viewpoints expressed at the beginning of this section: The display adapter cycle-eater
is just about the same on high-end computers as it is on the PC, in the sense that it
allows instructions that access display memory to run atjust about the same speed on
all computers.
Of course, the picture is quite a bit different when you compare the performance of
instructions that access display memory to the maximum performance of those in-
structions. Instructions that access display memory receive many more wait states
when running on a 286 than they do on an 8088. Why? While the 286 is capable of
accessing memory much more often than the 8088, we’ve seen that the frequency of
access to display memory is determined not by processor speed but by the display
adapter itself. As a result, both processors are actually allowed just about the same
maximum number of accesses to display memory in any given time. By definition,
then, the 286 must spend many more cycles waiting than does the 8088.

220 Chapter 1 1

And that explains the second viewpoint expressed above regarding the display adapter
cycle-eater vis-a-vis the 286 and 386. The display adapter cycle-eater, as measured in
cycles lost to wait states, is indeed much worse on AT-class computers than it is on the
PC, and it’s worse still on more powerful computers.

How bad is the display adapter cycle-eater on an AT? It’s this bad: Based on my (not
inconsiderable) experience in timing display adapter access, I’ve found that the dis-
play adapter cycle-eater can slow an AT-r even a 386 computer-to near-PC
speeds when display memory is accessed.

I know that’s hard to believe, but the display adapter cycle-eater gives out just so
many display memory accesses in a given time, and no more, no matter how fast the
processor is. In fact, the faster the processor, the more the display adapter cycleeater
hurts the performance of instructions that access display memory. The display adapter
cycle-eater is not only still present in 286/386 computers, it’s worse than ever.
What can we do about this new, more virulent form of the display adapter cycle-
eater? The workaround is the same as it was on the PC: Access display memory as
little as you possibly can.

New Instructions and Features: The 286
The 286 and 386 offer a number of new instructions. The 286 has a relatively small
number of instructions that the 8088 lacks, while the 386 has those instructions and
quite a few more, along with new addressing modes and data sizes. We’ll discuss the
286 and the 386 separately in this regard.
The 286 has a number of instructions designed for protected-mode operations. As
I’ve said, we’re not going to discuss protected mode in this book; in any case, pro-
tected-mode instructions are generally used only by operating systems. (I should
mention that the 286’s protected mode brings with it the ability to address 16 MB of
memory, a considerable improvement over the 8088’s 1 MB. In real mode, however,
programs are still limited to 1 MB of addressable memory on the 286. In either
mode, each segment is still limited to 64K.)
There are also a handful of 286-specific real-mode instructions, and they can be
quite useful. BOUND checks array bounds. ENTER and LEAVE support compact
and speedy stack frame construction and removal, ideal for interfacing to high-level
languages such as C and Pascal (although these instructions are actually relatively
slow on the 386 and its successors, and should be used with caution when perfor-
mance matters). INS and OUTS are new string instructions that support efficient
data transfer between memory and 1 / 0 ports. Finally, PUSHA and POPA push and
pop all eight general-purpose registers.

Pushing the 286 and 386 221

A couple of old instructions gain new features on the 286. For one, the 286 version
of PUSH is capable of pushing a constant on the stack. For another, the 286 allows
all shifts and rotates to be performed for notjust 1 bit or the number of bits specified
by CL, but for any constant number of bits.

