

ned in the Pursuit of
rd Counter

I remember readin'g ew of C++ development tools for Windows in a past
issue of PC Week. In t eft corner was the familiar box listing the 10 leading
concerns of corpora? buyers when it comes to C++. Roiled down, the list looked
like this, in order ofjHescending importance to buyers:

4. High-level Winddws support
5. Class library
6. Development cycle efficiency
7. Object-oriented development aids
8. Programming management aids
9. Online help

10. Windows development cycle automation
Is something missing here? You bet your maximum gluteus something's missing-
nowhere on that list is there so much as one word about how fast the compiled code

297

lessons learned in the pursuit of the ultimate word counter

runs! I’m not saying that performance is everything, but optimization isn’t even down
there at number 10, below online help! Ye gods and little fishes! We are talking here
about people who would take a bus from LA to New York instead of a plane because it
had a cleaner bathroom; who would choose a painting from a Holiday Inn over a
Matisse because it had a fancier frame; who would buy a h g o instead of-well, hell,
anything-because it had a nice owner’s manual and particularly attractive keys. We
are talking about people who are focusing on means, and have forgotten about ends.
We are talking about people with no programming souls.

Counting Words in a Hurry
What are we to make of this? At the very least, we can safely guess that very few
corporate buyers ever enter optimization contests. Most of my readers do, however;
in fact, far more than I thought ever would, but that gladdens me to no end. I issued
my first optimization challenge in a “Pushing the Envelope” column in PC TECH-
NIQUES back in 1991, and was deluged by respondents who, one might also gather,
do not live by PC Week.
That initial challenge was sparked by a column David Gerrold wrote (also in PC
TECHNIQUES) concerning the matter of counting the number of words in a document;
David turned up some pretty interesting optimization issues along the way. David did
all his coding in Pascal, pointing out that while an assembly language version would
probably be faster, his Pascal utility worked properly and was fast enough for him.
It wasn’t, however, fast enough for me. The logical starting place for speeding up
word counting would be David’s original Pascal code, but I’m much more comfortable
with C, so Listing 16.1 is a loose approximation of David’s word count program, trans
lated to C. I left out a few details, such as handling comment blocks, partly because I
don’t use such blocks myself, and partly so we can focus on optimizing the core word-
counting code. As Table 16.1 indicates, Listing 16.1 counts the words in a 104,448-word
file in 4.6 seconds. The file was stored on a RAM disk, and Listing 16.1 was compiled
with Borland C++ with all optimization enabled. A RAM disk was used partly because
it returns consistent times-no seek times, rotational latency, or cache to muddy the
waters-and partly to highlight word-counting speed rather than disk access speed.

298 Chapter 16

LISTING 1 6.1 11 6- 1 .C
/* W o r d - c o u n t i n g p r o g r a m . T e s t e d w i t h B o r l a n d C++ i n C

c o m p i l a t i o n mode and the sma l l mode l . * /

i n c l u d e < s t d i o . h >
% i n c l u d e < f c n t l . h>
i n c l u d e < s y s \ s t a t . h >
i n c l u d e < s t d l i b . h>
#i ncl ude <i 0 . h >

d e f i n e BUFFER-SIZE Ox8000 I * l a r g e s t c h u n k o f f i l e w o r k e d

i n t m a i n (i n t . c h a r * *) ;

i n t m a i n (i n t a r g c . c h a r * * a r g v) I

w i t h a t any one t i m e * /

i n t H a n d l e ;
u n s i g n e d i n t B l o c k S i z e :
1 o n g F i 1 eS i ze :
uns igned long WordCount - 0:
c h a r * B u f f e r . C h a r f l a g = 0. P r e d C h a r F l a g . * B u f f e r P t r . Ch:

i f (a r g c != 2) {
p r i n t f (" u s a g e : wc < f i l e n a m e > \ n ") :
e x i t (1) :

1

i f ((B u f f e r = rnalloc(BUFFERKS1ZE)) == NULL) I
p r i n t f (" C a n ' t a l l o c a t e a d e q u a t e m e m o r y \ n ") :
e x i t (1) :

I

i f ((H a n d l e = open(argvC11, 0-RDONLY I 0-BINARY)) =- -1) {
p r i n t f (" C a n ' t o p e n f i l e %s \n " . a rgvC11) :
e x i t (1) :

i f ((F i l e s i z e = f i l e l e n g t h (H a n d 1 e)) == -1) I
p r i n t f (" E r r o r s i z i n g f i l e %s \n " . a r g v [l l) ;
e x i t (1) :

}

I* P r o c e s s t h e f i l e i n c h u n k s * /
w h i l e (F i l e s i z e > 0) {

I* G e t t h e n e x t c h u n k *I
F i l e s i z e -= (B l o c k S i z e = min(Fi1eSize. BUFFER-SIZE)):
i f (r e a d (H a n d 1 e . B u f f e r , B l o c k S i z e) == -1) {

p r i n t f (" E r r o r r e a d i n g f i l e %s\n" . a rgvC11) :
e x i t (1) :

1
I* Count words i n t h e chunk * I
B u f f e r P t r = B u f f e r :
do I

PredCharF lag = C h a r f l a g :
Ch = * B u f f e r P t r + + & Ox7F; I* s t r i p h i g h b i t , w h i c h some

word p rocesso rs se t as an

CharF lag =

f l a g * I
I I

) I I
I I

There Ain't No Such Thing as the Fastest Code 299

i f ((! C h a r F l a g) && P redCharF lag) {

I
Wordcount++:

1 w h i l e (- B l o c k S i z e) ;
1

/ * C a t c h t h e l a s t w o r d , i f any */
i f (C h a r F l a g) {

Wordcount++;
1
p r i n t f (" \ n T o t a l w o r d s i n f i l e : % l u \ n " . W o r d c o u n t) :
r e t u r n (0) :

I

Listing 16.2 is Listing 16.1 modified to call a function that scans each block for words,
and Listing 16.3 contains an assembly function that counts words. Used together,
Listings 16.2 and 16.3 are just about twice as fast as Listing 16.1, a good return for a
little assembly language. Listing 16.3 is a pretty straightforward translation from C to
assembly; the new code makes good use of registers, but the key code-determining
whether each byte is a character or not-is still done with the same multiple-sequen-
tial-tests approach used by the code that the C compiler generates.

LISTING 16.2 11 6-2.C
/* W o r d - c o u n t i n g p r o g r a m i n c o r p o r a t i n g a s s e m b l y l a n g u a g e . T e s t e d

w i t h B o r l a n d C++ i n C c o m p i l a t i o n mode & t h e s m a l l m o d e l . * /

#i n c l ude < s t d i 0. h>
i n c l u d e < f c n t l . h>
i n c l u d e < s y s \ s t a t . h >
#i n c l u d e < s t d l i b. h>
i n c l u d e < i o . h >

d e f i n e BUFFER-SIZE 0x8000 / * l a r g e s t c h u n k o f f i l e worked

i n t m a i n (i n t , c h a r **I :
v o i d S c a n B u f f e r (c h a r *, u n s i g n e d i n t , c h a r *, u n s i g n e d l o n g *) ;

i n t m a i n (i n t a r g c . c h a r * * a r g v) {

w i t h a t any one t ime */

i n t Hand le :
u n s i g n e d i n t B l o c k S i z e :
l o n g F i l e S i z e :
u n s i g n e d l o n g W o r d c o u n t - 0:
c h a r * B u f f e r . C h a r F l a g - 0:

i f (a r g c !- 2) {
p r i n t f (" u s a g e : wc < f i l e n a m e > \ n ") ;
e x i t (1) :

1

i f ((B u f f e r - malloc(BUFFER-SIZE)) - NULL) {
p r i n t f (" C a n ' t a l l o c a t e a d e q u a t e m e m o r y \ n ") ;
e x i t (1) :

1

i f ((H a n d l e - open(argvC11, OCRDONLY I 0-BINARY)) - -1) (
p r i n t f (" C a n ' t open f i l e % s \ n " . a r g v C l]) :

300 Chapter 16

1
e x i t (1) :

i f ((F i l e s i z e = f i l e l e n g t h (H a n d 1 e)) == -1) {
p r i n t f (" E r r o r s i z i n g f i l e % s \ n " . a r g v [l]) :
e x i t (1) ;

I

CharF lag = 0 :
w h i l e (F i l e s i z e > 0) {

F i l e s i z e -= (B l o c k S i z e = m i n (F i 1 e S i z e . BUFFER-SIZE)):
i f (r e a d (H a n d 1 e . B u f f e r , B l o c k S i z e) =- -1) {

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

I
S c a n B u f f e r (B u f f e r . B l o c k S i z e . & C h a r F l a g . & W o r d C o u n t) :

1

I* C a t c h t h e l a s t w o r d , i f any * I
i f (C h a r F l a g) I

Wordcount++:
1
p r i n t f (" \ n T o t a l w o r d s i n f i l e : % l u \ n " . W o r d C o u n t) :
r e t u r n (0) :

I

LISTING 16.3 11 6-3.ASM
; A s s e m b l y s u b r o u t i n e f o r L i s t i n g 1 6 . 2 . S c a n s t h r o u g h B u f f e r , o f
: l e n g t h B u f f e r L e n g t h . c o u n t i n g w o r d s a n d u p d a t i n g W o r d C o u n t a s
: a p p r o p r i a t e . B u f f e r L e n g t h m u s t b e > 0 . *CharFlag and *Wordcount
: s h o u l d e q u a l 0 on t h e f i r s t c a l l . T e s t e d w i t h TASM.
: C n e a r - c a l l a b l e a s :
: v o i d S c a n B u f f e r (c h a r * B u f f e r . u n s i g n e d i n t B u f f e r L e n g t h ,
: c h a r * C h a r F l a g . u n s i g n e d l o n g * W o r d c o u n t) :

p a r m s s t r u c

B u f f e r dw ? ; b u f f e r t o s c a n
B u f f e r L e n g t h dw ? : l e n g t h o f b u f f e r t o s c a n
CharF lag dw ? : p o i n t e r t o f l a g f o r s t a t e o f l a s t

dw 2 d u p (?) ; p u s h e d r e t u r n a d d r e s s & B P

: c h a r p r o c e s s e d o n e n t r y (0 on
: i n i t i a l c a l l) . U p d a t e d o n e x i t

; f o u n d (0 on i n i t i a l c a l l)
WordCount dw ? : p o i n t e r t o 3 2 - b i t c o u n t o f w o r d s

parms ends

.model smal 1

.code
pub1 i c _ScanBu f fe r

p u s h b p : p r e s e r v e c a l
mov b p . s p ; s e t u p l o c a l
p u s h s i ; p r e s e r v e c a l
p u s h d i

. _ScanBu f fe r p roc nea r
l e r ' s

s t a c
l e r ' s

s t a c k f r a m e

r e g i s t e r v a r s
k f r ame

mov s i , [b p + B u f f e r l ; p o i n t t o b u f f e r t o s c a n
mov bx . [bp+WordCount l
mov c x , [b x l ; g e t c u r r e n t 3 2 - b i t w o r d c o u n t
mov d x , Cbx+21
mov bx . [bp+CharF lag l

There Ain't No Such Thing as the Fastest Code 301

mov b l , [b x l ; g e t c u r r e n t C h a r F l a g
mov d i . [b p + B u f f e r L e n g t h] ; g e t I o f b y t e s t o s c a n

mov b h . b l :PredCharF lag - CharF lag ;
1 odsb ;Ch - * B u f f e r P t r + + & Ox7F;
a n d a l , 7 f h ; s t r i p h i g h b i t f o r w o r d p r o c e s s o r s

mov b l ,1 ;assume t h i s i s a c h a r ; C h a r F l a g - 1;

j b
cmp a l . ' a ' ;it i s a c h a r i f between a and z

CheckAZ
cmp a l . ' z '
j n a I s A C h a r

cmp a1 , 'A '
j b Check09
cmp a 1 , ' Z '
j n a I s A C h a r

cmp a1 , ' 0 ' ;it i s a c h a r i f between 0 and 9
j b CheckApost rophe
cmp a1 , ' 9 '
j n a I s A C h a r

cmp a1 .27h ;it i s a c h a r i f an apos t rophe
j z IsAChar
s u b b l . b l ; n o t a c h a r ; C h a r F l a g - 0;
and bh.bh
j z ScanLoopBottom ; i f ((! C h a r F l a g) && P redCharF lag) (
add cx .1 ; (WordCount)++;
adc dx .0

ScanLoop:

; t h a t s e t i t a s a n i n t e r n a l f l a g

C hec kAZ :
;it i s a c h a r i f between A and Z

Check09:

CheckApost rophe:

IsAChar :
ScanLoopBottom:

; I

d e c d i ; I w h i l e (" B u f f e r L e n g t h) ;
j n z ScanLoop

mov s i . [b p + C h a r F l a g l
mov [s i] . b l ; s e t new CharF lag
mov bx.[bp+WordCount]
mov [b x] , c x ; s e t new w o r d c o u n t
mov [bx+2] , dx

p o p d i
pop s i
POP bP
r e t

3 c a n B u f f e r e n d p
end

; r e s t o r e c a l l e r ' s r e g i s t e r v a r s

; r e s t o r e c a l l e r ' s s t a c k f r a m e

Which Way to Go from Here?
We could rearrange the tests in light of the nature of the data being scanned; for
example, we could perform the tests more efficiently by taking advantage of the
knowledge that if a byte is less than '0,' it's either an apostrophe or not a character at
all. However, that sort of fine-tuning is typically good for speedups of only 10 to 20
percent, and I've intentionally refrained from implementing this in Listing 16.3 to
avoid pointing you down the wrong path; what we need is a different tack altogether.

302 Chapter 16

Ponder this. What we really want to know is nothing more than whether a byte is a
character, not what sort of character it is. For each byte value, we want a yes/no
status, and nothing else-and that description practically begs for a lookup table.
Listing 16.4 uses a lookup table approach to boost performance another 50 percent,
to three times the performance of the original C code. On a 20 MHz 386, this repre-
sents a change from 4.6 to 1.6 seconds, which could be significant-who likes to
wait? On an 8088, the improvement in word-counting a large file could easily be 10
or 20 seconds, which is definitely significant.

LISTING 16.4 11 6-4.ASM
; A s s e m b l y s u b r o u t i n e f o r L i s t i n g 1 6 . 2 . S c a n s t h r o u g h B u f f e r . o f
; l e n g t h B u f f e r L e n g t h , c o u n t i n g w o r d s a n d u p d a t i n g W o r d C o u n t a s
; a p p r o p r i a t e , u s i n g a l o o k u p t a b l e - b a s e d a p p r o a c h . B u f f e r L e n g t h
; must be > 0. *CharF lag and *Wordcount shou ld equa l 0 on t h e
: f i r s t c a l l . T e s t e d w i t h TASM.
; C n e a r - c a l l a b l e a s :
; v o i d S c a n B u f f e r (c h a r * B u f f e r . u n s i g n e d i n t B u f f e r L e n g t h .
; c h a r * C h a r F l a g , u n s i g n e d l o n g * W o r d C o u n t) ;

p a r m s s t r u c

B u f f e r dw ? ; b u f f e r t o s c a n
B u f f e r L e n g t h dw ? ; l e n g t h o f b u f f e r t o s c a n
CharF lag dw ? ; p o i n t e r t o f l a g f o r s t a t e o f l a s t

dw 2 d u p (?) : p u s h e d r e t u r n a d d r e s s & BP

: c h a r p r o c e s s e d o n e n t r y (0 on
; i n i t i a l c a l l) . U p d a t e d on e x i t

; f o u n d (0 on i n i t i a l c a l l)
Wordcount dw ? : p o i n t e r t o 3 2 - b i t c o u n t o f w o r d s

parms ends

.model smal 1

. d a t a
; T a b l e o f c h a r / n o t s t a t u s e s f o r b y t e v a l u e s 0 - 2 5 5 (1 2 8 - 2 5 5 a r e
; d u p l i c a t e s o f 0 - 1 2 7 t o e f f e c t i v e l y mask o f f b i t 7 . wh ich some
: w o r d p r o c e s s o r s s e t a s a n i n t e r n a l f l a g) .
C h a r S t a t u s T a b l e l a b e l b y t e

REPT 2
db 39 dup(0)
db 1 ;apos t rophe
db 8 d u p (0)
db 10 dup (1)
db

; o - 9
7 d u p (0)

db 26 dup(1) ;A-2
db 6 d u p (0)
db 26 d u p (1)
db

: a - z
5 d u p (0)

ENDM

.code
p u b l i c - S c a n B u f f e r

p u s h b p ; p r e s e r v e c a l
mov b p . s p : s e t u p l o c a l
p u s h s i ; p r e s e r v e c a l
p u s h d i

- S c a n B u f f e r p r o c n e a r
l e r ' s s t a c k f r a m e

l e r ' s r e g i s t e r v a r s
s t a c k f r a m e

There Ain't No Such Thing as the Fastest Code 303

mov
mov
mov
mov
mov
mov
mov
mov

and

1 odsb

x l a t

ScanLoop:

j z

and

j z

dec
j n z

mov
mov
mov
mov
mov

POP
POP
POP
r e t

a1 i g n

add
adc
dec
j n z
jmp

-ScanBu f fe r
end

ScanLoopBottom

Done:

Countword :

s i . [b p + B u f f e r l : p o i n t t o b u f f e r t o s c a n
bx. [bp+WordCount]
d i , [b x] : g e t c u r r e n t 3 2 - b i t w o r d c o u n t
dx. [bx+El
bx . [bp+CharF lag]
a1 . C b x l : g e t c u r r e n t C h a r F l a g
cx ,Cbp+Bu f fe rLeng th l : ge t # o f b y t e s t o s c a n
b x . o f f s e t C h a r S t a t u s T a b l e

a1 .a1

ScanLoooBottom

a1 .a1

Countword

c x
ScanLoop

:ZF-0 i f l a s t b y t e was a c h a r ,
: Z F = l i f n o t
; g e t t h e n e x t b y t e
; * * * d o e s n ' t c h a n g e f l a g s * * *
: l o o k u p i t s c h a r / n o t s t a t u s
; * * *doesn ' t change f l ags* * *
: d o n ' t c o u n t a word i f l a s t b y t e was
: n o t a c h a r a c t e r
; l a s t b y t e was a c h a r a c t e r : i s t h e
: c u r r e n t b y t e a c h a r a c t e r ?
;no. s o c o u n t a word

: c o u n t down b u f f e r l e n g t h

s i . [b p + C h a r F l a g]
[s i 1 .a1
bx. [bp+WordCount l

; s e t new CharF lag

[b x l . d i : s e t new w o r d c o u n t
[bx+2 l ,dx

d i
s i
bP

2

d i .I
dx.0

ScanLoop
Done
endp

c x

: r e s t o r e c a l l e r ' s r e g i s t e r v a r s

: r e s t o r e c a l l e r ' s s t a c k f r a m e

: i n c r e m e n t t h e w o r d c o u n t

: c o u n t down b u f f e r l e n g t h

Listing 16.4 features several interesting tricks. First, i t uses LODSB and XLAT in
succession, a very neat way to get a pointed-to byte, advance the pointer, and look up
the value indexed by the byte in a table, all with just two instruction bytes. (Interest-
ingly, Listing 16.4 would probably run quite a bit better still on an 8088, where LODSB
and XLAT have a greater advantage over conventional instructions. On the 486 and
Pentium, however, LODSB and XLAT lose much of their appeal, and should be
replaced with MOV instructions.) Better yet, LODSB and XLAT don't alter the flags,
so the Zero flag status set before LODSB is still around to be tested after XLAT.
Finally, if you look closely, you will see that Listing 16.4 jumps out of the loop to
increment the word count in the case where a word is actually found, with a duplicate of
the loop-bottom code placed after the code that increments the word count, to avoid

304 Chapter 16

P

Cha

an extra branch back into the loop; this replaces the more intuitive approach of
jumping around the incrementing code to the loop bottom when a word isn’t found.
Although this incurs a branch every time a word is found, a word is typically found
only once every 5 or 6 bytes; on average, then, a branch is saved about two-thirds of
the time. This is an excellent example of how understanding the nature of the data
you’re processing allows you to optimize in ways the compiler can’t. Know your data!
So, gosh, Listing 16.4 is the best word-counting code in the universe, right? Not
hardly. If there’s one thing my years of toil in this vale of silicon have taught me, it’s
that there’s never a lack of potential for further optimization. Never! Off the top of
my head, I can think of at least three ways to speed up Listing 16.4; and, since Turbo
Profiler reports that even in Listing 16.4,88 percent of the time is spent scanning the
buffer (as opposed to reading the file), there’s potential for those further optimiza-
tions to improve performance significantly. (However, it is true that when access is
performed to a hard rather than RAM disk, disk access jumps to about half of overall
execution time.) One possible optimization is unrolling the loop, although that is
truly a last resort because it tends to make further changes extremely difficult.

Exhaust all other optimizations before unrolling loops.

llenges and Hazards
The challenge I put to the readers of PC TECHNIQLESwas to write a faster module
to replace Listing 16.4. The author of the code that counted the words in my secret
test file fastest on my 20 MHz cached 386 would be the winner and receive Numer-
ous Valuable Prizes.
No listings were to be longer than 200 lines. No complete programs were to be ac-
cepted; submissions had to be plug-compatible with Listing 16.4. (This was to
encourage people not to waste time optimizing outside the inner loop.) Finally, the
code had to produce the same results as Listing 16.4; I didn’t want to see functions
that approximated the word count by dividing the number of characters by six in-
stead of counting actual words!
So how did the entrants in this particular challenge stack up? More than one claimed
a speed-up over my assembly word-counting code of more than three times. On
top of the three-times speedup over the original C code that I had already realized,
we’re almost up to an order of magnitude faster. You are, of course, entitled to
your own opinion, but Iconsider an order of magnitude to be significant.
Truth to tell, I didn’t expect a three-times speedup; around two times was what I had
in mind. Which just goes to show that any code can be made faster than you’d ex-
pect, if you think about it long enough and from many different perspectives. (The
most potent word-counting technique seems to be a 64K lookup table that allows

There Ain’t No Such Thing as the Fastest Code 305

handling two bytes simultaneously. This is not the sort of technique one comes up
with by brute-force optimization.) Thinking (or, worse yet, boasting) that your code
is the fastest possible is rollerskating on a tightrope in a hurricane; you’re due for a
fall, if you catch my drift. Case in point: Terje Mathisen’s word-counting program.

Blinding Yourself to a Better Approach
Not so long ago, Terje Mathisen, who I introduced earlier in this book, wrote a very
fast word-counting program, and posted it on Bix. When I say it was fast, I mean fast;
this code was optimized like nobody’s business. We’re talking top-quality code here.
When the topic of optimizing came up in one of the Bix conferences, Terje’s program
was mentioned, and he posted the following message: “I challenge BIXens (and espe-
cially mabrash!) to speed it up significantly. I would consider 5 percent a good result.”
The clear implication was, ‘That code is as fast as it can possibly be.”
Naturally, it wasn’t; there ain’t no such thing as the fastest code (TANSTATFC? I
agree, it doesn’t have the ring of TANSTAAFL). I pored over Terje’s 386 native-mode
code, and found the critical inner loop, which was indeed as tight as one could
imagine, consisting of just a few 386 native-mode instructions. However, one of the
instructions was this:

CMP D H . C E B X + E A X I

Harmless enough, save for two things. First, EBX happened to be zero at this point
(a leftover from an earlier version of the code, as it turned out), so it was superfluous
as a memory-addressing component; this made it possible to use base-only address-
ing ([EAX]) rather than baset-index addressing ([EBX+EAX]), which saves a cycle
on the 386. Second: Changing the instruction to CMP [EAX],DH saved 2 cycles-
just enough, by good fortune, to speed up the whole program by 5 percent.

CMP reg,[mem] takes 6 cycles on the 386, but CMP /memJ,reg takes only 5 cycles; 1 you should always pevform CMP with the memory operand on the left on the 386.

(Granted, CMP [mem],reg is 1 cycle slower than CMP reg,[mem] on the 286, and
they’re both the same on the 8088; in this case, though, the code was specific to the 386.
In case you’re curious, both forms take 2 cycles on the 486; quite a lot faster, eh?)

Watch Out for Luggable Assumptions!
The first lesson to be learned here is not to lug assumptions that may no longer be
valid from the 8088/286 world into the wonderful new world of 386 native-mode
programming. The second lesson is that after you’ve slaved over your code for a
while, you’re in no shape to see its flaws, or to be able to get the new perspectives
needed to speed it up. I’ll bet Terje looked at that [EBX+EAX] addressing a hundred

306 Chapter 16

times while trying to speed up his code, but he didn’t really see what it did; instead,
he saw what it was supposed to do. Mental shortcuts like this are what enable us to
deal with the complexities of assembly language without overloading after about 20
instructions, but they can be a major problem when looking over familiar code.
The third, and most interesting, lesson is that a far more fruitful optimization came
of all this, one that nicely illustrates that cycle counting is not the key to happiness,
riches, and wondrous performance. After getting my 5 percent speedup, I mentioned
to Terje the possibility of using a 64K lookup table. (This predated the arrival of
entries for the optimization contest.) He said that he had considered it, but it didn’t
seem to him to be worthwhile. He couldn’t shake the thought, though, and started
to poke around, and one day, voila, he posted a new version of his word count pro-
gram, WC50, that was much faster than the old version. I don’t have exact numbers,
but Terje’s preliminary estimate was 80 percent faster, and word counting--including
disk cache access time-proceeds at more than 3 MB per second on a 33 MHz 486.
Even allowing for the speed of the 486, those are very impressive numbers indeed.
The point I want to make, though, is that the biggest optimization barrier that Terje
faced was that he thought he had the fastest code possible. Once he opened up the
possibility that there were faster approaches, and looked beyond the specific approach
that he had so carefully optimized, he was able to come up with code that was a lot
faster. Consider the incongruity of Terje’s willingness to consider a 5 percent speedup
significant in light of his later near-doubling of performance.

Don ’t get stuck in the rut of instruction-by-instruction optimization. It 5 useful in 1 key loops, but very often, a change in approach will work fa r greater wonders than
any amount of cycle counting can.

By the way, Terje’s WC50 program is a full-fledged counting program; it counts char-
acters, words, and lines, can handle multiple files, and lets you specify the characters
that separate words, should you so desire. Source code is provided as part of the
archive WC50 comes in. All in all, it’s a nice piece of work, and you might want to
take a look at it if you’re interested in really fast assembly code. I wouldn’t call it the
fastestword-counting code, though, because I would of course never be so foolish as
to call anything the fastest.

The Astonishment of Right-Brain Optimization
As it happened, the challenge I issued to my PC TECHNIQUES readers was a smashing
success, with dozens of good entries. I certainly enjoyed it, even though I did have to
look at a lot of tricky assembly code that I didn’t write-hard work under the best of
circumstances. It was worth the trouble, though. The winning entry was an astonishing
example of what assembly language can do in the right hands; on my 386, it was four
times faster at word counting than the nice, tight assembly code I provided as a starting

There Ain‘t No Such Thing as the Fastest Code 307

point-and about 13 times faster than the original C implementation. Attention, high-
level language chauvinists: Is the speedup getting significant yet? Okay, maybe word
counting isn’t the most critical application, but how would you like to have that kind of
improvement in your compression software, or in your real-time games-or in Win-
dows graphics?
The winner was David Stafford, who at the time was working for Borland Interna-
tional; his entry is shown in Listing 16.5. Dave Methvin, whom some of you may
recall as a tech editor of the late, lamented PC Tech Journal, was a close second, and
Mick Brown, about whom I know nothing more than that he is obviously an ex-
tremely good assembly language programmer, was a close third, as shown in Table
16.2, which precedes Listing 16.5. Those three were out ahead of the pack; the fourth-
place entry, good as it was (twice as fast as my original code), was twice as slow as
David’s winning entry, so you can see that David, Dave, and Mick attained a rarefied
level of optimization indeed.
Table 16.2 has two times for each entry listed: the first value is the overall counting time,
including time spent in the main program, disk I/O, and everything else; the second
value is the time actually spent counting words, the time spent in ScanBuffer. The first
value is the time perceived by the user, but the second value best reflects the quality
of the optimization in each entry, since the rest of the overall execution time is fixed.

308 Chapter 16

LISTING 16.5 QSCAN3.ASM
; QSCAN3.ASM
; D a v i d S t a f f o r d

COMMENT $

How i t works

The idea i s t o g o t h r o u g h t h e b u f f e r f e t c h i n g e a c h l e t t e r - p a i r (w o r d s
r a t h e r t h a n b y t e s) . T h e c a r r y f l a g i n d i c a t e s w h e t h e r we a r e
c u r r e n t l y i n a (t e x t) w o r d o r n o t . T h e l e t t e r - p a i r f e t c h e d f r o m t h e
b u f f e r i s c o n v e r t e d t o a 1 6 - b i t a d d r e s s b y s h i f t i n g i t l e f t one b i t
(l o s i n g t h e h i g h b i t o f t h e s e c o n d c h a r a c t e r) a n d p u t t i n g t h e c a r r y
f l a g i n t h e l o w b i t . T h e h i g h b i t o f t h e c o u n t r e g i s t e r i s s e t t o
1. T h e n t h e c o u n t r e g i s t e r i s a d d e d t o t h e b y t e f o u n d a t t h e g i v e n
address i n a l a r g e (64K. n a t u r a l l y) t a b l e . T h e b y t e a t t h e g i v e n
address will c o n t a i n a 1 i n t h e h i g h b i t i f t h e l a s t c h a r a c t e r o f t h e
l e t t e r - p a i r i s a w o r d - l e t t e r (a l p h a n u m e r i c o r a p o s t r o p h e) . T h i s will
s e t t h e c a r r y f l a g s i n c e t h e h i g h b i t o f t h e c o u n t r e g i s t e r i s a l s o a
1. The low b i t o f t h e b y t e f o u n d a t t h e g i v e n a d d r e s s will be one i f
t h e s e c o n d c h a r a c t e r o f t h e p r e v i o u s l e t t e r - p a i r was a w o r d - l e t t e r
a n d t h e f i r s t c h a r a c t e r o f t h i s l e t t e r - p a i r i s n o t a w o r d - l e t t e r . It
will a l s o b e 1 i f t h e f i r s t c h a r a c t e r o f t h i s l e t t e r - p a i r i s a
w o r d - l e t t e r b u t t h e s e c o n d c h a r a c t e r i s n o t . T h i s p r o c e s s i s
r e p e a t e d . F i n a l l y , t h e c a r r y f l a g i s s a v e d t o i n d i c a t e t h e f i n a l
i n - a - w o r d / n o t - i n - a - w o r d s t a t u s . T h e c o u n t r e g i s t e r i s m a s k e d t o
r e m o v e t h e h i g h b i t and t h e c o u n t o f w o r d s r e m a i n s i n t h e c o u n t
r e g i s t e r .

S o u n d c o m p l i c a t e d ? Y o u ' r e r i g h t ! B u t i t ' s f a s t !

T h e b e a u t y o f t h i s m e t h o d i s t h a t n o j u m p s a r e r e q u i r e d , t h e
o p e r a t i o n s a r e f a s t . it r e q u i r e s o n l y o n e t a b l e a n d t h e p r o c e s s c a n
b e r e p e a t e d (u n r o l l e d) many t i m e s . QSCAN3 c a n r e a d 2 5 6 b y t e s w i t h o u t
j ump ing .

COMMEND $

T e s t 1
Addr&x:

T e s t 2
Addr&x:

Scan
B u f f e r
B u f f e r L e n g t h
CharF lag
WordCount

.model smal l

. code

macro x .y
mov d i , Cbp+yl
adc d i . d i
o r
add a1 , Cdi 1

a x . s i

endm

macro x .y
mov d i , Cbp+yl
adc d i . d i
add ah , [d i 1
endm

- 128 -

- - 4
6 - -

- - a
10

:9 o r 1 0 b y t e s
; 3 o r 4 b y t e s

;7 o r 8 b y t e s
: 3 o r 4 b y t e s

; s c a n 2 5 6 b y t e s a t a t i m e
; parms

There Ain't No Such Thing as the Fastest Code 309

p u b l i c - S c a n B u f f e r
- S c a n B u f f e r p r o c n e a r

push
mov
push
push

x o r
mov
mov
s h r
j n z

mov
mov

mov
mov
mov
add
add
mov
cbw
s h r
adc
xchg
jmp

push
p u s h f

cwd
mov
d i v
o r

sub
sub
sub
i nc

S ta r tA tTheTop : mov
s h l
mov
xchg
x o r
mov
mov
mov
mov
mov
mov
mov
s h r

OneByteBuf:

Normal Buf :

jz

j mp

a1 i g n
add

r e p t
- Top :

n

c x , c x
s i . [b p + B u f f e r] ; s i - t e x t b u f f e r
a x . [b p + B u f f e r L e n g t h l ; d x - l e n g t h i n b y t e s
a x . 1
Normal Buf

ax.seg WordTable
es.ax

d i , [bp+CharF lag]
b h . [d i l
b l , [s i 1

bx , bx
a1 . e s : [b x]

a1 .1
c x , c x
ax, bx
C1 eanUp

b h . ' A " l

bp

c l .Scan

dx, dx
S t a r t A t T h e T o p
cx , dx
s i . c x
s i . c x
ax

bx , dx
b x . 1
d i , L o o p E n t r y [b x]
dx, ax
c x , c x
bx . [bp+CharF lag l
b l . [b x l
bp,seg WordTable
ds. bp
b p , s i
s i ,8080h
a x . s i
b l .1
d i

c x

2

0
bx , bx

Scan12

;dx - l e n g t h i n w o r d s

;bh - o l d C h a r F l a g
: b l - c h a r a c t e r
;make bh i n t o c h a r a c t e r
: p r e p a r e t o i n d e x

: g e t h i b i t i n ah (t h e n b h)
: g e t l o w b i t
; cx - 0 o r 1

:(1)
: (2)

:dx - 0

: rema inder?
;nope. do the who le banana

: a d j u s t b u f p o i n t e r

; a d j u s t f o r p a r t i a l r e a d

: g e t i n d e x f o r s t a r t ...
: . . . add ress i n d i
:dx i s t h e l o o p c o u n t e r
; t o t a l w o r d c o u n t

; b l - o l d C h a r F l a g

: s c a n b u f f e r w i t h b p
: h i b i t s
: i n i t l o c a l w o r d c o u n t e r
; c a r r y - o l d C h a r F l a g

: r e s t o r e c a r r y

3 1 0 Chapter 16

n

EndCount:

i f

e l s e

e n d i f

Q u i t :

I t s E v e n :

C leanup:

-ScanBu f fe r

Address

LoopEn t ry
n

n

i n c l u d e

T e s t l %n.%n*2
T e s t 2 %n+l.%n*2+2 - n+2
endm

sbb bx .bx
Scan ge 128
o r
add
mov

add
and

add
mov
add
dec
j n g
j mp

POPf
j n c
c l c
T e s t l
sbb
s h r
adc

push
POP
POP

mov
add
adc
and
mov
mov
POP
POP
POP
r e t
endp

. d a t a
macro
dw
endm

: s a v e c a r r y
:because a l+ah may equa l 128 !

a x . s i
a1 ,ah
ah.0

a1 ,ah
a x . 7 f h :mask

cx .ax : upda te word coun t
a x . s i
bp,Scan*2
dx :any l e f t ?
Q u i t
TOP

: (2) e v e n o r o d d b u f f e r ?
I t s E v e n

Odd.-1
b x , b x : s a v e c a r r y
a x . 1
cx .0

ds
s s : r e s t o r e d s

bp :(1)

s i . [bp+WordCount l
[s i l . c x
w o r d p t r [s i + E l . O
b h . 1 : s a v e o n l y t h e c a r r y f l a g
s i . [b p + C h a r F l a g l
[s i 1, bh
d i
s i
bp

X
Addr&X

l a b e l w o r d - Scan
REPT Scan
Address %n MOD Scan

ENDM

. f a r d a t a W o r d T a b l e
qscan3 . inc
end

- n - 1

: b u i l t b y MAKETAB

There Ain’t No Such Thing as the Fastest Code 31 1

Levels of Optimization
Three levels of optimization were evident in the word-counting entries I received in
response to my challenge. I’d briefly describe them as “fine-tuning,” “new perspec-
tive,” and “table-driven state machine.” The latter categories produce faster code,
but, by the same token, they are harder to design, harder to implement, and more
difficult to understand, so they’re suitable for only the most demanding applica-
tions. (Heck, I don’t even guarantee that David Stafford’s entry works perfectly,
although, knowing him, it probably does; the more complex and cryptic the code,
the greater the chance for obscure bugs.)

Remember, optimize only when needed, and stop when further optimization will p not be noticed. Optimization that 5. not perceptible to the user is like buying Telly
Savalas a comb; it 5. not going to do any harm, but it 5. nonetheless a waste of time.

Optimization Level 1 : Good Code
The first level of optimization involves fine-tuning and clever use of the instruction set.
The basic framework is still the same as my code (which in turn is basically the same
as that of the original C code), but that framework is implemented more efficiently.
One obvious level 1 optimization is using a word rather than dword counter.
ScanBuffer can never be called upon to handle more than 64K bytes at a time, so
no more than 32K words can ever be found. Given that, it’s a logical step to use
INC rather than ADD/ADC to keep count, adding the tally into the full 32-bit
count only upon exiting the function. Another useful optimization is aligning loop
tops and other branch destinations to word, or better yet dword, boundaries.
Eliminating branches was very popular, as it should be on x86 processors. Branches
were eliminated in a remarkable variety of ways. Many of you unrolled the loop, a
technique that does pay off nicely. A word of caution: Some of you unrolled the loop
by simply stacking repetitions of the inner loop one after the other, with DEC CX/JZ
appearing after each repetition to detect the end of the buffer. Part of the point of
unrolling a loop is to reduce the number of times you have to check for the end of
the buffer! The trick to this is to set CX to the number of repetitions of the unrolled
loop and count down only once each time through the unrolled loop. In order to
handle repetition counts that aren’t exact multiples of the unrolling factor, you must
enter the loop by branching into the middle of it to perform whatever fraction of the
number of unrolled repetitions is required to make the whole thing come out right.
Listing 16.5 (QSCAN3.ASM) illustrates this technique.
Another effective optimization is the use of LODSW rather than LODSB, thereby
processing two bytes per memory access. This has the effect of unrolling the loop one
time, since with LODSW, looping is performed at most only once every two bytes.
Cutting down the branches used to loop is only part of the branching story. More
often than not, my original code also branched in the process of checking whether it

31 2 Chapter 16

was time to count a word. There are many ways to reduce this sort of branching; in
fact, it is quite possible to eliminate it entirely. The most straightforward way to re-
duce such branching is to employ two loops. One loop is used to look for the end of
a word when the last byte was a non-separator, and one loop is used to look for the
start of a word when the last byte was a separator. This way, it’s no longer necessary to
maintain a flag to indicate the state of the last byte; that state is implied by whichever
loop is currently executing. This considerably simplifies and streamlines the inner
loop code.
Listing 16.6, contributed by Willem Clements, of Granada, Spain, illustrates a variety
of level 1 optimizations: the two-loop approach, the use of a 16- rather than 32-bit
counter, and the use of LODSW. Together, these optimizations made Willem’s code
nearly twice as fast as mine in Listing 16.4. A few details could stand improvement;
for example, AND Axpx is a shorter way to test for zero than CMP AX,O, and ALIGN 2
could be used. Nonetheless, this is good code, and it’s also fairly compact and rea-
sonably easy to understand. In short, this is an excellent example of how an hour or
so of hand-optimization might accomplish significantly improved performance at a
reasonable cost in complexity and time. This level of optimization is adequate for
most purposes (and, in truth, is beyond the abilities of most programmers).

LISTING 16.6 OPT2.ASM

Opt2
W r i t t e n b y
Modi f i ed by

parms

b u f f e r
b u f f e r l e n g t h
c h a r f l a g
wordcoun t
parms

s t r u c
dw
dw
dw
dw
dw
ends
.model
. d a t a

c h a r s t a t u s t a b l e l a b e l

db
r e p t

db
db
db
db
db
db
db
db
endm
.code

F i n a l o p t i m i z a t i o n w o r d c o u n t
M ichae l Ab rash
W i l l e m C l e m e n t s
C1 Moncayo 5, Laurel de l a Re ina
18140 La Zub ia
Granada, Spain
Te l 34 -58 -890398
Fax 34-58-224102

2 d u p (?)
?
?
?
?

s m a l l

b y t e
2
39 dup (0)
I

8 d u p (0)
1 0 d u p (1)
7 d u p (0)
26 dup(1)
6 d u p (0)
26 d u p (1)
5 d u p (0)

There Ain‘t No Such Thing as the Fastest Code 3 1 3

-ScanBu f fe r

o d d e n t r y :

s c a n l o o p l :

scanl oop2:

scanl oop4:

scan l oop5 :

d o n e l :

done2:

done:

pub1 i c
p r o c
push
mov
push
push
mov
mov
mov
mov
mov
x o r
s h r
j c
cmp
j n e
j mp
xchg
1 odsb
i nc
cmp
j n e
jmp

~ S c a n B u f f e r
n e a r
bP
b p s s p

d i
s i

s i . [b p + b u f f e r l
b x . [b p + c h a r f l a g l
a1 . Cbx l
c x . [b p + b u f f e r l e n g t h l
b x . o f f s e t c h a r s t a t u s t a b l e
d i . d i : s e t w o r d c o u n t t o z e r o

o d d e n t r y : odd number o f b y t e s t o p r o c e s s
c x . 1 : change count t o w o r d c o u n t

a1 .O lh
s c a n l oop4
s c a n l o o p l
a1 ,ah

c x
a h . 0 l h
scan l oop5
scan l oop2

: check i f l a s t one
: i f n o t s o . s e a r c h
: i f so. s e a r c h f o r
: l a s t one i n ah
: g e t f i r s t b y t e

: check i f l a s t one
: i f n o t s o . s e a r c h
: i f so, s e a r c h f o r

i s c h a r
f o r c h a r
z e r o

was c h a r
f o r c h a r
z e r o

l o c a t e t h e e n d o f a word
1 odsw : g e t t w o c h a r s
x1 a t : t r a n s l a t e f i r s t
xchg a1 ,ah : f i r s t i n ah
x1 a t : t r a n s l a t e s e c o n d
d e c c x : c o u n t down
j z d o n e l : no m o r e b y t e s l e f t
CmP ax.0101h : check i f t w o c h a r s
j e s c a n l o o p l : g o f o r n e x t t w o b y t e s

cmp a1 ,O lh : check i f new w o r d s t a r t e d
j e s c a n l o o p l : l o c a t e e n d o f w o r d

i n c d i : i n c r e a s e w o r d c o u n t

l o c a t e t h e b e g i n o f a word
1 odsw
x1 a t
xchg a1 ,ah
x1 a t
dec cx
j z done2
cmp ax .0
j e s c a n l o o p 4
CmP a1 .O lh
j e s c a n l o o p l
i n c d i
jmp scan l oop4
CmP ax.0101h
j e done

jmp done
cmp ax.0100h

i n c d i

j n e d o n e
i n c d i
mov s i . [b p + c h a r f l a g l
mov [s i 1 .a1
mov bx , [bp+wordcoun t l
mov ax . Cbx l

g e t t w o c h a r s
t r a n s 1 a t e f i r s t
f i r s t i n ah
t r a n s l a t e s e c o n d
c o u n t down
no more by tes l e f t
check i f w o r d s t a r t e d
i f n o t , l o c a t e b e g i n
c h e c k o n e - l e t t e r w o r d
i f n o t , l o c a t e e n d o f w o r d
i n c r e a s e w o r d c o u n t
l o c a t e b e g i n o f n e x t w o r d
check i f e n d - o f - w o r d
i f n o t . we h a v e f i n i s h e d
i n c r e a s e w o r d c o u n t

c h e c k f o r o n e - l e t t e r w o r d
i f n o t , we h a v e f i n i s h e d
i n c r e a s e w o r d c o u n t

31 4 Chapter 16

rnov
add
a d c
rnov
rnov
POP
POP
P O P
r e t

end
- S c a n B u f f e r endp

d x . [b x + E]
d i , a x
d x . 0
[b x l . d i
[bx+Z] .dx
d i
s i
bp

Level 2: A New Perspective
The second level of optimization is one of breaking out of the mode of thinking
established by my original code. Some entrants clearly did exactly that. They stepped
back, thought about what the code actually needed to do, rather than just improving
how it already worked, and implemented code that sprang from that new perspective.
You can see one example of this in Listing 16.6, where Willem uses CMP AX,0101H
to check two bytes at once. While you might think of this as nothing more than a
doubling up of tests, it’s a little more than that, especially when taken together with
the use of two loops. This is a break with the serial nature of the C code, a recogni-
tion that word counting is really nothing more than a state machine that transitions
from the “in word” state to the “not in word” state and back, counting a word on one
but not both of those transitions. Willem says, in effect, ‘We’re in a word; if the next
two bytes are non-separators, then we’re still in a word, else we’re not in a word, so
count and change to the appropriate state.”That’s really quite different from saying,
as I originally did, “If the last byte was a non-separator, then if the current byte is a
separator, then count a word.” Willem has moved away from the all-in-one approach,
splitting the code up into state-specific chunks that are more efficient because each
does only the work required in a particular state.
Another example of coming at the code from a new perspective is counting a word
as soon as a non-separator follows a separator (at the start of the word), rather than
waiting for a separator following a non-separator (at the end of the word). My friend
Dan Illowsky describes the thought process leading to this approach thusly:

‘T try to code as closely as possible to the real world nature of those things my program models. It
seems somehow wrong to me to count the end o f a word as you do when you look for a transition
from a word to a non-word. A word is not a transition, it is the presence o f a group of characters.
Thought ofthis way, the code would have counted the word when itfirst detected thegroup. Had
you done this, your main program would not have needed to look for the possible last transition
or deal with the semantics of the value in Charvalue.”

John Richardson, of New York, contributed a good example of the benefits of a
different perspective (in this case, a hardware perspective). John eliminated all

There Ain’t No Such Thing as the Fastest Code 3 1 5

branches used for detecting word edges; the inner loop of his code is shown in List-
ing 16.7. As John explains it:

“My next shot was to get rid of all the branches in the loop. To do that, I reached back to my
college hardware courses. I noticed that we were really looking at an edge triggered device we
want to count each time the I,m a character state goes from one to zero. Remembering that XOR
on two single-bit values will always return whether the bits are d$fierent or the same, I imple-
mented a transition countm The counter triggers every time a word begins or ends. ’’

LISTING 16.7 11 6-7.ASM
ScanLoop:

1 odsw : g e t t h e n e x t 2 b y t e s (A L - f i r s t , AH - 2nd)
x1 a t : l o o k u p f i r s t ’ s c h a r / n o t s t a t u s
x o r d 1 , a l : s e e i f t h e r e ’ s a new c h a r / n o t s t a t u s
a d d d i . d x :we add 1 f o r e a c h c h a r / n o t t r a n s i t i o n
mov d l ,a1
mov a 1 , a h ; l o o k a t t h e s e c o n d b y t e
x1 a t : l o o k u p i t s c h a r / n o t s t a t u s
x o r d l . a l : s e e i f t h e r e ’ s a new c h a r / n o t s t a t u s
a d d d i . d x :we add 1 f o r e a c h c h a r / n o t t r a n s i t i o n
mov d l .a1
d e c d x
j n z ScanLoop

John later divides the transition count by two to get the word count. (Food for thought:
It’s also possible to use CMP and ADC to detect words without branching.)
John’s approach makes it clear that wordcounting is nothing more than a fairly simple
state machine. The interesting part, of course, is building the fastest state machine.

Level 3: Breakthrough
The boundaries between the levels of optimization are not sharply defined. In a
sense, level 3 optimization is just like levels 1 and 2, but more so. At level 3, one takes
whatever level 2 perspective seems most promising, and implements it as efficiently
as possible on the x86. Even more than at level 2, at level 3 this means breaking out
of familiar patterns of thinking.
In the case of word counting, level 3 means building a table-driven state machine
dedicated to processing a buffer of bytes into a count of words with a minimum
of branching. This level of optimization strips away many of the abstractions we usu-
ally use in coding, such as loops, tests, and named variables-look back to Listing
16.5, and you’ll see what I mean. Only a few people reached this level, and I don’t
think any of them did it without long, hard thinking; David Stafford’s final entry
(that is, the one I present as Listing 16.5) was at least the fifth entry he sent me.
The key concept at level 3 is the use of a massive (64K) lookup table that processes
byte sequences directly into word-count actions. With such a table, it’s possible to
look up the appropriate action for two bytes simultaneously in just a few instruc-
tions; next, I’m going to look at the inspired and highly unusual way that David’s

31 6 Chapter 16

code, shown in Listing 16.5, does exactly that. (Before assembling Listing 16.5, you
must run the C code in Listing 16.8, to generate an include file defining the 64K
lookup table. When you assemble Listing 16.5, TASM will report a "location counter
overflow" warning; ignore it.)

LISTING 16.8 MAKETALC
/ / MAKETAB.C - B u i l d QSCAN3.INC f o r QSCAN3.ASM

l i n c l u d e < s t d i o . h>
#i ncl ude <c type. h>

#de f ine ChType(c) (((c) & O x 7 f) == ' \ " I I i s a l n u m ((c) & O x 7 f))

i n t N o c a r r y [4 1 = 1 0. 0x80, 1. 0x80 I :
i n t C a r r y [4 1 = (1. 0x81, 1. Ox80) :

v o i d m a i n (v o i d)

1
i n t a h c h a r . a l C h a r . i:
FILE *t = f o p e n ("QSCAN3.INC". " w t ") :

p r i n t f (" B u i l d i n g t a b l e . P l e a s e w a i t . . . ") :

f o r (ahChar = 0 : ahChar < 128: ahchar++ 1
t
f o r (a l C h a r = 0: a l C h a r < 2 5 6 : a lChar++ 1

i f (a l C h a r % 8 == 0 f p r i n t f (t . " \ndb %02Xh". Nocarry [i] 1 ;
e l s e f p r i n t f (t . " .%02Xh" . Nocar ry [i] 1 :

f p r i n t f (t . " .%02Xh". Carry [i 3 1 :
I

f c l o s e (t) :

I

David's approach is simplicity itself, although his implementation arguably is not.
Consider any three sequential bytes in the buffer. Those three bytes define two po-
tential places where a word might be counted, as shown in Figure 16.1. Given the
separator/non-separator states of the three bytes, you can instantly determine whether
to count a word or not; you count a word if and only if somewhere in the sequence
there is a non-separator followed by a separator. Note that a maximum of one word
can be counted per three-byte sequence.
The trick, then, is to identify the separator/not statuses of each set of three bytes and
turn them into a 1 (count word) or 0 (don't count word), as quickly as possible.
Assuming that the separator/not status for the first byte is in the Carry flag, this is
easily accomplished by a lookup in a 64K table, based on the Carry flag and the other
two bytes, as shown in Figure 16.2. (Remember thatwe're counting $-bit ASCII here,
so the high bit is ignored.) Thus, David is able to add the word/not status for each

There Ain't No Such Thing as the Fastest Code 3 1 7

Byte 0 Byte 1 Byte 2

t t
Places where the end of a word might

occur in this threebyte sequence.

The two potential word count locations.
Figure 16.1

pair of bytes to the main word count simply by getting the two bytes, working in the
carry status from the last byte, and using the resulting value to index into the 64K
table, adding in the 1 or 0 value found in that table. A sequence of MOV/ADC/ADD
suffices to perform all word-counting tasks for a pair of bytes. Three instructions, no
branches-pretty nearly perfect code.
One detail remains to be attended to: setting the Carry flag for next time if the last
byte was a non-separator. David does this in a bizarre and incredibly effective way: He

I Byte 0 Byte 1 Byte 2

A 1 is the Carry flag if
the first byte is a non-
separator; otherwise, a
0 i s the Carry flag.

The Carry flag is rotated
left into the other two bytes
to form a 16-bit look-up
address. Bit 7 of byte 1 is
lost in the process, so this
only works for 7-bit ASCII.

h h
9Ah 41 h

I.
Value at address 9A41 h in the 64K lookup
table. Bits 6-0 are 1 because there is an end-
of-word in this sequence, so a word is
counted. Bit 7 is 1 because the last byte is a
non-separator.

0
0

Looking up a word count status.
Figure 16.2

31 8 Chapter 16

presets the high bit of the count, and sets the high bit in the lookup table for those
entries looked up by non-separators. When a non-separator’s lookup entry is added
to the count, it will produce a carry, as desired. The high bit of the count is masked
off before being added to the total count, so David is essentially using different parts
of the count variables for different purposes (counting, and setting the Carry flag).
There are a number of other interesting details in David’s code, including the un-
rolling of the loop 64 times, so that 256 bytes in a row are processed without a single
branch. Unfortunately, I lack the space to discuss Listing 16.5 any further. Perhaps
that’s not so unfortunate, after all; I’d hate to deny you the pleasure of discovering
the wonders of this rather remarkable code yourself. I will say one more thing, though.
The cycle count for David’s inner loop is 6.5 cycles per byte processed, and the actual
measured time for his routine, overhead and all, is 7.9 cycles/byte. The original C
code clocked in at around 100 cycles/byte.
Enough said, I trust.

Enough Word Counting Already!
Before I finish up this chapter, I’d like to mention that Terje Mathisen’s WC word-
counting program, which I’ve mentioned previously and which is available, with
source, on Bix, is in the ballpark with David’s code for performance. What’s more,
Terje’s program handles %bit ASCII, counts lines as well as words, and supports user-
definable separator sets. It’s wonderful code, well worth a look; it also happens to be
a great word-counting utility. By the way, Terje builds his 64K table on the fly, at
program initialization; this allows for customized tables, shrinks the size of the EXE,
and, according to Terje’s calculations, takes less time than loading the table off disk
as part of the EXE.
S o , has David written the fastest possible word-counting code? Well, maybe-but I
have a letter from Terry Holmes, of San Rafael, California, that calculates the theo-
retical maximum performance of native 386 word-counting code at 5.5 cycles/byte,
which would be significantly faster than David’s code. Terry, alas, didn’t bother to
implement his design, but maybe I’ll take a shot at it someday. It’d be fun, for sure-
but jeez, I’ve got real work to do!

There Ain’t No Such Thing as the Fastest Code 3 1 9

	next:
	home:
	previous:

