
chapter 34

changing colors without writing pixels

WHOOPS!

Our printer failed to strip in the art for
Figure 34.1. The figure, however, is not
essential to your understandmg of th~s
chapter. It’s actually a screen shot of the
output produced by Listing 34-5, a Mode
X screen with a large number of small
animated images zipping around. You
can see what the figure should have been
(and see it in color, and see it move,
even!) by executing L34-5.EXEY which
you will find in the listing archive
subduectory for Chapter 34 once you
install the companion diskette.

Sorry for the omission.

--Jeff Duntemann, Editor

through Realtime Manipulation

Sometimes, strange a , the harder you try, the less you accomplish. Brute
force is fine when it s t it does not always suffice, and when it does not,
finesse and alternativ9 approaches are called for. Such is the case with rapidly cycling

eatedly loading the VGA’s Digital to Analog Converter (DAG).
you optimize your code, you just can’t reliably load the whole
le frame, so you had best find other ways to use the DAG to

more, BIOS support for DAC loading is so inconsistent that it’s
unusable for color $ycling; direct loading through the 1 / 0 ports is the only way to
go. We’ll see why ne&, as we explore color cycling, and then finish up this chapter
and this section by cleaning up some odds and ends about VGA color.
There’s a lot to be said about loading the DAC, so let’s dive right in and see where
the complications lie.

*

Color Cycling
-

As we’ve learned in past chapters, the VGA’s DAG contains 256 storage locations, each
holding one 18-bit value representing an RGB color triplet organized as 6 bits per
primary color. Each and every pixel generated by the VGA is fed into the DAC as an
8-bit value (refer to Chapter 33 and to Chapter A on the companion CD-ROM to see
how pixels become %bit values in non-256 color modes) and each €?-bit value is used to

639

look up one of the 256 values stored in the DAC. The looked-up value is then converted
to analog red, green, and blue signals and sent to the monitor to form one pixel.
That’s straightforward enough, and we’ve produced some pretty impressive color
effects by loading the DAG once and then playing with the &bit path into the DAC.
Now, however, we want to generate color effects by dynamically changing the values
stored in the DAC in real time, a technique that I’ll call color cycling. The potential of
color cycling should be obvious: Smooth motion can easily be simulated by altering
the colors in an appropriate pattern, and all sorts of changing color effects can be
produced without altering a single bit of display memory.
For example, a sunset can be made to color and darken by altering the DAC loca-
tions containing the colors used to draw the sunset, or a river can be made to appear
to flow by cycling through the colors used to draw the river. Another use for color
cycling is in providing more realistic displays for applications like realtime 3-D games,
where the VGA’s 256 simultaneous colors can be made to seem like many more by
changing the DAC settings from frame to frame to match the changing color de-
mands of the rendered scene. Which leaves only one question: How do we load the
DAC smoothly in realtime?
Actually, so far as I know, you can’t. At least you can’t load the entire DAC-all 256
locations-frame after frame without producing distressing on-screen effects on at
least some computers. In non-256 color modes, it is indeed possible to load the DAC
quickly enough to cycle all displayed colors (of which there are 16 or fewer), so color
cycling could be used successfully to cycle all colors in such modes. On the other
hand, color paging (which flips among a number of color sets stored within the DAC
in all modes other than 256 color mode, as discussed in Chapter A on the compan-
ion CD-ROM) can be used in non-256 color modes to produce many of the same
effects as color cycling and is considerably simpler and more reliable then color
cycling, so color paging is generally superior to color cycling whenever it’s available.
In short, color cycling is really the method of choice for dynamic color effects only in
256-color mode-but, regrettably, color cycling is at its least reliable and capable in
that mode, as we’ll see next.

The Heart of the Problem
Here’s the problem with loading the entire DAC repeatedly: The DAC contains 256
color storage locations, each loaded via either 3 or 4 OUT instructions (more on
that next), so at least ’768 OUTs are needed to load the entire DAC. That many OUTs
take a considerable amount of time, all the more so because OUTs are painfully slow
on 486s and Pentiums, and because the DAC is frequently on the ISA bus (although
VLB and PC1 are increasingly common), where wait states are inserted in fast com-
puters. In an 8 MHz AT, 768 OUTs alone would take 288 microseconds, and the data
loading and looping that are also required would take in the ballpark of 1,800 micro-
seconds more, for a minimum of 2 milliseconds total.

640 Chapter 34

As it happens, the DAG should only be loaded during vertical blanking; that is, the
time between the end of displaying the bottom border and the start of displaying the
top border, when no video information at all is being sent to the screen by the DAG.
Otherwise, small dots of snow appear on the screen, and while an occasional dot of
this sort wouldn’t be a problem, the constant DAG loading required by color cycling
would produce a veritable snowstorm on the screen. By the way, I do mean “border,”
not “frame buffer”; the overscan pixels pass through the DAC just like the pixels
controlled by the frame buffer, so you can’t even load the DAC while the border
color is being displayed without getting snow.
The start of vertical blanking itself is not easy to find, but the leading edge of the
vertical sync pulse is easy to detect via bit 3 of the Input Status 1 register at 3DAH;
when bit 3 is 1, the vertical sync pulse is active. Conveniently, the vertical sync pulse
starts partway through but not too far into vertical blanking, so it serves as a handy
way to tell when it’s safe to load the DAC without producing snow on the screen.
So we wait for the start of the vertical sync pulse, then begin to load the DAG. There’s
a catch, though. On many computers-Pentiums, 486s, and 386s sometimes, 286s
most of the time, and 8088s all the time-there just isn’t enough time between the
start of the vertical sync pulse and the end of vertical blanking to load all 256 DAG
locations. That’s the crux of the problem with the DAG, and shortly we’ll get to a tool that
will let you explore for yourself the extent of the problem on computers in which you’re
interested. First, though, we must address unother DAC loading problem: the BIOS.

Loading the DAC via the BIOS
The DAC can be loaded either directly or through subfunctions 10H (for a single
DAC register) or 12H (for a block of DAC registers) of the BIOS video service interrupt
10H, function 10H, described in Chapter 33. For cycling the contents of the entire DAG,
the block-load function (invoked by executing INT 10H with AH = 10H and AL = 12H to
load a block of CX DAC locations, starting at location BX, from the block of RGB
triplets-3 bytes per triplet-starting at ES:DX into the DAC) would be the better of
the two, due to the considerably greater efficiency of calling the BIOS once rather
than 256 times. At any rate, we’d like to use one or the other of the BIOS functions
for color cycling, because we know that whenever possible, one should use a BIOS
function in preference to accessing hardware directly, in the interests of avoiding
compatibility problems. In the case of color cycling, however, it is emphatically not
possible to use either of the BIOS functions, for they have problems. Serious problems.
The difficulty is this: IBM’s BIOS specification describes exactly how the parameters
passed to the BIOS control the loading of DAC locations, and all clone BIOSes meet
that specification scrupulously, which is to say that if you invoke INT 10H, function
10H, subfunction 12H with a given set of parameters, you can be sure that you will
end up with the same values loaded into the same DAG locations on all VGAs from
all vendors. IBM’s spec does not, however, describe whether vertical retrace should

Changing Colors without Writing Pixels 641

be waited for before loading the DAC, nor does it mention whether video should be
left enabled while loading the DAC, leaving cloners to choose whatever approach
they desire-and, alas, every VGA cloner seems to have selected a different approach.
I tested four clone VGAs from different manufacturers, some in a 20 MHz 386 machine
and some in a 10 MHz 286 machine. Two of the four waited for vertical retrace before
loading the DAC; two didn’t. Two of the four blanked the display while loading the DAC,
resulting in flickering bars across the screen. One showed speckled pixels spattered across
the top of the screen while the DAC was being loaded. Also, not one was able to load
all 256 DAC locations without showing some sort of garbage on the screen for at least
one frame, but that’s not the BIOS’S fault; it’s a problem endemic to the VGA.

Thesefindings lead me inexorably to the conclusion that the BIOS should not be p used to load the DAC dynamically. That is, $you i-e loading the DAC just once in
preparation for a graphics session-sort of a DAC mode set-by all means load by
way of the BIOS. No one will care that some garbage is displayed for a single
frame; heck, I have boards that bounce andflicker and show garbage every time I
do a mode set, and the amount of garbage produced by loading the DAC once is
far less noticeable. If; however, you intend to load the DAC repeatedly for color
cycling, avoid the BIOS DAC load functions like the plague. They will bring you
only heartache.

As but one example of the unsuitability of the BIOS DAC-loading functions for color
cycling, imagine that you want to cycle all 256 colors 70 times a second, which is once
per frame. In order to accomplish that, you would normally wait for the start of the
vertical sync signal (marking the end of the frame), then call the BIOS to load the
DAC. On some boards-boards with BIOSes that don’t wait for vertical sync before
loading the DAC-that will work pretty well; you will, in fact, load the DAC once a
frame. On other boards, however, it will work very poorly indeed; your program will
wait for the start of vertical sync, and then the BIOS will wait for the start of the next
vertical sync, with the result being that the DAG gets loaded only once every two
frames. Sadly, there’s no way, short of actually profiling the performance of BIOS
DAC loads, for you to know which sort of BIOS is installed in a particular computer,
so unless you can always control the brand of VGA your software will run on, you
really can’t afford to color cycle by calling the BIOS.
Which is not to say that loading the DAC directly is a picnic either, as we’ll see next.

Loading the DAC Directly
So we must load the DAC directly in order to perform color cycling. The DAC is loaded
directly by sending (with an OUT instruction) the number of the DAC location to be
loaded to the DAC Write Index register at 3C8H and then performing three OUTs
to write an RGB triplet to the DAC Data register at 3C9H. This approach must be
repeated 256 times to load the entire DAG, requiring over a thousand OUTs in all.

642 Chapter 34

There is another, somewhat faster approach, but one that has its risks. After an RGB
triplet is written to the DAC Data register, the DAC Write Index register automati-
cally increments to point to the next DAC location, and this repeats indefinitely as
successive RGB triplets are written to the DAG. By taking advantage of this feature,
the entire DAC can be loaded withjust 769 OUTs: one OUT to the DAC Write Index
register and 768 OUTs to the DAC Data register.
So what’s the drawback? Well, imagine that as you’re loading the DAG, an interrupt-
driven TSR (such as a program switcher or multitaker) activates and writes to the
DAC; you could end up with quite a mess on the screen, especially when your pro-
gram resumes and continues writing to the DAC-but in all likelihood to the wrong
locations. No problem, you say;just disable interrupts for the duration. Good idea-
but it takes much longer to load the DAC than interrupts should be disabled for. If,
on the other hand, you set the index for each DAC location separately, you can
disable interrupts 256 times, once as each DAG location is loaded, without problems.
As I commented in the last chapter, I don’t have any gruesome tale to relate that
mandates taking the slower but safer road and setting the index for each DAC loca-
tion separately while interrupts are disabled. I’m merely hypothesizing as to what
ghastly mishaps could happen. However, it’s been my experience that anything that
can happen on the PC does happen eventually; there are just too dang many PCs out
there for it to be otherwise. However, load the DAC any way you like; just don’t
blame me if you get a call from someone who’s claims that your program sometimes
turns their screen into something resembling month-old yogurt. It’s not really your
fault, of course-but try explaining that to them!

A Test Program for Color Cycling
Anyway, the choice of how to load the DAC is yours. Given that I’m not providing you
with any hard-and-fast rules (mainly because there don’t seem to be any), what you
need is a tool so that you can experiment with various DAC-loading approaches for
yourself, and that’s exactly what you’ll find in Listing 34.1.
Listing 34.1 draws a band of vertical lines, each one pixel wide, across the screen.
The attribute of each vertical line is one greater than that of the preceding line, so
there’s a smooth gradient of attributes from left to right. Once everything is set up,
the program starts cycling the colors stored in however many DAC locations are
specified by the CYCLE-SIZE equate; as many as all 256 DAC locations can be cycled.
(Actually, CYCLE-SIZE-1 locations are cycled, because location 0 is kept constant in
order to keep the background and border colors from changing, but CYCLE-SIZE
locations are loaded, and it’s the number of locations we can load without problems
that we’re interested in.)

Changing Colors without Writing Pixels 643

LISTING 34.1 134- 1 .ASM
; F i l l s a b a n d a c r o s s t h e s c r e e n w i t h v e r t i c a l b a r s i n a l l 2 5 6
; a t t r i b u t e s , t h e n c y c l e s a p o r t i o n o f t h e p a l e t t e u n t i l a k e y i s
; p ressed .
: Assemble w i th MASM or TASM

USE-BIOS equ

GUARD-AGAINST-INTS equ

WAIT-VSYNC equ

CYCLE-SIZE equ
SCREEN-SEGMENT equ
SCREEN-WIDTH-IN-BYTES equ
INPUT-STATUS-1
DAC-READ-INDEX

equ

DAC-WRITE-INDEX
equ

DAC-DATA
eclu
equ

1

1

1

0

256
OaOOOh
320
03dah
03c7h
03c8h
03c9h

: s e t t o 1 t o u s e BIOS f u n c t i o n s t o a c c e s s t h e
; DAC. 0 t o r e a d a n d w r i t e t h e DAC d i r e c t l y
;1 t o t u r n o f f i n t e r r u p t s a n d s e t w r i t e i n d e x
: b e f o r e l o a d i n g e a c h DAC l o c a t i o n . 0 t o r e l y
; on t h e DAC a u t o - i n c r e m e n t i n g
; s e t t o 1 t o w a i t f o r t h e l e a d i n g edge o f
; v e r t i c a l s y n c b e f o r e a c c e s s i n g t h e DAC, 0
; n o t t o w a i t
; s e t t o 1 t o u s e REP INS6 and REP OUTSB when
; a c c e s s i n g t h e DAC d i r e c t l y , 0 t o u s e
; IN/STOSB and LOOSB/OUT
;# o f DAC l o c a t i o n s t o c y c l e , 2 5 6 max
;mode 1 3 h d i s p l a y memory segment
; I o f b y t e s a c r o s s t h e s c r e e n i n mode 13h
; i n p u t s t a t u s 1 r e g i s t e r p o r t
;DAC Read I n d e x r e g i s t e r
;DAC W r i t e I n d e x r e g i s t e r
;DAC D a t a r e g i s t e r

i f NOT-8088
.286

e n d i f ; NOT-8088

.model smal 1

.s tack lOOh

.da ta
;S to rage f o r a l l 256 DAC l o c a t i o n s , o r g a n i z e d a s o n e t h r e e - b y t e
; (a c t u a l l y t h r e e 6 - b i t v a l u e s ; u p p e r t w o b i t s o f e a c h b y t e a r e n ' t
; s i g n i f i c a n t) RGB t r i p l e t p e r c o l o r .
Pa le t teTempdb 256*3 dup (?)

s t a r t :
. code

mov ax.@data
mov ds ,ax

; S e l e c t VGA's s t a n d a r d 2 5 6 - c o l o r g r a p h i c s mode, mode 13h.
mov ax.0013h :AH - 0: s e t mode f u n c t i o n ,
i n t 10h ; AL - 13h: mode # t o s e t

;Read a l l 256 DAC l o c a t i o n s i n t o P a l e t t e T e m p (3 6 - b i t v a l u e s . o n e
; e a c h f o r r e d , g r e e n , a n d b l u e , p e r DAC l o c a t i o n) .

i f WAIT-VSYNC
;Wa i t f o r t h e l e a d i n g e d g e o f t h e v e r t i c a l s y n c p u l s e : t h i s e n s u r e s
; t h a t we r e a d t h e DAC s t a r t i n g d u r i n g t h e v e r t i c a l n o n - d i s p l a y
; p e r i o d .

W a i t N o t V S y n c : ; w a i t t o b e o u t o f v e r t i c a l s y n c
mov dx.INPUTLSTATUS-1

i n a l . d x
a n d a l . 0 8 h
j n z W a i t N o t V S y n c

i n a1 .dx
and a1 .08h

WaitVSync: ; w a i t u n t i l v e r t i c a l s y n c b e g i n s

644 Chapter 34

j z WaitVSync
end i f

i f USE-BIOS
mov a x . l O l 7 h

sub bx .bx
mov cx .256
mov dx .seg Pa le t teTemp
mov es .dx
mov d x . o f f s e t P a l e t t e T e m p

i n t 10h
e l s e
i f GUARD-AGAINST-INTS

mov cx.CYCLELSIZE
mov d i . s e g P a l e t t e T e m p
mov e s . d i
mov d i . o f f s e t P a l e t t e T e m p
sub ah.ah

mov dx.DAC-READ-INDEX
mov a l . a h
c l i
o u t d x . a l
mov d x , DAC-DATA
i n a l . d x
s t o s b
i n a l . d x
s t o s b
i n a 1 , d x
s t o s b
s t i
i n c ah
1 oop DACStoreLoop

mov dx,DAC-READ-INDEX
sub a1 .a1
o u t d x . a l
mov d i , s e g P a l e t t e T e m p
mov e s . d i
mov d i . o f f s e t P a l e t t e T e m p
mov dx , DAC-DATA

mov cx.CYCLELSIZE*3
r e p i n s b

mov cx.CYCLE-SIZE

i n a l . d x
s t o s b
i n a l . d x
s t o s b
i n a1 .dx
s t o s b
1 oop DACStoreLoop

DACStoreLoop:

e l s e : !GUARD-AGAINST-INTS

i f NOTL8088

e l s e :!NOT_8088

DACStoreLoop:

e n d i f
e n d i f

e n d i f : U S E - B I O S

:WAIT_VSYNC

:AH - 1 0 h : s e t DAC f u n c t i o n ,
: AL - 17h : read DAC b l o c k s u b f u n c t i o n
: s t a r t w i t h DAC l o c a t i o n 0
: r e a d o u t a l l 2 5 6 l o c a t i o n s

: p o i n t ES:DX t o a r r a y i n w h i c h
: t h e DAC v a l u e s a r e t o b e s t o r e d
: r e a d t h e DAC
:!USE-BIOS

:# o f DAC l o c a t i o n s t o l o a d

:dump t h e DAC i n t o t h i s a r r a y
: s t a r t w i t h DAC l o c a t i o n 0

: s e t t h e DAC l o c a t i o n #

: g e t t h e r e d c o m p o n e n t

;ge t t he g reen componen t

: g e t t h e b l u e c o m p o n e n t

: s e t t h e i n i t i a l DAC l o c a t i o n t o 0

:dump t h e DAC i n t o t h i s a r r a y

: r e a d CYCLELSIZE DAC l o c a t i o n s a t o n c e

:# o f DAC l o c a t i o n s t o l o a d

; g e t t h e r e d c o m p o n e n t

: g e t t h e g r e e n c o m p o n e n t

: g e t t h e b l u e c o m p o n e n t

: NOTL8088
:GUARDLAGAINST_INTS

Changing Colors without Writing Pixels 645

;Draw a s e r i e s o f 1 - p i x e l - w i d e v e r t i c a l b a r s a c r o s s t h e s c r e e n i n
: a t t r i b u t e s 1 th rough 255 .

mov ax,SCREEN-SEGMENT
mov es .ax
mov di.50*SCREEN-WIOTH-IN-BYTES : p o i n t ES:OI t o t h e s t a r t

c l d
mov d x . l O O : d r a w 1 0 0 l i n e s h i g h

mov a l . 1 : s t a r t e a c h l i n e w i t h a t t r 1
mov cx.SCREEN-WIDTH-IN-BYTES :do a f u l l l i n e a c r o s s

s t o s b : d r a w a p i x e l
a d d a l . l : i n c r e m e n t t h e a t t r i b u t e
a d c a l . 0 : i f t h e a t t r i b u t e j u s t t u r n e d

: o f l i n e 5 0 o n t h e s c r e e n

RowLoop:

ColumnLoop:

: o v e r t o 0. i n c r e m e n t it t o 1
: b e c a u s e w e ' r e n o t g o i n g t o
: c y c l e OAC l o c a t i o n 0. so
: a t t r i b u t e 0 won ' t change

1 oop Col umnLoop
dec dx
j n z RowLoop

: C y c l e t h e s p e c i f i e d r a n g e o f DAC l o c a t i o n s u n t i l a key i s p ressed .
Cyc leLoop:
; R o t a t e c o l o r s 1 - 2 5 5 o n e p o s i t i o n i n t h e P a l e t t e T e m p a r r a y :
: l o c a t i o n 0 i s a l w a y s l e f t u n c h a n g e d so t h a t t h e b a c k g r o u n d
: a n d b o r d e r d o n ' t c h a n g e .

p u s h w o r d p t r P a l e t t e T e m p + (l * 3) ; s e t a s i d e P a l e t t e T e m p
p u s h w o r d p t r P a l e t t e T e m p + (l * 3) + 2 ; s e t t i n g f o r a t t r 1
mov cx .254
mov s i . o f f s e t P a l e t t e T e m p + (2 * 3)
mov d i , o f f s e t P a l e t t e T e m p + (l * 3)
mov ax .ds

mov cx, 254*3/ 2
mov es .ax

r e p movsw ; r o t a t e P a l e t t e T e m p s e t t i n g s
: f o r a t t r s 2 t h r o u g h 2 5 5 t o
: a t t r s 1 t h r o u g h 2 5 4

POP b x : g e t b a c k o r i g i n a l s e t t i n g s
POP a x : f o r a t t r i b u t e 1 and move
s tosw : them t o t h e P a l e t t e T e m p
mov e s : [d i] , b l : l o c a t i o n f o r a t t r i b u t e 255

i f WAIT-VSYNC
: W a i t f o r t h e l e a d i n g e d g e o f t h e v e r t i c a l s y n c p u l s e : t h i s e n s u r e s
: t h a t we r e l o a d t h e OAC s t a r t i n g d u r i n g t h e v e r t i c a l n o n - d i s p l a y
: p e r i o d .

WaitNotVSync2:
mov dx.INPUT-STATUS-1

i n a l . d x
a n d a l . 0 8 h
j n z Wai tNotVSync2

i n a l . d x
and a l .08h
j z WaitVSync2

e n d i f ;WAIT_VSYNC

i f USE-BIOS
; S e t t h e n e w , r o t a t e d p a l e t t e .

WaitVSync2:

;wa

;wa

it t o b e o u t o f v e r t i c a l s y n c

i t u n t i l v e r t i c a l s y n c b e g i n s

646 Chapter 34

mov a x . l O l 2 h

sub bx .bx
mov cx.CYCLE-SIZE
mov dx ,seg Pa le t teTemp
mov es .dx
mov d x , o f f s e t P a l e t t e T e m p

i n t 10h
e l s e : !USE-BIOS
i f GUARD-AGAINST-INTS

mov cx.CYCLE-SIZE
mov s i . o f f s e t P a l e t t e T e m p
sub ah.ah

mov dx,DAC-WRITE-INDEX
mov a1 ,ah
c l i
o u t d x . a l
mov dx , DAC-DATA
1 odsb
o u t d x . a l
1 odsb
o u t d x , a l
1 odsb
o u t d x . a l
s t i
i n c a h
1 oop DACLoadLoop

mov dx.DAC_WRITE-INDEX
sub a1 ,a l
o u t d x . a l
mov s i . o f f s e t P a l e t t e T e m p
mov dx , DAC-DATA

mov cx,CYCLE_SIZE*3
r e p o u t s b

e l s e :!NOTL8088
mov cx.CYCLE-SIZE

1 odsb
o u t d x . a l
1 odsb
o u t d x , a l
1 odsb
o u t d x , a l
l o o p DACLoadLoop

e n d i f : NOTL8088

DACLoadLoop:

e l s e :!GUARD-AGAINST-INTS

i f NOT-8088

DACLoadLoop:

e n d i f ;GUARDLAGAINSTLINTS
e n d i f ;USE-BIOS

;See i f a key has been p ressed.
mov ah,Obh
i n t 21h
and a1 .a1
j z Cyc l eLoop

:C1 e a r t h e k e y p r e s s .
mov ah .1
i n t 21h

:AH - 1 0 h : s e t OAC f u n c t i o n ,
: AL - 1 2 h : s e t DAC b l o c k s u b f u n c t i o n
: s t a r t w i t h DAC l o c a t i o n 0
:# o f DAC l o c a t i o n s t o s e t

; p o i n t ES:DX t o a r r a y f r o m w h i c h
: t o l o a d t h e DAC
; l o a d t h e DAC

:I\ o f DAC l o c a t i o n s t o 1 oad
: l o a d t h e DAC f r o m t h i s a r r a y
; s t a r t w i t h DAC l o c a t i o n 0

; s e t t h e DAC l o c a t i o n #

: s e t t h e r e d c o m p o n e n t

: s e t t h e g r e e n c o m p o n e n t

: s e t t h e b l u e c o m p o n e n t

: s e t t h e i n i t i a l DAC l o c a t i o n t o 0
: l o a d t h e DAC f r o m t h i s a r r a y

: l o a d CYCLE-SIZE DAC l o c a t i o n s a t o n c e

:# o f DAC l o c a t i o n s t o l o a d

: s e t t h e r e d c o m p o n e n t

: s e t t h e g r e e n c o m p o n e n t

: s e t t h e b l u e c o m p o n e n t

;DOS c h e c k s t a n d a r d i n p u t s t a t u s f n

: i s a key pend ing?
: n o . c y c l e some more

:DDS k e y b o a r d i n p u t f n

Changing Colors without Writing Pixels 647

: R e s t o r e t e x t mode and done.
mov ax, 0003h
i n t 10h
mov ah,4ch
i n t 21h

e n d s t a r t

:AH - 0: s e t mode f u n c t i o n ,
: AL - 03h: mode I t o s e t
:DOS t e r m i n a t e p r o c e s s f n

The big question is, How does Listing 34.1 cycle colors? Via the BIOS or directly?
With interrupts enabled or disabled? Et ceteru?
However you like, actually. Four equates at the top of Listing 34.1 select the sort of
color cycling performed; by changing these equates and CYCLE-SIZE, you can get a
feel for how well various approaches to color cycling work with whatever combina-
tion of computer system and VGA you care to test.
The USE-BIOS equate is simple. Set USEBIOS to 1 to load the DAC through the
block-load-DAC BIOS function, or to 0 to load the DAC directly with OUTS.
If USE-BIOS is 1, the only other equate of interest is WAIT-VSYNC. If WAIT-VSYNC
is 1, the program waits for the leading edge of vertical sync before loading the DAC;
if WAIT-VSYNC is 0, the program doesn’t wait before loading. The effect of setting
or not setting WAIT-VSYNC depends on whether the BIOS of the VGA the program
is running on waits for vertical sync before loading the DAC. You may end up with a
double wait, causing color cycling to proceed at half speed, you may end up with no
wait at all, causing cycling to occur far too rapidly (and almost certainly with hideous
on-screen effects), or you may actually end up cycling at the proper one-cycle-per-
frame rate.
If USEBIOS is 0, WAIT-VSYNC still applies. However, you will always want to set
WAIT-VSYNC to 1 when USE-BIOS is 0; otherwise, cycling will occur much too fast,
and a good deal of continuous on-screen garbage is likely to make itself evident as
the program loads the DAC non-stop.
If USEBIOS is 0, GUARD-AGAINST-INTS determines whether the possibility of
the DAC loading process being interrupted is guarded against by disabling inter-
rupts and setting the write index once for every location loaded and whether the
DAC’s autoincrementing feature is relied upon or not.
If GUARD-AGAINST-INTS is 1, the following sequence is followed for the loading
of each DAC location in turn: Interrupts are disabled, the DAC Write Index register
is set appropriately, the RGB triplet for the location is written to the DAC Data regis-
ter, and interrupts are enabled. This is the slow but safe approach described earlier.
Matters get still more interesting if GUARD-AGAINST-INTS is 0. In that case, if
NOT-8088 is 0, then an autoincrementing load is performed in a straightforward
fashion; the DAC Write Index register is set to the index of the first location to load
and the RGB triplet is sent to the DAC by way of three LODSB/OUT DX& pairs,
with LOOP repeating the process for each of the locations in turn.

648 Chapter 34

If, however, NOT-8088 is 1, indicating that the processor is a 286 or better (perhaps
AT-LEA!jT-286 would have been a better name), then after the initial DAC Write
Index value is set, all 768 DAC locations are loaded with a single REP OUTSB. This
is clearly the fastest approach, but it runs the risk, albeit remote, that the loading
sequence will be interrupted and the DAC registers will become garbled.
My own experience with Listing 34.1 indicates that it is sometimes possible to load
all 256 locations cleanly but sometimes it is not; it all depends on the processor, the
bus speed, the VGA, and the DAG, as well as whether autoincrementation and REP
OUTSB are used. I’m not going to bother to report how many DAC locations I could
successfully load with each of the various approaches, for the simple reason that I
don’t have enough data points to make reliable suggestions, and I don’t want you
acting on my comments and running into trouble down the pike. You now have a
versatile tool with which to probe the limitations of various DAC-loading approaches;
use i t to perform your own tests on a sampling of the slowest hardware configura-
tions you expect your programs to run on, then leave a generous safety margin.
One thing’s for sure, though-you’re not going to be able to cycle all 256 DAC loca-
tions cleanly once per frame on a reliable basis across the current generation of PCs.
That’s why I said at the outset that brute force isn’t appropriate to the task of color
cycling. That doesn’t mean that color cycling can’t be used, just that subtler ap-
proaches must be employed. Let’s look at some of those alternatives.

Color Cycling Approaches that Work
First of all, I’d like to point out that when color cycling does work, it’s a thing of
beauty. Assemble Listing 34.1 so that it doesn’t use the BIOS to load the DAC, doesn’t
guard against interrupts, and uses 286specific instructions if your computer sup-
ports them. Then tinker with CYCLE-SIZE until the color cycling is perfectly clean
on your computer. Color cycling looks stunningly smooth, doesn’t it? And this is
crude color cycling, working with the default color set; switch over to a color set that
gradually works its way through various hues and saturations, and you could get
something that looks for all the world like true-color animation (albeit working with
a small subset of the full spectrum at any one time).
Given that, how can we take advantage of color cycling within the limitations of
loading the DAC? The simplest approach, and my personal favorite, is that of cycling
a portion of the DAC while using the rest of the DAC locations for other, non-cycling
purposes. For example, you might allocate 32 DAC locations to the aforementioned
sunset, reserve 160 additional locations for use in drawing a static mountain scene,
and employ the remaining 64 locations to draw images of planes, cars, and the like
in the foreground. The 32 sunset colors could be cycled cleanly, and the other 224 colors
would remain the same throughout the program, or would change only occasionally.
That suggests a second possibility: If you have several different color sets to be cycled,
interleave the loading so that only one color set is cycled per frame. Suppose you are

Changing Colors without Writing Pixels 649

animating a night scene, with stars twinkling in the background, meteors streaking
across the sky, and a spaceship moving across the screen with its jets flaring. One way
to produce most of the necessary effects with little effort would be to draw the stars
in several attributes and then cycle the colors for those attributes, draw the meteor
paths in successive attributes, one for each pixel, and then cycle the colors for those
attributes, and do much the same for the jets. The only remaining task would be to
animate the spaceship across the screen, which is not a particularly difficult task.

The key to getting all the color cycling to work in the above example, howevel;
would be to assign each color cycling task a dlfferentpart of the DAC, with each
part cycled independently as needed. r f ; as is likely, the total number ofDAC loca-
tions cycledproved to be too great to manage in one frame, you could simply cycle
the colors of the stars after one frame, the colors of the meteors after the next, and
the colors of the jets after yet another frame, then back around to cycling the
colors of the stars. By splitting up the DAC in this manner and interleaving the
cycling tasks, you can perform a great deal of seemingly complex color animation
without loading very much of the DAC during any one frame.

Yet another and somewhat odder workaround is that of using only 128 DAC loca-
tions and page flipping. (Page flipping in 256color modes involves using the VGAs
undocumented 256color modes; see Chapters 31, 43, and 47 for details.) In this
mode of operation, you’d first display page 0, which is drawn entirely with colors 0-
127. Then you’d draw page 1 to look just like page 0, except that colors 128-255 are
used instead. You’d load DAC locations 128-255 with the next cycle settings for the
128 colors you’re using, then you’d switch to display the second page with the new
colors. Then you could modify page 0 as needed, drawing in colors 0-127, load DAC
locations 0-127 with the next color cycle settings, and flip back to page 0.
The idea is that you modify only those DAC locations that are not used to display any
pixels on the current screen. The advantage of this is not, as you might think, that
you don’t generate garbage on the screen when modifying undisplayed DAC loca-
tions; in fact, you do, for a spot of interference will show up if you set a DAC location,
displayed or not, during display time. No, you still have to wait for vertical sync and
load only during vertical blanking before loading the DAC when page flipping with
128 colors; the advantage is that since none of the DAG locations you’re modifying is
currently displayed, you can spread the loading out over two or more vertical blank-
ing periods-however long it takes. If you did this without the 128-color page flipping,
you might get odd on-screen effects as some of the colors changed after one frame,
some after the next, and so o n - o r you might not; changing the entire DAG in chunks
over several frames is another possibility worth considering.
Yet another approach to color cycling is that of loading a bit of the DAC during each
horizontal blanking period. Combine that with counting scan lines, and you could

650 Chapter 34

vastly expand the number of simultaneous on-screen colors by cycling colors us a f r u m is
displayed, so that the color set changes from scan line to scan line down the screen.
The possibilities are endless. However, were I to be writing 256-color software that
used color cycling, I’d find out how many colors could be cycled after the start of
vertical sync on the slowest computer I expected the software to run on, I’d lop off at
least 10 percent for a safety margin, and I’d structure my program so that no color
cycling set exceeded that size, interleaving several color cycling sets if necessary.
That’s what I’ddo. Don’t let yourself be held back by my limited imagination, though!
Color cycling may be the most complicated of all the color control techniques, but
it’s also the most powerful.

Odds and Ends
In my experience, when relying on the autoincrementing feature while loading the
DAC, the Write Index register wraps back from 255 to 0, and likewise when you load
a block of registers through the BIOS. So far as I know, this is a characteristic of the
hardware, and should be consistent; also, Richard Wilton documents this behavior
for the BIOS in the VGA bible, Programmer’s Guide to PC Video Systems, Second Edition
(Microsoft Press), so you should be able to count on it. Not that I see that DAC index
wrapping is especially useful, but it never hurts to understand exactly how your re-
sources behave, and I never know when one of you might come up with a serviceable
application for any particular quirk.

The DAC Mask
There’s one register in the DAC that I haven’t mentioned yet, the DAC Mask register
at 03C6H. The operation of this register is simple but powerful; it can mask off any
or all of the 8 bits of pixel information coming into the DAC from the VGA. When-
ever a bit of the DAG Mask register is 1 , the corresponding bit of pixel information is
passed along to the DAC to be used in looking up the RGB triplet to be sent to the
screen. Whenever a bit of the DAC Mask register is 0, the corresponding pixel bit is
ignored, and a 0 is used for that bit position in all look-ups of RGB triplets. At the
extreme, a DAC Mask setting of 0 causes all 8 bits of pixel information to be ignored,
so DAC location 0 is looked up for every pixel, and the entire screen displays the
color stored in DAC location 0. This makes setting the DAC Mask register to 0 a
quick and easy way to blank the screen.

Reading the DAC
The DAC can be read directly, via the DAC Read Index register at 3C7H and the
DAG Data register at 3C9H, in much the same way as it can be written directly by way
of the DAC Write Index register-complete with autoincrementing the DAG Read
Index register after every three reads. Everything I’ve said about writing to the DAC

Changing Colors without Writing Pixels 65 1

applies to reading from the DAC. In fact, reading from the DAC can even cause snow,
just as loading the DAC does, so it should ideally be performed during vertical blanking.
The DAC can also be read by way of the BIOS in either of two ways. INT 10H, func-
tion 1OH (AH=lOH), subfunction 15H (AL=15H) reads out a single DAC location,
specified by BX; this function returns the RGB triplet stored in the specified location
with the red component in the lower 6 bits of DH, the green component in the lower
6 bits of CH, and the blue component in the lower 6 bits of CL.
INT 10H, function 10H (AH=lOH), subfunction 17H (AL=17H) reads out a block of
DAC locations of length CX, starting with the location specified by BX. ES:DX must
point to the buffer in which the RGB values from the specified block of DAC loca-
tions are to be stored. The form of this buffer (RGB, RGB, RGB ..., with three bytes
per RGB triple) is exactly the same as that of the buffer used when calling the BIOS
to load a block of registers.
Listing 34.1 illustrates reading the DAC both through the BIOS block-read function
and directly, with the direct-read code capable of conditionally assembling to either
guard against interrupts or not and to use REP INSB or not. As you can see, reading
the DAC settings is very much symmetric with setting the DAC.

Cycling Down
And so, at long last, we come to the end of our discussion of color control on the
VGA. If it has been more complex than anyone might have imagined, it has also
been most rewarding. There’s as much obscure but very real potential in color con-
trol as there is anywhere on the VGA, which is to say that there’s a very great deal of
potential indeed. Put color cycling or color paging together with the page flipping
and image drawing techniques explored elsewhere in this book, and you’ll leave the
audience gasping and wondering “How the heck did they do that?”

652 Chapter 34

	previous:
	home:
	next:

