
chapter 20

pentium rules

1%

arbon-Based Optimizer Can
8p Put the “Svper” in Superscalar

At the 1983 West Coht Computer Faire, my friend Dan Illowsky, Andy Greenberg
(co-author of Wizardri) me the best-selling computer game ever), and I had
an animated discussipn about starting a company in the then-budding world of mi-
crocomputer softwdk. One hot new software category at the time was educational

e hottest new educational software companies was Spinnaker
innaker as an example of a company that had been aimed at
ted up properly, and was succeeding as a result. Dan didn’t

at Spinnaker had been given a bundle of money to get off
ng only by spending a lot of that money in order to move

its products. “Heck,” said Dan, “I could get that kind of market share too if I gave
away a fifty-dollar bill with each of my games.”
Remember, this was a time when a program, two diskette drives (for duplicating
disks), and a couple of ads were enough to start a company, and, in fact, Dan built a
very successful game company out of not much more than that. (I’ll never forget
coming to visit one day and finding his apartment stuffed literally to the walls and
ceiling with boxes of diskettes and game packages; he had left a narrow path to the
computer so his wife and his mother could get in there to duplicate disks.) Back
then, the field was wide open, with just about every competent programmer think-
ing of striking out on his or her own to try to make their fortune, and Dan and Andy

and I were no exceptions. In short, we were having a perfectly normal conversation,
and Dan’s comment was both appropriate, and, in retrospect, accurate.
Appropriate, save for one thing: We were having this conversation while walking
through a low-rent section of Market Street in San Francisco at night. A bum sitting
against a nearby building overheard Dan, and rose up, shouting in a quavering voice
loud enough to wake the dead, “Fifty-dollar bill! Fifty-dollar bill! He’s giving away
fifty-dollar bills!” We ignored him; undaunted, he followed us for a good half mile,
stopping every few feet to bellow “fifty-dollar bill!” No one else seemed to notice,
and no one hassled us, but I was mighty happy to get to the sanctuary of the Fairmont
Hotel and slip inside.
The point is, most actions aren’t inherently good or bad; it’s all a matter of context. If
Dan had uttered the words “fiftydollar bill” on the West Coast Faire’s show floor, no
one would have batted an eye. If he had said it in a slightly worse part of town than he
did, we might have learned just how fast the three of us could run.
Similarly, there’s no such thing as inherently fast code, only fast code in context. At
the moment, the context is the Pentium, and the truth is that a sizable number of the
x86 optimization tricks that you and I have learned over the past ten years are obso-
lete on the Pentium. True, the Pentium contains what amounts to about one-and-a-half
486s, but, as we’ll see shortly, that doesn’t mean that optimized Pentium code looks
much like optimized 486 code, or that fast 486 code runs particularly well on a
Pentium. (Fast Pentium code, on the other hand, does tend to run well on the 486;
the only major downsides are that it’s larger, and that the FXCH instruction, which is
largely free on the Pentium, is expensive on the 486.) So discard your x86 precon-
ceptions as we delve into superscalar optimization for this one-of-a-kind processor.

An Instruction in Every Pipe
In the last chapter, we took a quick tour of the Pentium’s architecture, and started to
look into the Pentium’s optimization rules. Now we’re ready to get to the key rules,
those having to do with the Pentium’s most unique and powerful feature, the ability
to execute more than one instruction per cycle. This is known as superscalar execution,
and has heretofore been the sole province of fast RISC CPUs. The Pentium has two
integer execution units, called the Upapeand the Vpape, which can execute two sepa-
rate instructions simultaneously, potentially doubling performance-but only under
the proper conditions. (There is also a separate floating-point execution unit that I
won’t have the space to cover in this book.) Your job, as a performance programmer,
is to understand the conditions needed for superscalar performance and make sure
they’re met, and that’s what this and the next chapters are all about.
The two pipes are not independent processors housed in a single chip; that is, the
Pentium is not like having two 486s in a single computer. Rather, the two pipes are
integral, parallel parts of the same processor. They operate on the same instruction
stream, with the V-pipe simply executing the next instruction that the U-pipe would

384 Chapter 20

have handled, as shown in Figure 20.1. What the Pentium does, pure and simple, is
execute a single instruction stream and, whenever possible, take the next two waiting
instructions and execute both at once, rather than one after the other.
The U-pipe is the more capable of the two pipes, able to execute any instruction in
the Pentium's instruction set. (A number of instructions actually use both pipes at
once. Logically, though, you can think of such instructions as U-pipe instructions,
and of the Pentium optimization model as one in which the U-pipe is able to execute
all instructions and is always active, with the objective being to keep the V-pipe also
working as much of the time as possible.) The U-pipe is generally similar to a full 486
in terms of both capabilities and instruction cycle counts. The V-pipe is a 486 subset,
able to execute simple instructions such as MOV and ADD, but unable to handle
MUL, DIV, string instructions, any sort of rotation or shift, or even ADC or SBB.

i
Instruction Stream

PUSH EBX

DEC EDX

Instruction execution in the two pipes

U-pipe V-pipe

Cycle 0 7 1 +

SHR can pair
only in the U-pipe

-11 SHR EDX,1 I Cycle 2 [Writebeforeread -Idte- I
contention on EDX

The Pentium b two pipes.
Figure 20.1

Pentium Rules 385

Getting two instructions executing simultaneously in the two pipes is trickier than it
sounds, not only because the V-pipe can handle only a relatively small subset of the
Pentium’s instruction set, but also because those instructions that the V-pipe can
handle are able to pair only with certain U-pipe instructions. For example, MOVSD
uses both pipes, so no instruction can be executed in parallel with MOVSD.

The use of both pipes does make MOVSD nearly twice as fast on the Pentium as on p the 486, but it 4 nonetheless slower than using equivalent simpler instructions that
allow for superscalar execution. Stick to the Pentium 4 RISC-like instructions-
the pairable instructions I’ll discuss next-when you’re seeking maximum
performance, with just a few exceptions such as REP MOVS and REP STOS.

Trickier yet, register contention can shut down the V-pipe on any given cycle, and
Address Generation Interlocks (AGIs) can stall either pipe at any time, as we’ll see in
the next chapter.
The key to Pentium optimization is to view execution as a stream of instructions
going through the U- and V-pipes, and to eliminate, as much as possible, instruction
mixes that take the V-pipe out of action. In practice, this is not too difficult. The only
hard part is keeping in mind the long list of rules governing instruction pairing. The
place to begin is with the set of instructions that can go through the V-pipe.

V-Pipe-Capable Instructions
Any instruction can go through the U-pipe, and, for practical purposes, the U-pipe
is always executing instructions. (The exceptions are when the U-pipe execution
unit is waiting for instruction or data bytes after a cache miss, and when a U-pipe
instruction finishes before a paired V-pipe instruction, as I’ll discuss below.) Only
the instructions shown in Table 20.1 can go through the V-pipe. In addition, the V-
pipe can execute a separate instruction only when one of the instructions listed in
Table 20.2 is executing in the U-pipe; superscalar execution is not possible while any
instruction not listed in Table 20.2 is executing in the U-pipe. So, for example, if you
use SHR EDX,CL, which takes 4 cycles to execute, no other instructions can execute
during those 4 cycles; if, on the other hand, you use SHR EDX,10, it will take 1 cycle
to execute in the U-pipe, and another instruction can potentially execute concur-
rently in the V-pipe. (As you can see, similar instruction sequences can have vastly
different performance characteristics on the Pentium.)
Basically, after the current instruction or pair of instructions is finished (that is, once
neither the U- nor V-pipe is executing anything), the Pentium sends the next instruction
through the U-pipe. If the instruction after the one in the U-pipe is an instruction
the V-pipe can handle, if the instruction in the U-pipe is pairable, and if register
contention doesn’t occur, then the V-pipe starts executing that instruction, as shown
in Figure 20.2. Otherwise, the second instruction waits until the first instruction is

386 Chapter 20

done, then executes in the U-pipe, possibly pairing with the next instruction in line
if all pairing conditions are met.
The list of instructions the V-pipe can handle is not very long, and the list of U-pipe
pairable instructions is not much longer, but these actually constitute the bulk of the
instructions used in PC software. As a result, a fair amount of pairing happens even in
normal, non-Pentium-optimized code. This fact, plus the 64bit 66 MHz bus, branch
prediction, dual 8Kinternal caches, and other Pentium features, together mean that a
Pentium is considerably faster than a 486 at the same clock speed, even without Pentium-
specific optimization, contrary to some reports.
Besides, almost all operations can be performed by combinations of pairable in-
structions. For example, PUSH [mem] is not on either list, but both MOV reg,[mem]
and PUSH reg are, and those two instructions can be used to push a value stored in

Pentium Rules 387

memory. In fact, given the proper instruction stream, the discrete instructions can
perform this operation effectively in just 1 cycle (taking one-half of each of 2 cycles,
for 2*0.5 = 1 cycle total execution time), as shown in Figure 20.3-a full cycle faster
than PUSH [mem], which takes 2 cycles.

A fundamental rule of Pentium optimization is that it pays to break complex in- p structions into equivalent simple instructions, then shufle the simple instructions
for maximum use of the Vpipe. This is true partly because most of the pairable
instructions are simple instructions, andpartly because breaking instructions into
pieces allows more freedom to rearrange code to avoid the AGIs and register con-
tention I’ll discuss in the next chapter.

388 Chapter 20

Instruction stream after preceding instructions
in U- and V-pipes have completed (both pipes
waiting for new instructions).

Start execution of instruction n in the U-pipe
on the current cycle.

If instruction n+l can pair in the V-pipe, and instruction n can
pair in the U-pipe, and no write-before-read or write-before-
write register contention affects this instruction, then start
execution of instruction n+l in the V-pipe on the current cycle;
otherwise, start execution of instruction n+l in the U-pipe on
the cycle after instruction n finishes, and at that time try to pair
instruction n+2 in the V-pipe with instruction n + l in the U-pipe.

Instruction n+l

Instruction flow through the two pipes.
Figure 20.2

One downside of this “RISCification” (turning complex instructions into simple,
RISC-like ones) of Pentium-optimized code is that it makes for substantially larger
code. For example,

push dword p t r [e s i l

is one byte smaller than this sequence:

mov eax.[esil
push eax

Instruction Stream

PUSH EBX

Instruction execution in the two pipes !
Pushing a value porn memory effectively in one cycle.
Figure 20.3

Pentium Rules 389

A more telling example is the following

add [MemVarl.eax

versus the equivalent:

mov edx.[MemVar]
add edx .eax
mov [MemVarl.edx

The single complex instruction takes 3 cycles and is 6 bytes long; with proper se-
quencing, interleaving the simple instructions with other instructions that don’t use
EDX or MemVar, the three-instruction sequence can be reduced to 1.5 cycles, but it
is 14 bytes long.

It’s not unusual for Pentium optimization to approximately double both perfor- p mance and code size at the same time. In an important loop, go for performance
and ignore the size, but on a program-wide basis, the size bears watching.

Lockstep Execution
You may wonder why anyone would bother breaking ADD [MemVar],EAX into three
instructions, given that this instruction can go through either pipe with equal ease.
The answer is that while the memory-accessing instructions other than MOV, PUSH,
and POP listed in Table 20.1 (that is, INC/DEC [mem], ADD/SUB/XOR/AND/
OR/CMP/ADC/SBB reg,[mem], and ADD/SUB/XOR/AND/OR/CMP/ADC/SBB
[mem],reg/imrned) can be paired, they do not provide the 100 percent overlap that
we seek. If you look at Tables 20.1 and 20.2, you will see that instructions taking from
1 to 3 cycles can pair. However, any pair of instructions goes through the two pipes in
lockstep. This means, for example, that if ADD [EBX],EDX is going through the U-pipe,
and INC EAX is going through the V-pipe, the V-pipe will be idle for 2 of the 3 cycles
that the U-pipe takes to execute its instruction, as shown in Figure 20.4. Out of the
theoretical 6 cycles of work that can be done during this time, we actually get only 4
cycles of work, or 67 percent utilization. Even though these instructions pair, then,
this sequence fails to make maximum use of the Pentium’s horsepower.
The key here is that when two instructions pair, both execution units are tied up
until both instructions have finished (which means at least for the amount of time
required for the longer of the two to execute, plus possibly some extra cycles for
pairable instructions that can’t fully overlap, as described below). The logical con-
clusion would seem to be that we should strive to pair instructions of the same lengths,
but that is often not correct.

The actual rule is that we should strive topair one-cycle instructions (01; at most, two- p cycle instructions, but not three-cycle instructions), which in turn leads to the corollaly
that we should, in general, use mostly one-cycle instructions when optimizing.

390 Chapter 20

Instruction Stream

INC E A X

Instruction execution in the two pipes

U-pipe V-pipe

ADD [EBX],EDX
Ste 1 lood [EBX] -1dle-

io; memory 1 Cycle I Keep pipes in lockstep

Step 2: add EDX to
value loaded in Step 1 Keep pipes in lockstep

Step 3: store Ste 2
result to [EBXP

Lockstep execution and idle time in the Vpipe.
Figure 20.4

Here’s why. The Pentium is fully capable of handling instructions that use memory
operands in either pipe, or, if necessary, in both pipes at once. Each pipe has its own
write FIFO, which buffers the last few writes and takes care of writing the data out
while the Pentium continues processing. The Pentium also has a write-back internal
data cache, so data that is frequently changed doesn’t have to be written to external
memory (which is much slower than the cache) very often. This combination means
that unless you write large blocks of data at a high speed, the Pentium should be able
to keep up with both pipes’ memory writes without stalling execution.
The Pentium is also designed to satisfy both pipes’ needs for reading memory oper-
ands with little waiting. The data cache is constructed so that both pipes can read
from the cache on the same qcle . This feat is accomplished by organizing the data
cache as eight-banked memory, as shown in Figure 20.5, with each 32-byte cache line
consisting of 8 dwords, 1 in each bank. The banks are independent of one another,
so as long as the desired data is in the cache and the U- and V-pipes don’t try to read
from the same bank on the same cycle, both pipes can read memory operands on
the same cycle. (If there is a cache bank collision, the V-pipe instruction stalls for
one cycle.)
Normally, you won’t pay close attention to which of the eight dword banks your
paired memory accesses fall in-that’s just too much work-but you might want to
watch out for simultaneously read addresses that have the same values for address

Pentium Rules 391

Cache
line 0

; Bank 0 ~ Bank 1 ~ Bank 2 ; Bank 3 ~ Bank4 ; Bank 5 ~ Bank 6 ~ Bank 7 ;

Cache
line 1 ,

Cache
line 2 ,

; * :
‘ 0 ;

line 255 I
0 4 8 12 16 20 24 28

Address within cache line

I 8 . 8

Cache

The Pentiurn k eight bank data cache.
Figure 20.5

bits 2, 3, and 4 (fall in the same bank) in tight loops, and you should also avoid
sequences like

mov bl , [esi 1
mov bh, [esi+ll

because both operands will generally be in the same bank. An alternative is to place
another instruction between the two instructions that access the same bank, as in
this sequence:

mov b l , [e s i 1
mov e d i ,edx
mov bh.[esi+ll

By the way, the reason a code sequence that takes two instructions to load a single
word is attractive in a 32-bit segment is because it takes only one cycle when the two
instructions can be paired with other instructions; by contrast, the obvious way of
loading BX

mov bx.[esil

takes 1.5 to two cycles because the size prefix can’t pair, as described below. This is
yet another example of how different Pentium optimization can be from everything
we’ve learned about its predecessors.
The problem with pairing non-single-cycle instructions arises when a pipe executes
an instruction other than MOV that has an explicit memory operand. (I’ll call these
complex memory instrmctions. They’re the only pairable instructions, other than branches,
that take more than one cycle.) We’ve already seen that, because instructions go
through the pipes in lockstep, if one pipe executes a complex memory instruction

392 Chapter 20

such as ADD FAX,[EBX] while the other pipe executes a single-cycle instruction, the
pipe with the faster instruction will sit idle for part of the time, wasting cycles. You
might think that if both pipes execute complex instructions of the same length, then
neither would lie idle, but that turns out to not always be the case. Two two-cycle
instructions (instructions with register destination operands) can indeed pair and
execute in two cycles, so it’s okay to pair two instructions such as these:

add esi.[SourceSkipl ;U-pipe cycles 1 a n d 2
add e d i . t D e s t i n a t i o n S k i p 1 : V - p i p e c y c l e s 1 and 2

However, this beneficial pairing does not extend to non-MOV instructions with explicit
memory destination operands, such as ADD [EBX],EAx. The Pentium executes only
one such memory instruction at a time; if two memorydestination complex instructions
get paired, first the U-pipe instruction is executed, and then the V-pipe instruction,
with only one cycle of overlap, as shown in Figure 20.6. I don’t know for sure, but I’d
guess that this is to guarantee that the two pipes will never perform out-of-order

Instruction Stream

AND [ECX],DL

Instruction execution in the two pipes

U-pipe V-pipe

-) b e / 1: b a d iEBX] 1 Cycle 0 1 ANDEBXI At -Idle-
Wait for U-pipe to

rom memorv reach its last cycle
L I L I

-+I Step 2: and At with I Cycle 1 I AND [EBX],At -Idle-
Wait for U-pipe to

value loaded in Step 1 reach its last cycle
L I L

AND [EBX],At

result to [EBXP

Non-overlapped lockstep execution.
Figure 20.6

Pentium Rules 393

Instruction Stream

MOV DH,[ECX]

AND DH,DL

MOV [EBX],AH I
MOV [ECX],DH I

Instruction execution in the two pipes

U-pipe V-pi pe + v i Cycle 0
t

I t
-+I MOV [EBX],AH I Cycle 2 1 MOV [ECX],DH Id

Interleaving simple instructions for maximum performance.
Figure 20.7

access to any given memory location. Thus, even though AND [EBX],AL pairs with
AND [ECX],DL, the two instructions take 5 cycles in all to execute, and 4 cycles of
idle time-2 in the U-pipe and 2 in the V-pipe, out of 10 cycles in all-are incurred
in the process.
The solution is to break the instructions into simple instructions and interleave them,
as shown in Figure 20.7, which accomplishes the same task in 3 cycles, with no idle
cycles whatsoever. Figure 20.7 is a good example of what optimized Pentium code
generally looks like: mostly one-cycle instructions, mixed together so that at least two
operations are in progress at once. It’s not the easiest code to read or write, but it’s
the only way to get both pipes running at capacity.

Superscalar Notes
You may well ask why it’s necessary to interleave operations, as is done in Figure 20.7.
It seems simpler just to turn

and [e b x l . a 1

394 Chapter 20

into

mov d l , [e b x l
and d l . a 1
mov [e b x l , d l

and be done with it. The problem here is one of dependency. Before the Pentium
can execute AND DL&, it must first know what is in DL, and it can’t know that until
it loads DL from the address pointed to by EBX. Therefore, AND DL& can’t hap-
pen until the cycle after MOV DL,[EBX] executes. Likewise, the result can’t be stored
until the cycle after AND DL& has finished. This means that these instructions, as
written, can’t possibly pair, so the sequence takes the same three cycles as AND
[EBX],AL. (Now it should be clear why AND [EBX], AL takes 3 cycles.) Consequently,
it’s necessary to interleave these instructions with instructions that use other regis-
ters, so this set of operations can execute in one pipe while the other, unrelated set
executes in the other pipe, as is done in Figure 20.7.
What we’ve just seen is the read-after-write form of the superscalar hazard known as
register contention. I’ll return to the subject of register contention in the next chapter;
in the remainder of this chapter I’d like to cover a few short items about superscalar
execution.

Register Starvation
The above examples should make it pretty clear that effective superscalar programming
puts a lot of strain ori the Pentium’s relatively small register set. There are only seven
general-purpose registers (I strongly suggest using EBP in critical loops), and it does
not help to have to sacrifice one of those registers for temporary storage on each
complex memory operation; in pre-superscalar days, we used to employ those handy
CISC memory instructions to do all that stuff without using any extra registers.

More problematic still is thatfbr maximum pairing, you’ll typically have two op- P erations proceeding at once, one in each pipe, and trying to keep two operations in
registers at once is difJicult indeed. There k not much to be done about this, other
than clever and Spartan register usage, but be aware that it j . a major element of
Pentium performance programming.

Also be aware that prefixes of every sort, with the sole exception of the OFH prefix on
non-short conditional jumps, always execute in the U-pipe, and that Intel’s docu-
mentation indicates that no pairing can happen while a prefix byte executes. (As I’ll
discuss in the next chapter, my experiments indicate that this rule doesn’t always
apply to multiple-cycle instructions, but you still won’t go far wrong by assuming that
the above rule is correct and trying to eliminate prefix bytes.) A prefix byte takes one
cycle to execute; after that cycle, the actual prefixed instruction itselfwill go through
the U-pipe, and if it and the following instruction are mutually pairable, then they

Pentium Rules 395

will pair. Nonetheless, prefix bytes are very expensive, effectively taking at least as
long as two normal instructions, and possibly, if a prefixed instruction could other-
wise have paired in the V-pipe with the previous instruction, taking as long as three
normal instructions, as shown in Figure 20.8.
Finally, bear in mind that if the instructions being executed have not already been
executed at least once since they were loaded into the internal cache, they can pair
only if the first (U-pipe) instruction is not only pairable but also exactly 1 byte long,
a category that includes only INC reg, DEC reg, PUSH reg, and POP reg. Knowing this
can help you understand why sometimes, timing reveals that your code runs slower
than it seems it should, although this will generally occur only when the cache work-
ing set for the code you’re timing is on the order of 8K or more-an awful lot of code
to try to optimize.
It should be excruciatingly clear by this point that you must time your Pentiumaptimized
code if you’re to have any hope of knowing if your optimizations are working as well
as you think they are; there are just too many details involved for you to be sure your
optimizations are working properly without checking. My most basic optimization
rule has always been to grab the Zen timer and measure actual performance-and no-
where is this more true than on the Pentium. Don’t believe it until you measure it!

Instruction Stream

Instruction execution in the two pipes

U-pipe V-pipe

PUSH EDX I Cycle o 1 Prefixes -Idle- can‘t I
execute in V-pipe

I L

Prefix delays.
Figure 20.8

396 Chapter 20

	next:
	home:
	previous:

