Higher
256-Color

Resolution on

the VGA



0x200 Really 320x4002

/" One of the more appealing features of the VGA is its ability to display 256 simulta-
neous colors. Unfortunately, one of the less appealing features of the VGA is the
limited resolution (320x200) of the one 256-color mode the IBM-standard BIOS
supports. (There are, e; higher resolution 256-color modes in the legion of
SuperVGAs, but they a

are by no means a standard, and differences between seemingly
identical modes froﬁi different manufacturers can be vexing.) More colors can often
compensate for lesg resolution, but the resolution difference between the 640x480
16-color mode a@gﬁithe 320x200 256-color mode is so great that many programmers
must regretfiilly decide that they simply can’t afford to use the 256-color mode.

If there’s one thing We've learned about the VGA, however, it’s that there’s never just
one way to do things. With the VGA, alternatives always exist for the clever program-
mer, and that’s more true than you might imagine with 256-color mode. Not only is
there a high 256-color resolution, there are lots of higher 256-color resolutions, go-
ing all the way up to 360x480—and that’s with the vanilla IBM VGA!

In this chapter, I'm going to focus on one of my favorite 256-color modes, which
provides 320x400 resolution and two graphics pages and can be set up with very little
reprogramming of the VGA. In the next chapter, I'll discuss higher-resolution 256-
color modes, and starting in Chapter 47, I'll cover the high-performance “Mode X”
256-color programming that many games use.

So. Let’s get started.

589



Why 320x2002 Only IBM Knows for Sure

The first question, of course, is, “How can it be possible to get higher 256-color
resolutions out of the VGA?” After all, there were no unused higher resolutions to be
found in the CGA, Hercules card, or EGA.

The answer is another question: “Why did IBM not use the higher-resolution 256-
color modes of the VGA?” The VGA is easily capable of twice the 200-scan-line vertical
resolution of mode 13H, the 256-color mode, and IBM clearly made a decision not
to support a higher-resolution 256-color mode. In fact, mode 13H does display 400
scan lines, but each row of pixels is displayed on two successive scan lines, resulting
in an effective resolution of 320x200. This is the same scan-doubling approach used
by the VGA to convert the CGA’s 200-scan-line modes to 400 scan lines; however, the
resolution of the CGA has long been fixed at 200 scan lines, so IBM had no choice
with the CGA modes but to scan-double the lines. Mode 13H has no such historical
limitation—it’s the first 256-color mode ever offered by IBM, if you don’t count the
late and unlamented Professional Graphics Controller (PGC). Why, then, would IBM
choose to limit the resolution of mode 13H?

There’s no way to know, but one good guess is that IBM wanted a standard 256-color
mode across all PS/2 computers (for which the VGA was originally created), and
mode 13H is the highest-resolution 256-color mode that could fill the bill. You see,
each 256-color pixel requires one byte of display memory, so a 320x200 256-color
mode requires 64,000 bytes of display memory. That’s no problem for the VGA, which
has 256K of display memory, but it’s a stretch for the MCGA of the Model 30, since
the MCGA comes with only 64K.

On the other hand, the smaller display memory size of the MCGA also limits the
number of colors supported in 640x480 mode to 2, rather than the 16 supported by
the VGA. In this case, though, IBM simply created two modes and made both avail-
able on the VGA: mode 11H for 640x480 2-color graphics and mode 12H for 640x480
16-color graphics. The same could have been done for 256-color graphics—but wasn’t.
Why? I don’t know. Maybe IBM just didn’t like the odd aspect ratio of a 320x400
graphics mode. Maybe they didn’t want to have to worry about how to map in more
than 64K of display memory. Heck, maybe they made a mistake in designing the
chip. Whatever the reason, mode 13H is really a 400-scan-line mode masquerading
as a 200-scan-line mode, and we can readily end that masquerade.

320x400 256-Color Mode

Okay, what'’s so great about 320x400 256-color mode? Two things: easy, safe mode
sets and page flipping.
As I said above, mode 13H is really a 320x400 mode, albeit with each line doubled to

produce an effective resolution of 320x200. That means that we don’t need to change
any display timings, widths, or heights in order to tweak mode 13H into 320x400

590 Chapter 31



mode—and that makes 320x400 a safe choice. Basically, 320x400 mode differs from
mode 13H only in the settings of mode bits, which are sure to be consistent from one
VGA clone to the next and which work equally well with all monitors. The other hi-
res 256-color modes differ from mode 13H not only in the settings of the mode bits
but also in the settings of timing and dimension registers, which may not be exactly
the same on all VGA clones and particularly not on all multisync monitors. (Because
multisyncs sometimes shrink the active area of the screen when used with standard
VGA modes, some VGAs use alternate register settings for multisync monitors that
adjust the CRT Controller timings to use as much of the screen area as possible for
displaying pixels.)

The other good thing about 320x400 256-color mode is that two pages are supported.
Each 320x400 256-color mode requires 128,000 bytes of display memory, so we can
just barely manage two pages in 320x400 mode, one starting at offset 0 in display
memory and the other starting at offset 8000H. Those two pages are the largest pair
of pages that can fit in the VGA’s 256K, though, and the higher-resolution 256-color
modes, which use still larger bitmaps (areas of display memory that control pixels on
the screen), can’t support two pages at all. As we’ve seen in earlier chapters and will
see again in this book, paging is very useful for off-screen construction of images and
fast, smooth animation.

That’s why I like 320400 256-color mode. The next step is to understand how dis-
play memory is organized in 320x400 mode, and that’s not so simple.

Display Memory Organization in 320x400 Mode

First, let’s look at why display memory must be organized differently in 320x400 256-
color mode than in mode 13H. The designers of the VGA intentionally limited the
maximum size of the bitmap in mode 13H to 64K, thereby limiting resolution to
320%200. This was accomplished in hardware, so there is no way to extend the bitmap
organization of mode 13H to 320x400 mode.

That’s a shame, because mode 13H has the simplest bitmap organization of any
mode—one long, linear bitmap, with each byte controlling one pixel. We can’t have
that organization, though, so we’ll have to find an acceptable substitute if we want to
use a higher 256-color resolution.

We’re talking about the VGA, so of course there are actually several bitmap organiza-
tions that let us use higher 256-color resolutions than mode 13H. The one I like best
is shown in Figure 31.1. Each byte controls one 256-color pixel. Pixel 0 is at address
0 in plane 0, pixel 1 is at address 0 in plane 1, pixel 2 is at address 0 in plane 2, pixel
3 is at address 0 in plane 3, pixel 4 is at address 1 in plane 0, and so on.

Let’s look at this another way. Ideally, we’d like one long bitmap, with each pixel at
the address that’s just after the address of the pixel to the left. Well, that’s true in this
case too, if you consider the number of the plane that the pixelis in to be part of the
pixel’s address. View the pixel numbers on the screen as increasing from left to right

Higher 256-Color Resolution on the VGA 591



? 26000 X Byie 0| Byte 1] Byte 2| Byte 3
7 Lt g0}t
<\ \,:,/,'l ~ ! :
. |
Upper-left 7 — E P i
corner of S T
the screen D % ] I:?Byte Z1Pyie 3
L1 | P : |
| I | | |
| | | | |
\/\//\/ o | |

gl [ | :
St
Note: Dashed lines show Byte O| Byte 1| Byte 2| Byte 3
the order in which bytes : P :
are scanned to generate ! i !
pixels. Solid lines show the ’ : |
correspondence of bytes in ] ¥ Vi !
display memory to pixels on Vi Vi Vi v
the screen. Each byte Byte O | Byte 1| Byte 2 | Byte 3

controls one 256-color pixel. |

Plane 3

Bitmap organization in 320x400 256-color mode in 320x400 256-color mode.
Figure 31.1

and from the end of one scan line to the start of the next. Then the pixel number, 7,
of the pixel at display memory address address in plane plane is:

n = (address * 4) + plane

To turn that around, the display memory address of pixel number 7 is given by
address=n/ 4

and the plane of pixel = is given by:

plane = n modulo 4

Basically, the full address of the pixel, its pixel number, is broken into two compo-
nents: the display memory address and the plane.

By the way, because 320x400 mode has a significantly different memory organization
from mode 13H, the BIOS text routines won’t work in 320x400 mode. If you want to
draw text in 320x400 mode, you’ll have to look up a font in the BIOS ROM and draw

592 Chapter 31



the text yourself. Likewise, the BIOS read pixel and write pixel routines won’t work
in 320x400 mode, but that’s no problem because I'll provide equivalent routines in
the next section.

Our next task is to convert standard mode 13H into 320x400 mode. That’s accom-
plished by undoing some of the mode bits that are set up especially for mode 13H, so
that from a programming perspective the VGA reverts to a straightforward planar
model of memory. That means taking the VGA out of chain 4 mode and doubleword
mode, turning off the double display of each scan line, making sure chain mode, odd/
even mode, and word mode are turned off, and selecting byte mode for video data
display. All that’s done in the Set320x400Mode subroutine in Listing 31.1, which
we’ll discuss next.

Reading and Writing Pixels

The basic graphics functions in any mode are functions to read and write single
pixels. Any more complex function can be built on these primitives, although that’s
rarely the speediest solution. What’s more, once you understand the operation of
the read and write pixel functions, you’ve got all the knowledge you need to create
functions that perform more complex graphics functions. Consequently, we’ll start
our exploration of 320x400 mode with pixel-at-a-time line drawing.

Listing 31.1 draws 8 multicolored octagons in turn, drawing a new one on top of the
old one each time a key is pressed. The main-loop code of Listing 31.1 should be
easily understood; a series of diagonal, horizontal, and vertical lines are drawn one
pixel at a time based on a list of line descriptors, with the draw colors incremented
for each successive time through the line list.

I.ISTING 31.1 L31-1.ASM

Program to demonstrate pixel drawing in 320x400 256-color
mode on the VGA. Draws 8 lines to form an octagon, a pixel

; at a time. Draws 8 octagons in all, one on top of the other,
; each in a different color set. Although it's not used, a

; pixel read function is also provided.

VGA_SEGMENT equ  0a000h

SC_INDEX equ 3c4h ;Sequence Controller Index register
GC_INDEX equ 3ceh ;Graphics Controller Index register
CRTC_INDEX equ 3d4h ;CRT Controller Index register
MAP_MASK equ 2 ;Map Mask register index in SC
MEMORY_MODE equ 4 ;Memory Mode register index in SC
MAX_SCAN_LINE equ 9 ;Maximum Scan Line reg index in CRTC
START_ADODRESS_HIGH equ Och ;Start Address High reg index in CRTC
UNDERLINE equ 14h ;Underline Location reg index in CRTC
MODE_CONTROL equ 17h ;Mode Control register index in CRTC
READ_MAP equ 4 ;:Read Map register index in GC
GRAPHICS_MODE equ 5 ;Graphics Mode register index in GC
MISCELLANEQOUS equ 6 ;Miscellaneous register index in GC
SCREEN_WIDTH equ 320 ;# of pixels across screen
SCREEN_HEIGHT equ 400 ;# of scan lines on screen

Higher 256-Color Resolution on the VGA 593



WORD_OUTS_OK equ 1 ;set to 0 to assemble for
; computers that can't handle
; word outs to indexed VGA registers

stack segment para stack ‘STACK'

db 512 dup (?)
stack ends
Data segment word 'DATA’
BaseColor db 0

; Structure used to control drawing of a line.

LineControl struc

StartX dw ?
StartyY dw ?
LineXInc dw ?
LineYInc dw ?
Baselength dw ?
LineColor db ?

LineControl ends

; List of descriptors for lines to draw.

Linelist label LineControl
LineControl <130,110,1,0,60,0>
LineControl <190,110,1,1,60,1>
LineControl <250,170,0,1,60,2>
LineControl <250,230,-1,1,60,3>
LineControl <190,290,-1,0,60,4>
LineControl<130,290,-1,-1,60,5>
LineControl <70,230,0,-1,60,6>
LineControl<70,170,1,-1,60,7>
LineControl <-1,0,0,0,0,0>

Data ends

; Macro to output a word value to a port.

OUT_WORD macro
if WORD_OUTS_OK
out dx.,ax

else
out dx,al
inc dx
xchg ah,al
out dx,at
dec dx
xchg ah,al
endif
endm

; Macro to output a constant value to an indexed VGA register.

CONSTANT_TO_INDEXED_REGISTER macro ADDRESS, INDEX, VALUE
mov  dx,ADDRESS
mov  ax,(VALUE shl 8) + INDEX
OUT_WORD
endm

594 Chapter 31



Code segment

assume

Start proc near
mov ax,Data

mov  ds,ax

cs:Code, ds:Data

; Set 320x400 256-color mode.
call Set320By400Mode
; We're in 320x400 256-color mode.

ColorlLoop:

mov  si,offset Linelist
LinelLoop:

mov  cx,[si+StartX]

cmp cx,-1

Jjz LinesDone

mov  dx,[si+StartY]

mov  bl,[si+LineColor]

mov  bp,[si+BaseLength]

add bl,[BaseColor]
PixelLoop:

push c¢x

push dx

call WritePixel

pop dx

pop  ¢x

add cx,[si+LineXInc]

add  dx,[si+LineYInc]

dec bp

jnz  Pixelloop

add si,size LineControl

Jmp LineLoop
LinesDone:

call GetNextKey

inc [BaseColor]

cmp [BaseColor],8

jb ColorLoop

Draw

each Tine in turn.

;point to the start of the
; line descriptor list

;set the initial X coordinate

;a descriptor with a -1 X

; coordinate marks the end

; of the Tist

;set the initial Y coordinate,

; line color,

; and pixel count

;adjust the 1ine color according
; to BaseColor

;save the coordinates

;draw this pixel
;retrieve the coordinates

;set the coordinates of the

; next point of the line

;any more points?

;yes, draw the next

;point to the next Tine descriptor
; and draw the next line

;wait for a key, then

; bump the color selection and
; see if we're done

;not done yet

; Wait for a key and return to text mode and end when

; one is pressed.

call GetNextKey

mov  ax,0003h

int 10h

mov  ah,4ch

int 21h ;done
Start endp

; Sets up 320x400 256-color modes.
; Input: none

; OQutput: none

text mode

Higher 256-Color Resolution on the VGA

595



596

Set320By400Mode proc near

; First, go to normal 320x200 256-color mode, which is really a

320x400 256-color mode with each line scanned twice.

mov  ax,0013h ;AH = 0 means mode set, AL = 13h selects

; 256-color graphics mode
int 10h ;BIOS video interrupt

Change CPU addressing of video memory to linear (not odd/even,
chain, or chain 4), to allow us to access all 256K of display
memory. When this is done, VGA memory will Took just like memory
in modes 10h and 12h, except that each byte of display memory will
control one 256-color pixel, with 4 adjacent pixels at any given
address, one pixel per plane.

mov  dx,SC_INDEX
mov  al,MEMORY_MODE

out dx,al

inc dx

in al,dx

and al,not 08h sturn off chain 4
or al,04h ;turn off odd/even
out dx,al

mov  dx,GC_INDEX
mov  al,GRAPHICS_MODE

out dx,al

inc  dx

in al,dx

and al,not 10h ;turn off odd/even
out dx,al

dec dx

mov  al,MISCELLANEOUS

out dx,al

inc  dx

in al,dx

and al,not 02h sturn off chain
out dx,al

Now clear the whole screen, since the mode 13h mode set only
cleared 64K out of the 256K of display memory. Do this before
we switch the CRTC out of mode 13h, so we don't see garbage
on the screen when we make the switch.

CONSTANT_TO_INDEXED_REGISTER SC_INDEX,MAP_MASK,0fh
;enable writes to all planes, so
; we can clear 4 pixels at a time

mov  ax,VGA_SEGMENT

mov  es,ax

sub  di,di

mov  ax,di

mov  ¢x,8000h ;# of words in 64K

cld

rep stosw ;clear all of display memory

Tweak the mode to 320x400 256-color mode by not scanning each
Tine twice.

mov  dx,CRTC_INDEX
mov  al,MAX_SCAN_LINE
out dx,al

Chapter 31



inc
in

and
out
dec

dx

al,dx
al,not 1fh
dx,al

dx

;set maximum scan line = 0

; Change CRTC scanning from doubleword mode to byte mode, allowing
to scan more than 64K of video data.

; the CRTC

mov
out
inc
in

and
out
dec
mov
out
inc
in

or

out
ret

al,UNDERLINE
dx,al

dx

al,dx

al,not 40h
dx,al

dx
al,MODE_CONTROL
dx,al

dx

al,dx

al,40h

dx,al

Set320By400Mode endp

; Draws a pixel

; Input:

o
>
1

w
—
]

X coordinate of pixel
Y coordinate of pixel

pixel color

: Qutput: none

; Registers altered: AX, CX, DX, DI, ES

WritePixel proc near
mov  ax,VGA_SEGMENT
mov  es,ax
mov  ax,SCREEN_WIDTH/4
mul  dx
push c¢x
shr  c¢x,1
shr  c¢x,1
add ax,cx
mov  di,ax
pop  ¢x
and ¢1,3
mov  ah,1
shl ah,cl
mov  al,MAP_MASK
mov  dx,SC_INDEX
QUT_WORD

in the specified color
; location in 320x400 256-color mode.

;turn off doubleword

sturn on the byte mode bit, so memory is
; scanned for video data in a purely
; linear way, just as in modes 10h and 12h

at the specified

;point to display memory

;there are 4 pixels at each address, so
; each 320-pixel row is 80 bytes wide

; in each plane

;point to start of desired row

;set aside the X coordinate

;there are 4 pixels at each address

; so divide the X coordinate by 4
;point to the pixel's address

;get back the X coordinate
;get the plane # of the pixel

;set the bit corresponding to the plane
; the pixel is in

;set to write to the proper plane for
; the pixel

Higher 256-Color Resolution on the VGA

597



mov  es:[di]l,bl ;draw the pixel
ret
WritePixel endp
; Reads the color of the pixel at the specified location in 320x400
; 256-color mode.
; Input:
H CX = X coordinate of pixel to read
H DX = Y coordinate of pixel to read

; Output:
H AL = pixel color

; Registers altered: AX, CX, DX, SI, ES

ReadPixel proc near
mov  ax,VGA_SEGMENT
mov  es,ax ;point to display memory
mov  ax,SCREEN_WIDTH/4
;there are 4 pixels at each address, so
; each 320-pixel row is 80 bytes wide
; in each plane

mul  dx ;point to start of desired row

push cx ;set aside the X coordinate

shr  c¢x,1 ;there are 4 pixels at each address
shr ¢x,1 ; so divide the X coordinate by 4
add ax,cx ;point to the pixel’'s address

mov  si,ax

pop  ax ;get back the X coordinate

and al,3 ;get the plane # of the pixel

mov  ah,al
mov  al,READ_MAP
mov  dx,GC_INDEX

OUT_WORD ;set to read from the proper plane for
; the pixel

lods byte ptr es:[sil] ;read the pixel

ret

ReadPixel endp

; Waits for the next key and returns it in AX.

; Input: none

; Output:
H AX = full 16-bit code for key pressed

GetNextKey proc near

WaitKey:
mov  ah,1
int 16h
jz WaitKey ;wait for a key to become available
sub ah,ah
int 16h ;read the key
ret

GetNextKey endp
Code ends

end Start

598 Chapter 31



The interesting aspects of Listing 31.1 are three. First, the Set320x400Mode subrou-
tine selects 320x400 256-color mode. This is accomplished by performing a mode
13H mode set followed by then putting the VGA into standard planar byte mode.
Set320x400Mode zeros display memory as well. It’s necessary to clear display memory
even after a mode 13H mode set because the mode 13H mode set clears only the 64K
of display memory that can be accessed in that mode, leaving 192K of display memory
untouched.

The second interesting aspect of Listing 31.1 is the WritePixel subroutine, which
draws a colored pixel at any x,y addressable location on the screen. Although it may
not be obvious because I've optimized the code a little, the process of drawing a
pixel is remarkably simple. First, the pixel’s display memory address is calculated as

address = (y ¥ (SCREEN_WIDTH / 4)) + (x/ 4)
which might be more recognizable as:
address = ((y * SCREEN_WIDTH) + x) / 4

(There are 4 pixels at each display memory address in 320400 mode, hence the
division by 4.) Then the pixel’s plane is calculated as

plane= xand 3
which is equivalent to:
plane= x modulo 4

The pixel’s color is then written to the addressed byte in the addressed plane. That’s
all there is to it!

The third item of interest in Listing 31.1 is the ReadPixel subroutine. ReadPixel is
virtually identical to WritePixel, save that in ReadPixel the Read Map register is pro-
grammed with a plane number, while WritePixel uses a plane mask to set the Map
Mask register. Of course, that difference merely reflects a fundamental difference in
the operation of the two registers. (If that’s Greek to you, refer back to Chapters 23—
30 for a refresher on VGA programming.) ReadPixel isn’t used in Listing 31.1, but
I’'ve included it because, as I said above, the read and write pixel functions together
can support a whole host of more complex graphics functions.

How does 320x400 256-color mode stack up as regards performance? As it turns out,
the programming model of 320x400 mode is actually pretty good for pixel drawing,
pretty much on a par with the model of mode 13H. When you run Listing 31.1, you’ll
no doubt notice that the lines are drawn quite rapidly. (In fact, the drawing could be
considerably faster still with a dedicated line-drawing subroutine, which would avoid
the multiplication associated with each pixel in Listing 31.1.)

In 320400 mode, the calculation of the memory address is not significantly slower
than in mode 13H, and the calculation and selection of the target plane is quickly
accomplished. As with mode 13H, 320x400 mode benefits tremendously from the
byte-per-pixel organization of 256-color mode, which eliminates the need for the

Higher 256-Color Resolution on the VGA 599



time-consuming pixel-masking of the 16-color modes. Most important, byte-per-pixel
modes never require read-modify-write operations (which can be extremely slow due
to display memory wait states) in order to clip and draw pixels. To draw a pixel, you
just store its color in display memory—what could be simpler?

More sophisticated operations than pixel drawing are less easy to accomplish in
320x400 mode, but with a little ingenuity it is possible to implement a reasonably
efficient version of just about any useful graphics function. A fast line draw for 320x400
256-color mode would be simple (although not as fast as would be possible in mode
13H). Fast image copies could be implemented by copying one-quarter of the image
to one plane, one-quarter to the next plane, and so on for all four planes, thereby
eliminating the OUT per pixel that sequential processing requires. If you're really
into performance, you could store your images with all the bytes for plane 0 grouped
together, followed by all the bytes for plane 1, and so on. That would allow a single
REP MOVS instruction to copy all the bytes for a given plane, with just four REP
MOVS instructions copying the whole image. In a number of cases, in fact, 320x400
256-color mode can actually be much faster than mode 13H, because the VGA’s
hardware can be used to draw four or even eight pixels with a single access; I'll
return to the topic of high-performance programming in 256-color modes other
than mode 13H (“non-chain 4” modes) in Chapter 47.

It’s all a bit complicated, but as I say, you should be able to design an adequately
fast—and often very fast—version for 320x400 mode of whatever graphics function
you need. If you're not all that concerned with speed, WritePixel and ReadPixel
should meet your needs.

Two 256-Color Pages

Listing 31.2 demonstrates the two pages of 320x400 256-color mode by drawing slant-
ing color bars in page 0, then drawing color bars slanting the other way in page 1 and
flipping to page 1 on the next key press. (Note that page 1 is accessed starting at
offset 8000H in display memory, and is—unsurprisingly—displayed by setting the
start address to 8000H.) Finally, Listing 31.2 draws vertical color bars in page 0 and
flips back to page 0 when another key is pressed.

The color bar routines don’t use the WritePixel subroutine from Listing 31.1; they
go straight to display memory instead for improved speed. As I mentioned above,
better speed yet could be achieved by a color-bar algorithm that draws all the pixels
in plane 0, then all the pixels in plane 1, and so on, thereby avoiding the overhead of
constantly reprogramming the Map Mask register.

LISTING 31.2 L31-2.ASM

; Program to demonstrate the two pages available in 320x400
; 256-color modes on a VGA. Draws diagonal color bars in all
; 256 colors in page O, then does the same in page 1 (but with

600 Chapter 31



; the bars tilted the other way), and finally draws vertical
s color bars in page 0.

VGA_SEGMENT equ 0a000h
SC_INDEX equ  3c4h ;Sequence Controller Index register
GC_INDEX equ 3ceh ;Graphics Controller Index register
CRTC_INDEX equ  3d4h ;CRT Controller Index register
MAP_MASK equ 2 ;Map Mask register index in SC
MEMORY_MODE equ 4 ;:Memory Mode register index in SC
MAX_SCAN_LINE equ 9 ;Maximum Scan Line reg index in CRTC
START_ADDRESS_HIGH equ Och ;Start Address High reg index in CRTC
UNDERLINE equ 14h ;Underline Location reg index in CRTC
MODE_CONTROL equ 17h ;:Mode Control register index in CRTC
GRAPHICS_MODE equ 5 ;Graphics Mode register index in GC
MISCELLANEOUS equ 6 ;Miscellaneous register index in GC
SCREEN_WIDTH equ 320 :#f of pixels across screen
SCREEN_HEIGHT equ 400 :# of scan lines on screen
WORD_OUTS_OK equ 1 ;set to 0 to assemble for

; computers that can't handle

; word outs to indexed VGA registers
stack segment para stack 'STACK'

db 512 dup (?)

stack ends

; Macro to output a word value to a port.

QUT_WORD macro
if WORD_OUTS_OK
out dx,ax

else
out dx,al
inc dx
xchg ah,al
out dx,al
dec dx
xchg ah,al
endif
endm

; Macro to output a constant value to an indexed VGA register.

CONSTANT_TO_INDEXED_REGISTER macro ADDRESS, INDEX, VALUE
mov  dx,ADDRESS
mov  ax,(VALUE shl 8) + INDEX
OUT_WORD
endm

Code segment
assume cs:Code
Start proc near

; Set 320x400 256-color mode.

call Set320By400Mode

; We're in 320x400 256-color mode, with page 0 dispiayed.
; Let's fi11 page 0 with color bars slanting down and to the right.

sub  di,di ;page 0 starts at address 0

Higher 256-Color Resolution on the VGA

601



602

mov  bl,1 ;make color bars slant down and
; to the right
call ColorBarsiup ;draw the color bars

Now do the same for page 1, but with the color bars
tilting the other way.

mov  di,8000h ;page 1 starts at address 8000h

mov  bl,-1 ;make color bars slant down and
; to the left

call ColorBarsUp ;draw the color bars

Wait for a key and flip to page 1 when one is pressed.

call GetNextKey
CONSTANT_TO_INDEXED_REGISTER CRTC_INDEX,START_ADDRESS_HIGH,80h
;set the Start Address High register
; to 80h, for a start address of 8000h

Draw vertical bars in page 0 while page 1 is displayed.

sub  di,di ;page 0 starts at address 0
sub  bl,bl ;make color bars vertical
call ColorBarsUp ;draw the color bars

Wait for another key and flip back to page 0 when one is pressed.

call GetNextKey
CONSTANT_TO_INDEXED_REGISTER CRTC_INDEX,START_ADDRESS_HIGH,00h
;set the Start Address High register
; to 00h, for a start address of 0000h

Wait for yet another key and return to text mode and end when
one is pressed.

call GetNextKey
mov  ax,0003h

int 10h ;text mode

mov  ah,4ch

int 21lh ;done
Start endp

H
H
.
B
’

Sets up 320x400 256-color modes.

; Input: none

; Output: none

Set320By400Mode proc near

B

H

First, go to normal 320x200 256-color mode, which is really a
320x400 256-color mode with each line scanned twice.

mov  ax,0013h ;AH = 0 means mode set, AL = 13h selects
; 256-color graphics mode
int 10h ;BIOS video interrupt

Change CPU addressing of video memory to linear (not odd/even,

; chain, or chain 4), to allow us to access all 256K of display

Chapter 31



memory. When this is done, VGA memory will look just 1ike memory
in modes 10h and 12h, except that each byte of display memory will
control one 256-color pixel, with 4 adjacent pixels at any given
address, one pixel per plane.

mov  dx,SC_INDEX
mov  al,MEMORY_MODE

out  dx,al

inc  dx

in al,dx

and al,not 08h ;turn off chain 4
or al,04n ;turn off odd/even
out dx,al

mov  dx,GC_INDEX
mov  al,GRAPHICS_MODE

out dx,al

inc  dx

in al,dx

and al,not 10h ;turn off odd/even
out dx,al

dec  dx

mov  al,MISCELLANEOQUS

out dx,al

inc  dx

in al,dx

and al,not 02h ;turn off chain
out dx,al

Now clear the whole screen, since the mode 13h mode set only
cleared 64K out of the 256K of display memory. Do this before
we switch the CRTC out of mode 13h, so we don't see garbage
on the screen when we make the switch.

CONSTANT_TO_INDEXED_REGISTER SC_INDEX,MAP_MASK,Ofh
;enable writes to all planes, so
; we can clear 4 pixels at a time
mov  ax,VGA_SEGMENT
mov  es,ax

sub  di,di

mov  ax,di

mov  ¢x,8000h ;## of words in 64K

cld

rep stosw ;clear all of display memory

Tweak the mode to 320x400 256-color mode by not scanning each
Tine twice.

mov  dx,CRTC _INDEX
mov  al,MAX_SCAN_LINE

out dx,al

inc  dx

in al,dx

and al,not 1fh ;set maximum scan line = 0
out dx,al

dec  dx

Change CRTC scanning from doubleword mode to byte mode, allowing
the CRTC to scan more than 64K of video data.

mov  al,UNDERLINE
out dx,al

Higher 256-Color Resolution on the VGA

603



inc  dx

in al,dx

and al,not 40h ;turn of f doubleword

out dx,al

dec dx

mov  al,MODE_CONTROL

out dx,al

inc  dx

in al,dx

or al,40h ;turn on the byte mode bit, so memory is
; scanned for video data in a purely
; Tinear way, just as in modes 10h and 12h

out dx,al

ret

Set320By400Mode endp
; Draws a full screen of slanting color bars in the specified page.

; Input:
H DI = page start address
H BL = 1 to make the bars slant down and to the right, -1 to

H make them stant down and to the Teft, 0 to make
H them vertical.

ColorBarsUp proc near
mov  ax,VGA_SEGMENT

mov  es,ax ;point to display memory
sub  bh,bh ;start with color 0
mov  si,SCREEN_HEIGHT ;# of rows to do

mov  dx,SC_INDEX
mov  al,MAP_MASK

out dx,al ;point the SC Index reg to the Map Mask reg
inc dx ;point DX to the SC Data register
Rowloop:

mov  ¢x,SCREEN_WIDTH/4
;4 pixels at each address, so
; each 320-pixel row is 80 bytes wide
; in each plane
push bx ;save the row-start color
CotumnLoop:
MAP_SELECT = 1
rept 4 ;do all 4 pixels at this address with
; in-line code
mov  al,MAP_SELECT

out dx,al ;select planes 0, 1, 2, and 3 in turn

mov  es:[di],bh ;write this plane's pixel

inc bh ;set the color for the next pixel

MAP_SELECT = MAP_SELECT shl 1

endm

inc di ;point to the address containing the next
; 4 pixels

loop ColumnLoop ;do any remaining pixels on this line

pop bx ;get back the row-start color

add bh,bt ;select next row-start color (controls
; slanting of color bars)

dec  si ;count down lines on the screen

jnz  RowlLoop

ret

ColorBarsUp endp

604 Chapter 31



; Waits for the next key and returns it in AX.

GetNextKey proc near

WaitKey:
mov  ah,1
int 16h
jz WaitKey :wait for a key to become available
sub  ah,ah
int 16h ;read the key
ret

GetNextKey endp
Code ends

end Start

When you run Listing 31.2, note the extremely smooth edges and fine gradations of
color, especially in the screens with slanting color bars. The displays produced by
Listing 31.2 make it clear that 320x400 256-color mode can produce effects that are
simply not possible in any 16-color mode.

Something to Think About

You can, if you wish, use the display memory organization of 320x400 mode in 320x200
mode by modifying Set320x400Mode to leave the maximum scan line setting at 1 in
the mode set. (The version of Set320x400Mode in Listings 31.1 and 31.2 forces the
maximum scan line to 0, doubling the effective resolution of the screen.) Why would you
want to do that? For one thing, you could then choose from not two but four 320x200
256-color display pages, starting at offsets 0, 4000H, 8000H, and 0C000H in display
memory. For another, having only half as many pixels per screen can as much as
double drawing speeds; that’s one reason that many games run at 320x200, and even
then often limit the active display drawing area to only a portion of the screen.

Higher 256-Color Resolution on the VGA 605



	next: 
	home: 
	previous: 