New Instructions and Features: The 386
The 386 is somewhat more complex than the 286 regarding new features. Once
again, we won’t discuss protected mode, which on the 386 comes with the ability to
address up to 4 gigabytes per segment and 64 terabytes in all. In real mode (and in
virtual-86 mode, which allows the 386 to multitask MS-DOS applications, and which
is identical to real mode so far as MS-DOS programs are concerned), programs run-
ning on the 386 are still limited to 1 MB of addressable memory and 64Kper segment.
The 386 has many new instructions, as well as new registers, addressing modes and
data sizes that have trickled down from protected mode. Let’s take a quick look at
these new real-mode features.
Even in real mode, it’s possible to access many of the 386’s new and extended regis-
ters. Most of these registers are simply 32-bit extensions of the 16-bit registers of the
8088. For example, EAX is a 32-bit register containing AX as its lower 16 bits, EBX is
a 32-bit register containing BX as its lower 16 bits, and so on. There are also two new
segment registers: FS and GS.
The 386 also comes with a slew of new real-mode instructions beyond those supported by
the 8088 and 286. These instructions can scan data on a bit-by-bit basis, set the Carry
flag to the value of a specified bit, sign-extend or zero-extend data as it’s moved, set
a register or memory variable to 1 or 0 on the basis of any of the conditions that can
be tested with conditional jumps, and more. (Again, beware: Many of these complex
386-specific instructions are slower than equivalent sequences of simple instructions
on the 486 and especially on the Pentium.) What’s more, both old and new instruc-
tions support 32-bit operations on the 386. For example, it’s relatively simple to copy
data in chunks of 4 bytes on a 386, even in real mode, by using the MOVSD (“move
string double”) instruction, or to negate a 32-bit value with NEG EAX.
Finally, it’s possible in real mode to use the 386’s new addressing modes, in which
any 32-bit general-purpose register or pair of registers can be used to address memory.
What’s more, multiplication of memory-addressing registers by 2,4, or 8 for look-ups
in word, doubleword, or quadword tables can be built right into the memory ad-
dressing mode. (The 32-bit addressing modes are discussed further in later chapters.)
In protected mode, these new addressing modes allow you to address a full 4 gigabytes
per segment, but in real mode you’re still limited to 64K, even with 32-bit registers
and the new addressing modes, unless you play some unorthodox tricks with the
segment registers.

222 Chapter 1 1

p Note well: Those tricks don ’t necessarily work with system sofmare such as Win-
dows, so Ih’ recommend against using them. Ifyou want $-gigabyte segments, use
a 32-bit environment such as Win32.

Optimization Rules: The More Things Change.. .
Let’s see what we’ve learned about 286/386 optimization. Mostly what we’ve learned
is that our familiar PC cycle-eaters still apply, although in somewhat different forms,
and that the major optimization rules for the PC hold true on ATs and 386-based
computers. You won’t go wrong on any of these computers if you keep your instruc-
tions short, use the registers heavily and avoid memory, don’t branch, and avoid
accessing display memory like the plague.
Although we haven’t touched on them, repeated string instructions are still desir-
able on the 286 and 386 since they provide a great deal of functionality per instruction
byte and eliminate both the prefetch queue cycle-eater and branching. However,
string instructions are not quite so spectacularly superior on the 286 and 386 as they
are on the 8088 since non-string memory-accessing instructions have been speeded
up considerably on the newer processors.
There’s one cycle-eater with new implications on the 286 and 386, and that’s the data
alignment cycle-eater. From the data alignment cycle-eater we get a new rule: Word-
align your word-sized variables, and start your subroutines at even addresses.

Detailed Optimization
While the major 8088 optimization rules hold true on computers built around the 286
and 386, many of the instruction-specific optimizations no longer hold, for the execu-
tion times of most instructions are quite different on the 286 and 386 than on the
8088. We have already seen one such example of the sometimes vast difference be-
tween 8088 and 286/386 instruction execution times: MOV [wordvar],O, which has
an Execution Unit execution time of 20 cycles on the 8088, has an EU execution time
ofjust 3 cycles on the 286 and 2 cycles on the 386.
In fact, the performance of virtually all memory-accessing instructions has been im-
proved enormously on the 286 and 386. The key to this improvement is the near
elimination of effective address (EA) calculation time. Where an 8088 takes from 5
to 12 cycles to calculate an EA, a 286 or 386 usually takes no time whatsoever to
perform the calculation. If a base+index+displacement addressing mode, such as
MOV AX,[WordArray+BX+SI], is used on a 286 or 386, 1 cycle is taken to perform
the EA calculation, but that’s both the worst case and the only case in which there’s
any EA overhead at all.
The elimination of EA calculation time means that the EU execution time of memory-
addressing instructions is much closer to the EU execution time of register-only
instructions. For instance, on the 8088 ADD [wordVar],lOOH is a 31-cycle instruc-
tion, while ADD DX,lOOH is a 4cycle instruction-a ratio of nearly 8 to 1. By contrast,

