

’J” So this traveling sabpnan is walking down a road, and he sees a group of men digging
a ditch with their b oa, there!” he says. ‘What you guys need is a Model
8088 ditch digger!’ ut a trowel and sells it to them.
A few days later, he st0 round. They’re happy with the trowel, but he sells
them the latest ditchkigging technology, the Model 80286 spade. That keeps them
content until he stohs by again with a Model 80386 shovel (a full 32 inches wide, with

ate the trowel), and that holds them until he comes back
eally need: a Model 80486 bulldozer.

&&op of the line, the salesman doesn’t pay them a call for a while.
re they none too friendly, but they’re digging with the 80386

shovel; the bulldozer is sitting off to one side. “Why on earth are you using that shovel?’’
the salesman asks. ‘Why aren’t you digging with the bulldozer?”
‘Well, Lord knows we tried,” says the foreman, “but it was all we could do just to lift
the damn thing! ”
Substitute “processor” for the various digging implements, and you get an idea of
just how different the optimization rules for the 486 are from what you’re used to.
Okay, it’s not quite that bad-but upon encountering a processor where string in-
structions are often to be avoided and memory-to-register MOVs are frequently as
fast as register-to-register MOVs, Dorothy was heard to exclaim (before she sank out

235

It's not just a bigger 386

of sight in a swirl of hopelessly mixed metaphors), “I don’t think we’re in Kansas
anymore, Toto.”

Enter the 486
No chip that is a direct, fully compatible descendant of the 8088,286, and 386 could
ever be called a RISC chip, but the 486 certainly contains RISC elements, and it’s
those elements that are most responsible for making 486 optimization unique. Simple,
common instructions are executed in a single cycle by a RISC-like core processor,
but other instructions are executed pretty much as they were on the 386, where
every instruction takes at least 2 cycles. For example, MOVAL, [Testchar] takes only
1 cycle on the 486, assuming both instruction and data are in the cache-3 cycles
faster than the 386”but STOSB takes 5 cycles, 1 cycle slower than on the 386. The
floating-point execution unit inside the 486 is also much faster than the 38’7 math
coprocessor, largely because, being in the same silicon as the CPU (the 486 has a
math coprocessor built in), it is more tightly coupled. The results are sometimes
startling: FMUL (floating point multiply) is usually faster on the 486 than IMUL
(integer multiply) !
An encyclopedic approach to 486 optimization would take a book all by itself, so in this
chapter I’m only going to hit the highlights of 486 optimization, touching on several
optimization rules, some documented, some not. You might also want to check out
the following sources of 486 information: i486 Microprocessor Programmer’s Reference
Manual, from Intel; “8086 Optimization: Aim Down the Middle and Pray,” in the
March, 1991 DX Dobb’s Journal; and “Peak Performance: On to the 486,” in the No-
vember, 1990 Programmer’s Journal.

Rules to Optimize By
In Appendix G of the i486 Microprocessor Programmer‘s Reference Manual, Intel lists a
number of optimization techniques for the 486. While neither exhaustive (we’ll look
at two undocumented optimizations shortly) nor entirely accurate (we’ll correct two
of the rules here), Intel’s list is certainly a good starting point. In particular, the list
conveys the extent to which 486 optimization differs from optimization for earlier
x86 processors. Generally, I’ll be discussing optimization for real mode (it being the
most widely used mode at the moment), although many of the rules should apply to
protected mode as well.

486 optimization is generally more precise and less frustrating than optimization p for other x86processors because every 486 has an identical internal cache. When-
ever both the instructions being executed and the data the instructions access are
in the cache, those instructions will run in a consistent and calculatable number of
cycles on all 486s, with little chance of interference from the prefetch queue and
without regard to the speed of external memov.

236 Chapter 12

In other words, for cached code (which time-critical code almost always is), perfor-
mance is predictable and can be calculated with good precision, and those calculations
will apply on any 486. However, “predictable” doesn’t mean “trivial”; the cycle times
printed for the various instructions are not the whole story. You must be aware of all
the rules, documented and undocumented, that go into calculating actual execu-
tion times-and uncovering some of those rules is exactly what this chapter is about.

The Hazards of Indexed Addressing
Rule #1: Avoid indexed addressing (that is, try not to use either two registers or
scaled addressing to point to memory).
Intel cautions against using indexing to address memory because there’s a one-cycle
penalty for indexed addressing. True enough-but “indexed addressing” might not
mean what you expect.
Traditionally, SI and DI are considered the index registers of the x86 CPUs. That is
not the sense in which “indexed addressing” is meant here, however. In real mode,
indexed addressing means that two registers, rather than one or none, are used to
point to memory. (In this context, the use of one register to address memory is “base
addressing,” no matter what register is used.) MOV A X , [BX+DI] and MOV CL,
[BP+SI+10] perform indexed addressing; MOVAX,[BX] and MOVDL, [SI+l] do not.

‘ Therefore, in real mode, the rule is to avoid using two registers to point to memory p wheneverpossible. Often, this simply means adding the two registers together out-
side a loop before memory is actually addressed.

As an example, you might adhere to this rule by replacing the code

LoopTop:
add ax.[bx+sil
add s i . 2
d e c c x
j n z LoopTop

with this

add s i .bx

add ax.Csil
add s i . 2
dec cx
j n z LoopTop
sub si.bx

LoopTop:

which calculates the same sum and leaves the registers in the same state as the first
example, but avoids indexed addressing.
In protected mode, the definition of indexed addressing is a tad more complex. The
use of two registers to address memory, as in MOV EAX, [EDX+EDI], still qualifies

Pushing the 486 237

for the one-cycle penalty. In addition, the use of 386/486 scaled addressing, as in
MOV [ECX*2],EAX, also constitutes indexed addressing, even if only one register is
used to point to memory.
All this fuss over one cycle! You might well wonder how much difference one cycle
could make. After all, on the 8088, effective address calculations take a minimum of 5
cycles. On the 486, however, 1 cycle is a big deal because many instructions, includ-
ing most register-only instructions (MOV, ADD, GMP, and so on) execute in just 1
cycle. In particular, MOVs to and from memory execute in 1 cycle-if they’re not
hampered by something like indexed addressing, in which case they slow to half
speed (or worse, as we will see shortly).
For example, consider the summing example shown earlier. The version that uses
base+index ([BX+SI]) addressing executes in eight cycles per loop. As expected, the
version that uses base ([SI]) addressing runs one cycle faster, at seven cycles per
loop. However, the loop code executes so fast on the 486 that the single cycle saved
by using base addressing makes the whole loop more than 14 percent faster.
In a key loop on the 486, 1 cycle can indeed matter.

Calculate Memory Pointers Ahead of Time
Rule #2: Don’t use a register as a memory pointer during the next two cycles after
loading it.
Intel states that if the destination of one instruction is used as the base addressing
component of the next instruction, then a one-cycle penalty is imposed. This rule,
unlike anything ever before seen in the x86 family, reflects the heavily pipelined
nature of the 486. Apparently, the 486 starts each effective address calculation be-
fore the start of the instruction that will need it, as shown in Figure 12.1; this effectively
makes the address calculation time vanish, because it happens while the preceding
instruction executes.
Of course, the 486 can’tperform an effective address calculation for a target instruction
ahead of time if one of the address components isn’t known until the instruction starts,
and that’s exactly the case when the preceding instruction modifies one of the target
instruction’s addressing registers. For example, in the code

MOV B X . O F F S E T M e m V a r
MOV A X , [BXI

there’s no way that the 486 can calculate the address referenced by MOV AX,[BX]
until MOV BX,OFFSET MemVar finishes, so pipelining that calculation ahead of
time is not possible. A good workaround is rearranging your code so that at least one
instruction lies between the loading of the memory pointer and its use. For example,
postdecrementing, as in the following

238 Chapter 12

LoopTop:
add ax, [s i 1
add s i . 2
dec cx
j n z LoopTop

is faster than preincrementing, as in:

LoopTop:
add s i ,2
add ax,[SIl
dec cx
jnz LoopTop

Now that we understand what Intel means by this rule, let me make a very important
comment: My observations indicate that for real-mode code, the documentation un-
derstates the extent of the penalty for interrupting the address calculation pipeline
by loading a memory pointer just before it’s used.

The truth of the matter appears to be that i f a register is the destination of one 1 instruction and is then used by the next instruction to address memory in real
mode, not one but two cycles are lost!

In 32-bit protected mode, however, the penalty is, in fact, the 1 cycle that Intel
documents.
Considering that MOV normally takes only one cycle total, that’s quite a loss. For ex-
ample, the postdecrement loop shown above is 2 full cycles faster than the
preincrement loop, resulting in a 29 percent improvement in the performance of
the entire loop. But wait, there’s more. If a register is loaded 2 cycles (which gener-
ally means 2 instructions, but, because some 486 instructions take more than 1 cycle,

I I
Address being
calculated (arrow

Instruction points to cycle during
Cycle # being executed which address is used)

n N O V A X , B X

n + l M O V [B X] ,1

n+2 M O V A L , [S I + l]

n+3 M O V C X . D X

One-cycle-ahead address pipelining.
Figure 12.1

Pushing the 486 239

the 2 are not always equivalent) before it’s used to point to memory, 1 cycle is lost.
Therefore, whereas this code

mov b x . o f f s e t MemVar
mov ax , [bx]
i n c d x
d e c c x
j n z LoopTop

loses two cycles from interrupting the address calculation pipeline, this code

mov b x . o f f s e t MemVar
i n c d x
mov a x , [b x]
d e c c x
j n z LoopTop

loses only one cycle, and this code

mov b x . o f f s e t MemVar
i n c d x
dec cx
mov a x , [b x]
j n z LoopTop

loses no cycles at all. Apparently, the 486’s addressing calculation pipeline actually starts
2 cycles ahead, as shown in Figure 12.2. (In truth, my best guess at the moment is that the
addressing pipeline really does start only 1 cycle ahead; the additional cycle crops up
when the addressing pipeline has to wait for a register to be written into the register file
before it can read it out for use in addressing calculations. However, I’m guessing here,
and the 2cycle-ahead model in Figure 12.2 will do just fine for optimization purposes.)
Clearly, there’s considerable optimization potential in careful rearrangement of
486 code.

Address being
calculated (arrow

Instruction points to cycle during
Cycle # being executed which address is used)

n NOV AX,BX CBXI

n+l MOV CX,DX CSI+11

n+2 MOV [EX] ,1

n+3 MOV AL.[SI+ll

Two-cycle-ahead address pipelining.
Figure 12.2

240 Chapter 12

Caveat Programmor
A caution: I’m quite certain that the 2-cycle-ahead addressing pipeline interruption
penalty I’ve described exists in the two 486s I’ve tested. However, there’s no guaran-
tee that Intel won’t change this aspect of the 486 in the future, especially given that
the documentation indicates otherwise. Perhaps the 2-cycle penalty is the result of a
bug in the initial steps of the 486, and will revert to the documented l-cycle penalty
someday; likewise for the undocumented optimizations I’ll describe below. None-
theless, none of the optimizations I suggest would hurt performance even if the
undocumented performance characteristics of the 486 were to vanish, and they cer-
tainly will help performance on at least some 486s right now, so I feel they’re well
worth using.
There is, of course, no guarantee that I’m entirely correct about the optimizations die
cussed in this chapter. Without knowing the internals of the 486, all I can do is time code
and make inferences from the results; I invite you to deduce your own rules and cross
check them against mine. Also, most likely there are other optimizations that I’m unaware
of. If you have further information on these or any other undocumented optimizations,
please write and let me know. And, of course, if anyone from Intel is reading this and
wants to give us the gospel truth, please do!

Stack Addressing and Address Pipelining
Rule # 2 A Rule #2 sometimes, but not always, applies to the stack pointer when it is
implicitly used to point to memory.
Intel states that the stack pointer is an implied destination register for CALL, EN-
TER, LEAVE, RET, PUSH, and POP (which alter (E) SP), and that it is the implied
base addressing register for PUSH, POP, and RET (which use (E)SP to address
memory). Intel then implies that the aforementioned addressing pipeline penalty is
incurred whenever the stack pointer is used as a destination by one of the first set of
instructions and is then immediately used to address memory by one of the second
set. This raises the specter of unpleasant programming contortions such as intermix-
ing PUSHes and POPS with other instructions to avoid interrupting the addressing
pipeline. Fortunately, matters are actually not so grim as Intel’s documentation would
indicate; my tests indicate that the addressing pipeline penalty pops up only spottily
when the stack pointer is involved.
For example, you’d certainly expect a sequence such as

Pushing the 486 241

to exhibit the addressing pipeline interruption phenomenon (SP is both destina-
tion and addressing register for both instructions, according to Intel), but this code
runs in six cycles per POP/RET pair, matching the official execution times exactly.
Likewise, a sequence like

POP d x
P O P c x
POP bx
POP ax

runs in one cycle per instruction, just as it should.
On the other hand, performing arithmetic directly on SP as an explicit destination-
for example, to deallocate local variables-and then using PUSH, POP, or RET,
definitely can interrupt the addressing pipeline. For example

add sp.10h
ret

loses two cycles because SP is the explicit destination of one instruction and then the
implied addressing register for the next, and the sequence

add sp.10h
POP ax

loses two cycles for the same reason.
I certainly haven’t tried all possible combinations, but the results so far indicate that
the stack pointer incurs the addressing pipeline penalty only if (E)SP is the explicit
destination of one instruction and is then used by one of the two following instruc-
tions to address memory. So, for instance, SP isn’t the explicit operand of POP
AX-AX is-and no cycles are lost if POP AX is followed by POP or RET. Happily,
then, we need not worry about the sequence in which we use PUSH and POP. How-
ever, adding to, moving to, or subtracting from the stack pointer should ideally be
done at least two cycles before PUSH, POP, RET, or any other instruction that uses
the stack pointer to address memory.

Problems with Byte Registers
There are two ways to lose cycles by using byte registers, and neither of them is docu-
mented by Intel, so far as I know. Let’s start with the lesser and simpler of the two.
Rule #3: Do not load a byte portion of a register during one instruction, then use
that register in its entirety as a source register during the next instruction.
So, for example, it would be a bad idea to do this

mov ah.0

mov cx.[MemVarll
mov al.CMemVar21
add cx.ax

242 Chapter 12

because AL is loaded by one instruction, then AX is used as the source register for
the next instruction. A cycle can be saved simply by rearranging the instructions so that
the byte register load isn’t immediately followed by the word register usage, like so:

mov ah.0

mov a1 .[MemVarZI
mov cx.[MemVarll
add cx.ax

Strange as it may seem, this rule is neither arbitrary nor nonsensical. Basically, when
a byte destination register is part of a word source register for the next instruction,
the 486 is unable to directly use the result from the first instruction as the source for
the second instruction, because only part of the register required by the second
instruction is contained in the first instruction’s result. The full, updated register
value must be read from the register file, and that value can’t be read out until the
result from the first instruction has been written into the register file, a process that
takes an extra cycle. I’m not going to explain this in great detail because it’s not
important that you understand why this rule exists (only that it does in fact exist) , but
it is an interesting window on the way the 486 works.
In case you’re curious, there’s no such penalty for the typical XLAT sequence like

mov bx.offset MemTable

mov a1 . [s i 1
x1 at

even though AL must be converted to a word by XLAT before it can be added to BX and
used to address memory. In fact, none of the penalties mentioned in this chapter apply
to XLAT, apparently because XLAT is so slow-4 cycles-that it gives the 486 time to
perform addressing calculations during the course of the instruction.

While it’s nice that XLAT doesn ’t suffer from the various 486 addressing penal-
ties, the reason for that is basically thatXLAT is slow, so there b still no compelling
reason to use XLAT on the 486.

In general, penalties for interrupting the 486’s pipeline apply primarily to the fast
core instructions of the 486, most notably register-only instructions and MOV, al-
though arithmetic and logical operations that access memory are also often affected.
I don’t know all the performance dependencies, and I don’t plan to; figuring all of
them out would be a big, boring job of little value. Basically, on the 486 you should
concentrate on using those fast core instructions when performance matters, and all
the rules I’ll discuss do indeed apply to those instructions.
You don’t need to understand every corner of the 486 universe unless you’re a die-
hard “head who does this stuff for fun. Just learn enough to be able to speed up

Pushing the 486 243

the key portions of your programs, and spend the rest of your time on a fast design
and overall implementation.

More Fun with Byte Registers
Rule #4: Don’t load any byte register exactly 2 cycles before using any register to
address memory.
This, the last of this chapter’s rules, is the strangest of the lot. If any byte register is
loaded, and then two cycles later any register is used to point to memory, one cycle is
lost. So, for example, this code

mov a1 .bl
mov cx.dx
mov s i , [di]

takes four rather than the expected three cycles to execute. Note that it is not re-
quired that the byte register be part of the register used to address memory; any byte
register will do the trick.
Worse still, loading byte registers both one and two cycles before a register is used to
address memory costs two cycles, as in

mov bl .a1
mov c1.3
mov bx. [s i 1

which takes five rather than three cycles to run. However, there is no penalty if a byte
register is loaded one cycle but not two cycles before a register is used to address
memory. Therefore,

mov cx.3
mov dl .a1
mov si, [bxl

runs in the expected three cycles.
In truth, I do not know why this happens. Clearly, it has something to do with inter-
rupting the start of the addressing pipeline, and I have my theories about how this
works, but at this point they’re pure speculation. Whatever the reason for this rule,
ignorance of it-and of its interaction with the other rules-could lead to consider-
able performance loss in seemingly air-tight code. For instance, a casual observer
would expect the following code to run in 3 cycles:

mov bx.offset M e m V a r
mov cl .a1
mov ax, [bx]

A more sophisticated programmer would expect to lose one cycle, because BX is loaded
two cycles before being used to address memory. In fact, though, this code takes 5 c y c l e s
2 cycles, or 67 percent, longer than normal. Why? Well, under normal conditions,

244 Chapter 12

loading a byte register-CL in this case-one cycle before using a register to address
memory produces no penalty; loading 2 cycles ahead is the only case that normally
incurs a penalty. However, think of Rule #4 as meaning that loading a byte register
disrupts the memory addressing pipeline as it starts up. Viewed that way, we can see
that MOV BX,OF'FSET MemVar interrupts the addressing pipeline, forcing it to start
again, and then, presumably, MOV CL,AL interrupts the pipeline again because the
pipeline is now on its first cycle: the one that loading a byte register can affect.

p I know-it seems awfully complicated. It isn 't, rea&. Generally, try not to use byte
destinations exactly two cycles before using a register to address memory, and try
not to load a register either one or two cycles before using it to address memory,
and you '11 be fine.

Timing Your O w n 486 Code
In case you want to do some 486 performance analysis of your own, let me show you
how I arrived at one of the above conclusions; at the same time, I can warn you of the
timing hazards of the cache. Listings 12.1 and 12.2 show the code I ran through the
Zen timer in order to establish the effects of loading a byte register before using a
register to address memory. Listing 12.1 ran in 120 ps on a 33 MHz 486, or 4 cycles
per repetition (120 ps/ 1000 repetitions = 120 ns per repetition; 120 ns per repeti-
tion/30 ns per cycle = 4 cycles per repetition); Listing 12.2 ran in 90 ps, or 3 cycles,
establishing that loading a byte register costs a cycle only when it's performed ex-
actly 2 cycles before addressing memory.

LISTING 12.1 LSTl2- 1 .ASM
: M e a s u r e s t h e e f f e c t o f l o a d i n g a b y t e r e g i s t e r 2 c y c l e s b e f o r e
: u s i n g a r e g i s t e r t o a d d r e s s memory.

mov b p . 2 : r u n t h e t e s t c o d e t w i c e t o make sure

sub bx .bx

c a l l Z T i m e r O n : s t a r t t i m i n g
r e p t 1000
mov d l . c l
noP
mov a x , [b x l
endm
c a l l Z T i m e r O f f : s t o p t i m i n g
d e c b p
jz Done
jmp CacheFi 11 Loop

: i t ' s cached

C a c h e F i l l L o o p :

Done:

LISTING 12.2 LSTl2-2.ASM
: M e a s u r e s t h e e f f e c t o f l o a d i n g a b y t e r e g i s t e r 1 c y c l e b e f o r e
: u s i n g a r e g i s t e r t o a d d r e s s memory.

mov b p . 2 ; r u n t h e t e s t c o d e t w i c e t o make sure

s u b b x . b x
: i t ' s cached

Pushing the 486 245

C a c h e F i l l L o o p :
c a l l Z T i m e r O n : s t a r t t i m i n g
r e p t 1000
noP
mov d l , c l
mov ax.[bxl
endm
c a l l Z T i m e r O f f ; s t o p t i m i n g
d e c b p
j z Done
j m p C a c h e F i l l L o o p

Done:

Note that Listings 12.1 and 12.2 each repeat the timing of the code under test a
second time, to make sure that the instructions are in the cache on the second pass,
the one for which results are displayed. Also note that the code is less than 8Kin size,
so that it can all fit in the 486’s 8K internal cache. If I double the REP” value in
Listing 12.2 to 2,000, making the test code larger than 8K, the execution time more
than doubles to 224 ps, or 3.7 cycles per repetition; the extra seven-tenths of a cycle
comes from fetching noncached instruction bytes.

Whenever you see non-integral timing results of this sort, it’s a good bet that the
test code or data isn ’t cached.

The Story Continues
There’s certainly plenty more 486 lore to explore, including the 486’s unique prefetch
queue, more optimization rules, branching optimizations, performance implications
of the cache, the cost of cache misses for reads, and the implications of cache write-
through for writes. Nonetheless, we’ve covered quite a bit of ground in this chapter,
and I trust you’ve gotten a feel for the considerable extent to which 486 optimization
differs from what you’re used to. Odd as 486 optimization is, though, it’s well worth
mastering, for the 486 is, at its best, so staggeringly fast that carefully crafted 486 code
can do more than twice as much per cycle as the best 386 code-which makes it per-
haps 50 times as fast as optimized code for the original PC.
Sometimes it is hard to believe we’re still in Kansas!

	next:
	home:
	previous:

