


’J” So this  traveling sabpnan is walking  down a road, and he sees a group of men digging 
a ditch with their b oa, there!” he says. ‘What you  guys need is a Model 
8088 ditch digger!’ ut a trowel and sells it to them. 
A few  days later, he st0 round. They’re happy  with the trowel, but he sells 
them the latest ditchkigging technology, the Model 80286 spade. That keeps them 
content until he stohs by again with a Model  80386  shovel (a full 32 inches wide,  with 

ate the trowel), and that holds them until he comes  back 
eally need: a Model 80486 bulldozer. 

&&op of the line, the salesman  doesn’t pay them a call for a while. 
re they none too friendly, but they’re  digging  with the 80386 

shovel; the bulldozer is sitting off to one side. “Why on earth are you  using that shovel?’’ 
the salesman  asks.  ‘Why aren’t you digging with the bulldozer?” 
‘Well, Lord knows  we tried,” says the foreman, “but  it was all we could do just to lift 
the damn thing! ” 
Substitute “processor” for the various digging implements, and you get  an idea of 
just how different the optimization rules for the 486 are from what you’re used to. 
Okay,  it’s not quite that bad-but upon  encountering a processor where string in- 
structions are often to be avoided and memory-to-register MOVs are frequently as 
fast  as  register-to-register MOVs, Dorothy was heard to exclaim (before she sank out 
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of sight in a swirl  of hopelessly mixed metaphors), “I don’t  think we’re in Kansas 
anymore, Toto.” 

Enter  the 486 
No chip  that is a  direct, fully compatible descendant of the  8088,286, and 386 could 
ever be called a RISC chip,  but  the 486 certainly contains RISC elements, and it’s 
those elements that  are most responsible for making  486 optimization unique. Simple, 
common  instructions  are  executed in a single cycle  by a RISC-like core processor, 
but  other instructions  are  executed pretty much as they were on  the 386, where 
every instruction takes at least 2 cycles. For example, MOVAL, [Testchar] takes  only 
1 cycle on  the 486, assuming both  instruction and  data  are in the cache-3  cycles 
faster than  the 386”but STOSB takes 5 cycles, 1 cycle slower than  on  the 386. The 
floating-point execution  unit inside the 486 is also much faster than  the 38’7 math 
coprocessor, largely because, being in the same silicon  as the CPU (the 486 has a 
math coprocessor built in), it is more tightly coupled. The results are sometimes 
startling: FMUL (floating point multiply) is usually faster on  the 486 than IMUL 
(integer multiply) ! 
An encyclopedic approach to 486 optimization  would  take a book  all by itself, so in this 
chapter I’m only going to hit  the highlights of 486 optimization, touching on several 
optimization rules, some documented, some not. You might also  want to check out 
the following sources of  486 information: i486 Microprocessor Programmer’s Reference 
Manual, from  Intel; “8086 Optimization: Aim  Down the Middle and Pray,” in  the 
March, 1991 DX Dobb’s Journal; and “Peak Performance: On to the 486,” in the No- 
vember, 1990 Programmer’s Journal. 

Rules to Optimize By 
In Appendix G of the i486 Microprocessor Programmer‘s Reference Manual, Intel lists a 
number of optimization techniques  for  the 486.  While neither exhaustive (we’ll look 
at two undocumented optimizations shortly) nor entirely accurate (we’ll correct two 
of the rules here), Intel’s list is certainly a  good starting point.  In particular, the list 
conveys the  extent to which  486 optimization differs from optimization for earlier 
x86 processors. Generally, I’ll be discussing optimization for real mode  (it  being  the 
most widely used mode at  the  moment), although many  of the rules should apply to 
protected  mode as  well. 

486 optimization is generally more precise and less frustrating than optimization p for other x86processors because every 486 has  an identical internal cache. When- 
ever both the instructions being executed and  the data the instructions access are 
in the cache, those instructions will run  in a consistent and calculatable number of 
cycles on all 486s, with little chance  of interference from the prefetch queue and 
without regard to the speed of external memov. 
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In other words, for cached code (which  time-critical code almost always is), perfor- 
mance is predictable and can  be  calculated with good precision, and those  calculations 
will apply on any 486. However, “predictable” doesn’t mean “trivial”; the cycle  times 
printed for the various instructions are  not  the whole  story. You must be  aware of all 
the rules, documented  and  undocumented, that  go  into calculating actual execu- 
tion  times-and uncovering some of those rules is  exactly  what  this chapter is about. 

The Hazards of Indexed  Addressing 
Rule #1: Avoid indexed addressing (that is,  try not to use either two registers or 
scaled addressing to  point  to  memory). 
Intel cautions against  using indexing  to address memory  because there’s a one-cycle 
penalty for  indexed addressing. True enough-but “indexed addressing” might  not 
mean what  you expect. 
Traditionally, SI and DI are considered the  index registers  of the x86 CPUs. That is 
not  the sense  in  which “indexed addressing” is meant  here, however. In real mode, 
indexed addressing means that two registers, rather  than  one  or  none,  are used to 
point to  memory. (In this context,  the use  of one register to address memory is “base 
addressing,” no matter what  register is used.) MOV A X ,  [BX+DI] and MOV CL, 
[BP+SI+10] perform  indexed  addressing; MOVAX,[BX] and MOVDL, [SI+l] do not. 

‘ Therefore, in real mode,  the rule is to avoid using two registers to point  to  memory p wheneverpossible. Often, this simply  means  adding  the two registers  together  out- 
side a  loop before memory  is actually  addressed. 

As an example, you might adhere to  this rule by replacing the  code 

LoopTop: 
add ax.[bx+sil 
add s i  . 2  
d e c   c x  
j n z  LoopTop 

with  this 

add s i  .bx 

add  ax.Csil 
add s i  . 2  
dec  cx 
j n z  LoopTop 
sub  si.bx 

LoopTop: 

which  calculates the same  sum and leaves the registers in the same  state  as the first 
example, but avoids indexed addressing. 
In protected  mode,  the definition of indexed addressing is a tad more complex. The 
use of two registers to address memory,  as in MOV EAX, [EDX+EDI], still  qualifies 
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for the one-cycle  penalty. In  addition, the use of 386/486 scaled addressing, as in 
MOV [ECX*2],EAX, also constitutes indexed addressing, even if only one register is 
used to point to  memory. 
All this fuss  over one cycle!  You might well wonder how much difference one cycle 
could make. After  all, on  the 8088,  effective address calculations take a minimum  of 5 
cycles. On the 486,  however, 1 cycle  is a big deal because many instructions, includ- 
ing most register-only instructions (MOV, ADD, GMP, and so on) execute  in just 1 
cycle. In particular, MOVs to  and from memory execute in 1 cycle-if they’re not 
hampered by something like indexed addressing, in which  case  they slow to half 
speed (or worse,  as we  will see shortly). 
For example, consider the summing example shown earlier. The version that uses 
base+index ( [BX+SI]) addressing executes in  eight cycles per loop. As expected,  the 
version that uses  base ( [SI] ) addressing runs  one cycle  faster, at seven  cycles per 
loop. However, the  loop  code executes so fast on  the 486 that  the single cycle  saved 
by using base addressing makes the whole loop more  than  14  percent faster. 
In a key loop on  the 486, 1 cycle can indeed matter. 

Calculate Memory Pointers  Ahead of Time 
Rule #2: Don’t use a register as a memory pointer  during  the  next two cycles after 
loading it. 
Intel states that if the destination of one instruction is used as the base addressing 
component of the next  instruction,  then  a one-cycle penalty is imposed. This rule, 
unlike anything ever before seen in  the x86 family, reflects the heavily pipelined 
nature of the 486. Apparently, the 486 starts each effective address calculation be- 
fore  the start of the instruction that will need it, as  shown in Figure 12.1; this effectively 
makes the address calculation time vanish, because it  happens while the preceding 
instruction executes. 
Of course, the 486 can’tperform an effective address calculation for a target instruction 
ahead of time if one of the address components isn’t known until the instruction starts, 
and that’s  exactly the case  when the preceding instruction modifies one of the target 
instruction’s  addressing  registers.  For  example, in the code 

MOV B X . O F F S E T  M e m V a r  
MOV A X ,  [BXI 

there’s no way that  the 486 can calculate the address referenced by MOV AX,[BX] 
until MOV  BX,OFFSET  MemVar finishes, so pipelining  that calculation ahead of 
time is not possible. A good  workaround is rearranging your code so that  at least one 
instruction lies between the  loading of the memory pointer  and its use. For example, 
postdecrementing, as in the following 
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LoopTop: 
add  ax, [ s i  1 
add s i  . 2  
dec  cx 
j n z  LoopTop 

is faster than  preincrementing, as in: 

LoopTop: 
add s i  ,2  
add  ax,[SIl 
dec cx 
jnz LoopTop 

Now that we understand what Intel means by this rule,  let me make a very important 
comment: My observations indicate that  for real-mode code,  the  documentation  un- 
derstates the  extent of the penalty for  interrupting  the address calculation pipeline 
by loading  a memory pointer  just  before it’s used. 

The  truth of the  matter appears to  be  that i f a  register  is the  destination of one 1 instruction  and is then  used  by  the  next  instruction to  address memory in real 
mode,  not  one  but two cycles  are lost! 

In 32-bit protected  mode, however, the penalty is, in fact, the 1 cycle that  Intel 
documents. 
Considering that MOV normally  takes  only one cycle total,  that’s quite a loss.  For  ex- 
ample,  the  postdecrement  loop shown above is 2 full cycles faster  than  the 
preincrement  loop, resulting in a 29 percent  improvement in the  performance of 
the  entire  loop. But  wait, there’s more. If a register is loaded 2 cycles (which gener- 
ally means 2 instructions, but, because some 486 instructions take more  than 1 cycle, 

I I 
Address being 
calculated (arrow 

Instruction points to cycle during 
Cycle # being executed which address is used) 

n N O V   A X , B X  

n + l  M O V   [ B X ]  ,1 

n+2 M O V   A L , [ S I + l ]  

n+3 M O V   C X . D X  

One-cycle-ahead address pipelining. 
Figure 12.1 
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the 2 are  not always equivalent) before it’s used to point to memory, 1 cycle is lost. 
Therefore, whereas this code 

mov b x . o f f s e t  MemVar 
mov ax ,   [ bx ]  
i n c   d x  
d e c   c x  
j n z  LoopTop 

loses two cycles from  interrupting  the address calculation pipeline, this code 

mov b x . o f f s e t  MemVar 
i n c   d x  
mov a x ,   [ b x ]  
d e c   c x  
j n z  LoopTop 

loses  only one cycle, and this code 

mov b x . o f f s e t  MemVar 
i n c   d x  
dec   cx  
mov a x ,   [ b x ]  
j n z  LoopTop 

loses no cycles at all.  Apparently, the 486’s addressing  calculation pipeline actually starts 
2 cycles ahead, as shown in Figure 12.2. (In  truth, my best  guess at the moment is that the 
addressing pipeline really does start only 1 cycle ahead; the additional cycle crops up 
when the addressing pipeline has  to  wait  for a register  to  be  written into  the register  file 
before  it  can read it out for use  in  addressing  calculations.  However,  I’m  guessing here, 
and the 2cycle-ahead  model  in  Figure  12.2 will do just fine for optimization purposes.) 
Clearly, there’s  considerable optimization potential  in careful rearrangement of 
486 code. 

Address being 
calculated (arrow 

Instruction points to cycle during 
Cycle # being executed which address is used) 

n NOV  AX,BX  CBXI 

n+l MOV  CX,DX  CSI+11 

n+2 MOV  [EX] ,1 

n+3 MOV AL.[SI+ll 

Two-cycle-ahead address pipelining. 
Figure 12.2 
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Caveat  Programmor 
A caution: I’m quite certain that  the 2-cycle-ahead addressing pipeline interruption 
penalty  I’ve described exists in the two 486s I’ve tested. However, there’s no guaran- 
tee  that  Intel won’t change this aspect of the 486 in the  future, especially  given that 
the  documentation indicates otherwise. Perhaps the 2-cycle penalty is the result of a 
bug in the initial  steps of the 486, and will revert to  the  documented l-cycle  penalty 
someday;  likewise for  the  undocumented optimizations I’ll describe below. None- 
theless, none of the optimizations I suggest  would hurt performance even if the 
undocumented  performance characteristics  of the 486 were to vanish, and they  cer- 
tainly will help  performance on at least some 486s right now, so I feel  they’re well 
worth using. 
There is,  of course, no guarantee that  I’m  entirely  correct about the optimizations die 
cussed  in  this chapter. Without  knowing the internals of the 486, all I can do is time  code 
and make  inferences  from the results; I invite  you  to deduce your own rules and  cross 
check  them  against  mine. Also, most  likely there are other optimizations  that  I’m  unaware 
of.  If  you  have further information on these or any other undocumented optimizations, 
please  write and let  me know. And, of course, if anyone  from  Intel is reading  this and 
wants  to  give  us the gospel truth, please do! 

Stack  Addressing  and  Address  Pipelining 
Rule # 2 A  Rule #2 sometimes, but  not always, applies to the stack pointer when it is 
implicitly used to point to  memory. 
Intel states that  the stack pointer is an implied destination register for CALL, EN- 
TER, LEAVE, RET, PUSH, and  POP (which alter (E) SP),  and that it  is the implied 
base addressing register for  PUSH, POP, and RET (which  use (E)SP to address 
memory).  Intel  then implies that  the  aforementioned addressing pipeline penalty is 
incurred whenever the stack pointer is used as a destination by one of the first set of 
instructions and is then immediately used to address memory by one of the  second 
set. This raises the specter of unpleasant  programming  contortions such as intermix- 
ing PUSHes and POPS with other instructions to  avoid interrupting  the addressing 
pipeline. Fortunately, matters are actually not so grim  as  Intel’s documentation would 
indicate; my tests indicate that  the addressing pipeline penalty pops up only  spottily 
when the stack pointer is  involved. 
For example, you’d  certainly expect a sequence such as 
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to exhibit  the addressing pipeline  interruption  phenomenon (SP is both destina- 
tion and addressing register for  both instructions, according to Intel),  but this code 
runs in six  cycles per POP/RET pair, matching  the official execution times exactly. 
Likewise, a  sequence like 

POP d x  
P O P   c x  
POP  bx 
POP  ax 

runs in one cycle per instruction, just as it  should. 
On the  other  hand, performing  arithmetic directly on SP as an explicit destination- 
for example, to deallocate local  variables-and then using PUSH,  POP, or RET, 
definitely can interrupt  the addressing pipeline. For example 

add  sp.10h 
ret 

loses two cycles because SP is the explicit destination of one instruction and  then  the 
implied addressing register for the next, and  the  sequence 

add  sp.10h 
POP ax 

loses two cycles for  the same reason. 
I certainly haven’t tried all  possible combinations, but  the results so far  indicate  that 
the stack pointer  incurs  the addressing pipeline penalty only if (E)SP is the explicit 
destination of one instruction and is then used by one of the two following instruc- 
tions to address memory. So, for instance, SP isn’t the explicit operand of POP 
AX-AX is-and no cycles are lost if POP AX is followed by POP or RET.  Happily, 
then, we need  not worry about  the sequence  in which we use PUSH and POP. How- 
ever, adding to, moving to, or subtracting  from  the stack pointer  should ideally be 
done  at least two cycles before PUSH,  POP, RET, or any other instruction  that uses 
the stack pointer to address memory. 

Problems with Byte Registers 
There are two ways to  lose  cycles by using byte  registers, and  neither of them is docu- 
mented by Intel, so far as I know.  Let’s start with the lesser and simpler of the two. 
Rule #3: Do not load  a byte portion of a register during  one instruction,  then use 
that register in its entirety as a  source register during  the next  instruction. 
So, for  example,  it would be a  bad  idea to do this 

mov ah.0 

mov cx.[MemVarll 
mov al.CMemVar21 
add  cx.ax 
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because AL is loaded by one instruction,  then AX is used as the source register for 
the next instruction. A cycle  can be saved  simply  by rearranging the instructions so that 
the byte register load isn’t immediately followed by the word register usage, like so: 

mov ah.0 

mov a1 .[MemVarZI 
mov cx.[MemVarll 
add cx.ax 

Strange as it may seem, this rule is neither arbitrary nor nonsensical. Basically, when 
a byte destination register is part of a word source register for the next  instruction, 
the 486 is unable to directly use the result from  the first instruction as the source for 
the second instruction, because only part of the register required by the second 
instruction is contained  in  the first instruction’s result. The full, updated register 
value must be read  from  the register file, and  that value  can’t  be read out until  the 
result from the first instruction has been written into the register file, a process that 
takes an extra cycle.  I’m not going to explain this in  great detail because it’s not 
important  that you understand why this rule exists (only that  it does in fact exist) , but 
it is an interesting window on  the way the 486  works. 
In case you’re curious, there’s no such penalty for the typical XLAT sequence like 

mov bx.offset MemTable 

mov a1 . [ s i  1 
x1 at 

even though AL must  be  converted  to a word by XLAT before  it  can  be added to BX and 
used to address memory. In fact, none of the penalties mentioned in  this chapter apply 
to XLAT, apparently because XLAT is so slow-4 cycles-that it gives the 486  time to 
perform addressing  calculations during the course of the instruction. 

While it’s nice  that XLAT  doesn ’t suffer from the various 486 addressing  penal- 
ties, the  reason for that is basically  thatXLAT is slow, so there b still no compelling 
reason to use XLAT on  the 486. 

In general, penalties for  interrupting  the 486’s pipeline apply primarily to the fast 
core  instructions of the 486, most notably register-only instructions and MOV, al- 
though  arithmetic and logical operations  that access memory are also often affected. 
I don’t know  all the performance  dependencies, and I don’t plan to; figuring all of 
them  out would be a big, boring job of little value. Basically, on  the 486  you should 
concentrate on using those fast core instructions when performance matters, and all 
the rules I’ll  discuss do  indeed apply to those instructions. 
You don’t  need to understand every corner of the 486 universe unless you’re a die- 
hard “head who does this stuff for fun. Just  learn enough to be able to speed up 
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the key portions of  your programs, and spend  the rest of  your time on a fast design 
and overall implementation. 

More Fun with  Byte  Registers 
Rule #4: Don’t load any byte register exactly 2 cycles before using any register to 
address memory. 
This, the last  of this chapter’s rules, is the  strangest of the  lot. If any  byte register is 
loaded, and  then two cycles later any register is used to point  to memory, one cycle  is 
lost. So, for example, this code 

mov a1  .bl 
mov cx.dx 
mov s i ,  [di] 

takes four  rather  than  the  expected  three cycles to execute.  Note  that  it is not re- 
quired  that  the byte register be  part of the  register used to address memory;  any  byte 
register will do the trick. 
Worse still, loading byte registers both one  and two cycles before  a  register is used to 
address  memory costs two cycles,  as in 

mov bl .a1 
mov c1.3 
mov bx. [ s i  1 

which  takes  five rather  than  three cycles to run. However, there is no penalty if a byte 
register is loaded one cycle but  not two cycles before  a register is used to  address 
memory. Therefore, 

mov cx.3 
mov dl .a1 
mov si, [bxl 

runs  in  the  expected  three cycles. 
In  truth,  I  do  not know why this happens. Clearly, it has something  to do with inter- 
rupting  the  start of the  addressing  pipeline, and I have my theories  about how this 
works, but  at this point  they’re  pure  speculation. Whatever the reason for this rule, 
ignorance of  it-and  of its interaction with the other  rules-could lead to consider- 
able  performance loss in seemingly air-tight code. For instance,  a casual observer 
would expect  the following code to run in 3 cycles: 

mov bx.offset M e m V a r  
mov cl  .a1 
mov ax, [ bx] 

A more sophisticated programmer would expect  to lose one cycle,  because BX is loaded 
two cycles  before being  used  to  address  memory. In fact, though, this  code  takes 5 c y c l e s  
2 cycles, or 67 percent,  longer  than  normal. Why?  Well, under normal  conditions, 
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loading  a byte  register-CL in this case-one cycle before using a register to address 
memory produces no penalty; loading 2 cycles ahead is the only  case that normally 
incurs  a penalty.  However, think of  Rule #4 as meaning  that  loading a byte register 
disrupts the memory addressing pipeline as it starts up. Viewed that way,  we can see 
that MOV BX,OF'FSET MemVar interrupts  the addressing pipeline, forcing it to start 
again, and  then, presumably, MOV CL,AL interrupts  the pipeline again because the 
pipeline is now on its first cycle: the  one that  loading  a byte register can affect. 

p I know-it seems awfully complicated. It isn 't, rea&. Generally, try not to use byte 
destinations exactly two cycles before  using a register to address memory,  and try 
not to load a register either one or two cycles before using it to address memory, 
and you '11 be fine. 

Timing Your O w n  486 Code 
In case  you  want to do some 486 performance analysis  of your own, let me show  you 
how I arrived at  one of the above conclusions; at  the same time, I can warn  you  of the 
timing hazards of the cache. Listings 12.1 and 12.2  show the  code I ran  through  the 
Zen timer in order to establish the effects  of loading a byte register before using a 
register to address memory.  Listing  12.1 ran in 120 ps on a 33 MHz 486, or 4 cycles 
per repetition (120 ps/ 1000 repetitions = 120  ns per  repetition; 120 ns per repeti- 
tion/30 ns per cycle = 4 cycles per  repetition); Listing 12.2 ran in 90 ps, or 3 cycles, 
establishing that loading a byte register costs a cycle  only when it's performed ex- 
actly 2 cycles before addressing memory. 

LISTING  12.1  LSTl2- 1 .ASM 
: M e a s u r e s   t h e   e f f e c t   o f   l o a d i n g  a b y t e   r e g i s t e r  2 c y c l e s   b e f o r e  
: u s i n g  a r e g i s t e r   t o   a d d r e s s  memory. 

mov b p . 2   : r u n   t h e   t e s t   c o d e   t w i c e   t o  make   sure  

sub   bx .bx  

c a l l  Z T i m e r O n   : s t a r t   t i m i n g  
r e p t  1000 
mov d l   . c l  
noP 
mov a x ,   [ b x l  
endm 
c a l l   Z T i m e r O f f   : s t o p   t i m i n g  
d e c   b p  
jz Done 
jmp  CacheFi  11  Loop 

: i t ' s  cached  

C a c h e F i l l   L o o p :  

Done: 

LISTING 12.2 LSTl2-2.ASM 
: M e a s u r e s   t h e   e f f e c t  o f  l o a d i n g  a b y t e   r e g i s t e r  1 c y c l e   b e f o r e  
: u s i n g  a r e g i s t e r   t o   a d d r e s s  memory. 

mov b p . 2   ; r u n   t h e   t e s t   c o d e   t w i c e   t o  make   sure  

s u b   b x . b x  
: i t ' s  cached 
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C a c h e F i l l   L o o p :  
c a l l   Z T i m e r O n   : s t a r t   t i m i n g  
r e p t  1000 
noP 
mov d l   , c l  
mov ax.[bxl 
endm 
c a l l   Z T i m e r O f f   ; s t o p   t i m i n g  
d e c  b p  
j z  Done 
j m p   C a c h e F i l l   L o o p  

Done: 

Note that Listings 12.1 and 12.2 each  repeat  the timing of the  code  under test a 
second  time, to make sure  that  the  instructions  are  in  the  cache  on  the  second pass, 
the  one for which results are displayed. Also note  that  the  code is  less than 8Kin size, 
so that  it can all fit in the 486’s 8K internal cache. If I double  the REP” value in 
Listing 12.2 to 2,000, making the test code larger than 8K, the execution time more 
than  doubles  to 224 ps, or 3.7 cycles per repetition;  the  extra seven-tenths of a cycle 
comes from  fetching noncached instruction bytes. 

Whenever you see non-integral timing results of this sort, it’s a good bet that  the 
test code or data isn ’t cached. 

The Story Continues 
There’s certainly plenty more 486 lore to explore, including the 486’s unique prefetch 
queue,  more optimization rules, branching optimizations, performance implications 
of the cache, the cost  of cache misses for reads, and  the implications of cache write- 
through  for writes. Nonetheless, we’ve covered quite a bit of ground in this chapter, 
and I trust you’ve gotten a feel for  the considerable extent to which 486 optimization 
differs from what  you’re  used  to. Odd as 486 optimization is, though, it’s  well worth 
mastering, for the 486 is, at its  best, so staggeringly  fast that carefully crafted 486 code 
can do more  than twice as much per cycle as the best 386 code-which  makes it per- 
haps 50 times as fast as optimized code for the original PC. 
Sometimes it is hard to  believe  we’re  still in Kansas! 
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