Pushing the 286 and 386 223

on the 286ADD wordVar1,lOOH is a kycle instruction, while ADD DX,lOOH is a 3-cycle
instruction-a ratio ofjust 2.3 to 1.
It would seem, then, that it’s less necessary to use the registers on the 286 than it was
on the 8088, but that’s simply not the case, for reasons we’ve already seen. The key is
this: The 286 can execute memory-addressing instructions so fast that there’s no
spare instruction prefetching time during those instructions, so the prefetch queue
runs dry, especially on the AT, with its one-wait-state memory. On the AT, the 6-byte
instruction ADD [WordVar],lOOH is effectively at least a 15-cycle instruction, because
3 cycles are needed to fetch each of the three instruction words and 6 more cycles
are needed to read WordVar and write the result back to memory.
Granted, the register-only instruction ADD DX,lOOH also slows down-to 6 cycles-
because of instruction prefetching, leaving a ratio of 2.5 to 1. Now, however, let’s look at
the performance of the same code on an 8088. The register-only code would run in 16
cycles (4 instruction bytes at 4 cycles per byte), while the memory-accessing code would
run in 40 cycles (6 instruction bytes at 4 cycles per byte, plus 2 word-sized memory
accesses at 8 cycles per word). That’s a ratio of 2.5 to 1, exactly the same as on the 286.
This is all theoretical. We put our trust not in theory but in actual performance, so
let’s run this code through the Zen timer. On a PC, Listing 11.4, which performs
register-only addition, runs in 3.62 ms, while Listing 11.5, which performs addition
to a memory variable, runs in 10.05 ms. On a 10 MHz AT clone, Listing 11.4 runs in
0.64 ms, while Listing 11.5 runs in 1.80 ms. Obviously, the AT is much faster.. .but the
ratio of Listing 11.5 to Listing 11.4 is virtually identical on both computers, at 2.78
for the PC and 2.81 for the AT. If anything, the register-only form of ADD has a
slightly Zurgeradvantage on the AT than it does on the PC in this case.
Theory confirmed.

LISTING 1 1.4 11 1 -4.ASM

: *** L i s t i n g 1 1 . 4 ***

; M e a s u r e s t h e p e r f o r m a n c e o f a d d i n g a n i m m e d i a t e v a l u e
; t o a r e g i s t e r , f o r c o m p a r i s o n w i t h L i s t i n g 1 1 . 5 , w h i c h
: a d d s a n i m m e d i a t e v a l u e t o a memory v a r i a b l e .

c a l l ZTimerOn
r e p t 1 0 0 0
add dx.100h
endm
c a l l Z T i m e r O f f

LISTING 1 1.5 11 1 -5.ASM

: *** L i s t i n g 1 1 . 5 ***

: Measures t he pe r fo rmance o f add ing an immed ia te va lue
: t o a memory v a r i a b l e , f o r c o m p a r i s o n w i t h L i s t i n g 1 1 . 4 ,
; wh ich adds an immedia te va lue t o a r e g i s t e r .

224 Chapter 1 1

j v

even

WordVar dw

S k i p :
c a l l
r e p t
add
endm
c a l l

S k i p

: a lways make s u r e w o r d - s i z e d memory
: v a r i a b l e s a r e w o r d - a l i g n e d !

0

ZTimerOn
1000
[WordVar l lOOh

Z T i m e r O f f

What’s going on? Simply this: Instruction fetching is controlling overall execution
time on both processors. Both the 8088 in a PC and the 286 in an AT can execute the bytes
of the instructions in Listings 11.4 and 11.5 faster than they can be fetched. Since the
instructions are exactly the same lengths on both processors, it stands to reason that
the ratio of the overall execution times of the instructions should be the same on
both processors as well. Instruction length controls execution time, and the instruc-
tion lengths are the same-therefore the ratios of the execution times are the same.
The 286 can both fetch and execute instruction bytes faster than the 8088 can, so
code executes much faster on the 286; nonetheless, because the 286 can also ex-
ecute those instruction bytes much faster than it can fetch them, overall performance
is still largely determined by the size of the instructions.
Is this always the case? No. When the prefetch queue is full, memory-accessing in-
structions on the 286 and 386 are much faster (relative to register-only instructions)
than they are on the 8088. Given the system wait states prevalent on 286 and 386
computers, however, the prefetch queue is likely to be empty quite a bit, especially
when code consisting of instructions with short EU execution times is executed. Of
course, that’s just the sort of code we’re likely to write when we’re optimizing, so the
performance of high-speed code is more likely to be controlled by instruction size
than by EU execution time on most 286 and 386 computers, just as it is on the PC.
All of which is just a way of saying that faster memory access and EA calculation
notwithstanding, it’sjust as desirable to keep instructions short and memory accesses
to a minimum on the 286 and 386 as it is on the 8088. And the way to do that is to use
the registers as heavily as possible, use string instructions, use short forms of instruc-
tions, and the like.
The more things change, the more they remain the same.. . .

POPF and the 286
We’ve one final 286-related item to discuss: the hardware malfunction of POPF un-
der certain circumstances on the 286.
The problem is this: Sometimes POPF permits interrupts to occur when interrupts
are initially off and the setting popped into the Interrupt flag from the stack keeps

Pushing the 286 and 386 225

interrupts off. In other words, an interrupt can happen even though the Interrupt
flag is never set to 1. Now, I don’t want to blow this particular bug out of proportion.
It only causes problems in code that cannot tolerate interrupts under any circum-
stances, and that’s a rare sort of code, especially in user programs. However, some
code really does need to have interrupts absolutely disabled, with no chance of an
interrupt sneaking through. For example, a critical portion of a disk BIOS might
need to retrieve data from the disk controller the instant it becomes available; even
a few hundred microseconds of delay could result in a sector’s worth of data mis-
read. In this case, one misplaced interrupt during a POPF could result in a trashed
hard disk if that interrupt occurs while the disk BIOS is reading a sector of the File
Allocation Table.
There is a workaround for the POPF bug. While the workaround is easy to use, it’s
considerably slower than POPF, and costs a few bytes as well, so you won’t want to
use it in code that can tolerate interrupts. On the other hand, in code that truly
cannot be interrupted, you should view those extra cycles and bytes as cheap insur-
ance against mysterious and erratic program crashes.
One obvious reason to discuss the POPF workaround is that it’s useful. Another
reason is that the workaround is an excellent example of Zen-level assembly coding,
in that there’s a well-defined goal to be achieved but no obvious way to do so. The
goal is to reproduce the functionality of the POPF instruction without using POPF,
and the place to start is by asking exactly what POPF does.
All POPF does is pop the word on top of the stack into the FLAGS register, as shown
in Figure 11.4. How can we do that without POPF? Of course, the 286’s designers
intended us to use POPF for this purpose, and didn’t intentionally provide any alter-
native approach, so we’ll have to devise an alternative approach of our own. To do
that, we’ll have to search for instructions that contain some of the same functionality
as POPF, in the hope that one of those instructions can be used in some way to
replace POPF.
Well, there’s only one instruction other than POPF that loads the FLAGS register
directly from the stack, and that’s IRET, which loads the FLAGS register from the
stack as it branches, as shown in Figure 11.5. IRET has no known bugs of the sort
that plague POPF, so it’s certainly a candidate to replace POPF in non-interruptible
applications. Unfortunately, IRET loads the FLAGS register with the third word down
on the stack, not the word on top of the stack, as is the case with POPF; the far return
address that IRET pops into CS:IP lies between the top of the stack and the word
popped into the FLAGS register.
Obviously, the segment:offset that IRET expects to find on the stack above the pushed
flags isn’t present when the stack is set up for POPF, so we’ll have to adjust the stack
a bit before we can substitute IRET for POPF. What we’ll have to do is push the
segment:offset of the instruction after our workaround code onto the stack right
above the pushed flags. IRET will then branch to that address and pop the flags,

226 Chapter 1 1

SP

ss

FLAGS

@
SP

ss

FLAGS

8
SP

ss

FLAGS

I- 3000 1 Smov 31800

31801

31802

I 1800 b Memory

1 3000 1
1 0640 , I

[,1802 1

1 0295 ,

31800

31801

31802

The opemtion of POPE
fi#u?o 11.4

ending up at the instruction after the workaround code with the flags popped. That’s
just the result that would have occurred had we executed POPF-with the bonus
that no interrupts can accidentally occur when the Interrupt flag is 0 both before
and after the pop.
How can we push the segment:offset of the next instruction? Well, finding the offset
of the next instruction by performing a near call to that instruction is a tried-and-
true trick. We can do something similar here, but in this case we need a far call, since
IRE’” requires both a segment and an offset. We’ll also branch backward so that the

Pushing the 286 and 386 227

ss 31800 05

31801 90

31802 10

31803 18

31804 95

FLAGS 31805 02

31806 57

I P

cs

Memory

31800 05

31801 90

31802 10

18

31804 95

02

31806 57

Memory

31800 05

31801 90

31802 10

31803 18

31804 95

FLAGS 31805 02

+ 31806 57

IP

The operation of IRET
Figure 1 1.5

228 Chapter 1 1

address pushed on the stack will point to the instruction we want to continue with.
The code works out like this:

j m p s h o r t p o p f s k i p

i r e t : b r a n c h e s t o t h e i n s t r u c t i o n a f t e r t h e
p o p f i r e t :

; c a l l , p o p p i n g t h e w o r d b e l o w t h e a d d r e s s
: pushed by CALL i n t o t h e FLAGS r e g i s t e r

p o p f s k i p :
c a l l f a r p t r p o p f i r e t

; p u s h e s t h e s e g m e n t : o f f s e t o f t h e n e x t
; i n s t r u c t i o n on t h e s t a c k j u s t a b o v e
; t h e f l a g s w o r d , s e t t i n g t h i n g s u p s o
: t h a t IRET will b r a n c h t o t h e n e x t
; i n s t r u c t i o n a n d p o p t h e f l a g s

; When e x e c u t i o n r e a c h e s t h e i n s t r u c t i o n f o l l o w i n g t h i s comment,
; t h e w o r d t h a t was on t o p o f t h e s t a c k when JMP SHORT P O P F S K I P
: was r e a c h e d h a s b e e n p o p p e d i n t o t h e FLAGS r e g i s t e r , j u s t as
: i f a POPF i n s t r u c t i o n h a d b e e n e x e c u t e d .

The operation of this code is illustrated in Figure 11.6.
The POPF workaround can best be implemented as a macro; we can also emulate a
far call by pushing CS and performing a near call, thereby shrinking the workaround
code by 1 byte:

EMULATELPOPF macro
l o c a l p o p f s k i p . p o p f i r e t
j m p s h o r t p o p f s k i p

i r e t

push cs
c a l l p o p f i r e t
endm

p o p f i r e t :

p o p f s k i p :

By the way, the flags can be popped much more quickly if you’re willing to alter a
register in the process. For example, the following macro emulates POPF with just
one branch, but wipes out AX:

EMULATE-POPFLTRASHLAX macro
push cs
mov a x . o f f s e t $+5
push ax
i r e t
endm

It’s not a perfect substitute for POPF, since POPF doesn’t alter any registers, but it’s
faster and shorter than EMULATE-POPF when you can spare the register. If you’re
using 286-specific instructions, you can use

.286

EMULATE-POPF macro
push cs
p u s h o f f s e t $+4

Pushing the 286 and 386 229

i r e t
endm

which is shorter still, alters no registers, and branches just once. (Of course, this
version of EMULATE-POPF won't work on an 8088.)

IP 1 o f f s e t p o p f s k i p

cs 1 s e g m e n t p o p f s k i p b

FLAGS 1 ? ? ? b

c s 1 segmen t pop fsk ip C

FLAGS -1 ? ? ?

cs I segmen t pop fsk ip

'L
Memory

317FA

317FC

317FE

4 31800

31802

H ? ? ?

? ? ?

? ? ?

I ??? I

Memory

317FA ? ? ?

317FC o f f s e t p o p f s k i p + 5

317FE o f f s e t p o p f s k i p

31800 pushed f l ags

31802 ? ? ?

3-
Memory

317FA

317FA

317FE

31800

31802

Workaround code for the POPF bug.
Figure 1 1.6

230 Chapter 1 1

The standard version of EMULATE-POPF is 6 bytes longer than POPF and much
slower, as you’d expect given that it involves three branches. Anyone in his/her right
mind would prefer POPF to a larger, slower, three-branch macro-given a choice. In
non-interruptible code, however, there’s no choice here; the safer-if slower-approach
is the best. (Having people associate your programs with crashed computers is nota
desirable situation, no matter how unfair the circumstances under which it occurs.)
And now you know the nature of and the workaround for the POPF bug. Whether
you ever need the workaround or not, it’s a neatly packaged example of the tremen-
dous flexibility of the x86 instruction set.

Pushing the 286 and 386 231

	next:
	home:
	previous:

