Fast Convex
Polygons

polygon filling—or, indeed, any drawing pr1m1t1ves—anyway> Isn t that what GUIs
and thlrd—party llbrzu'les are for?”

gramming.” Actually, both questions ask the same thing, and that is:
programmer, have any idea how my program actually works?”

ek

“Why should I, as
Put that way, it sounds a little different, doesn’t it?

GUISs, reusable code, portable code written entirely in high-level languages, and ob-
ject-oriented programming are all the rage now, and promise to remain so for the
foreseeable future. The thrust of this technology is to enhance the software develop-
ment process by offloading as much responsibility as possible to other programmers,
and by writing all remaining code in modular, generic form. This modular code
then becomes a black box to be reused endlessly without another thought about
what actually lies inside. GUIs also reduce development time by making many inter-
face choices for you. That, in turn, makes it possible to create quickly and reliably
programs that will be easy for new users to pick up, so software becomes easier to
both produce and learn. This is, without question, a Good Thing.

725

The “black box” approach does not, however, necessarily cause the software itself to
become faster, smaller, or more innovative; quite the opposite, I suspect. I'll reserve
judgement on whether that is a good thing or not, but I'll make a prediction: In the
short run, the aforementioned techniques will lead to noticeably larger, slower pro-
grams, as programmers understand less and less of what the key parts of their programs
do and rely increasingly on general-purpose code written by other people. (In the
long run, programs will be bigger and slower yet, but computers will be so fast and
will have so much memory that no one will care.) Over time, PC programs will also
come to be more similar to one another—and to programs running on other plat-
forms, such as the Mac—as regards both user interface and performance.

Again, [am not saying that this is bad. It does, however, have major implications for
the future nature of PC graphics programming, in ways that will directly affect the
means by which many of you earn your livings. Not so very long from now, graphics
programming—all programming, for that matter—will become mostly a matter of
assembling in various ways components written by other people, and will cease to be
the all-inclusively creative, mindbendingly complex pursuit it is today. (Using legally
certified black boxes is, by the way, one direction in which the patent lawyers are
leading us; legal considerations may be the final nail in the coffin of homegrown
code.) For now, though, it’s still within your power, as a PC programmer, to under-
stand and even control every single thing that happens on a computer if you so
desire, to realize any vision you may have. Take advantage of this unique window of
opportunity to create some magic!

Neither does it hurt to understand what'’s involved in drawing, say, a filled polygon,
even if you are using a GUI. You will better understand the performance implica-
tions of the available GUI functions, and you will be able to fill in any gaps in the
functions provided. You may even find that you can outperform the GUI on occa-
sion by doing your own drawing into a system memory bitmap, then copying the
result to the screen; for instance, you can do this under Windows by using the WinG
library available from Microsoft. You will also be able to understand why various
quirks exist, and will be able to put them to good use. For example, the X Window
System follows the polygon drawing rules described in the previous chapter (although
it’s not obvious from the X Window System documentation); if you understood the
previous chapter’s discussion, you’re in good shape to use polygons under X.

In short, even though doing so runs counter to current trends, it helps to under-
stand how things work, especially when they’re very visible parts of the software you
develop. That said, let’s learn more about filling convex polygons.

Fast Convex Polygon Filling

In addressing the topic of filling convex polygons in the previous chapter, the imple-
mentation we came up with met all of our functional requirements. In particular, it
met stringent rules that guaranteed that polygons would never overlap or have gaps

726 Chapter 39

at shared edges, an important consideration when building polygon-based images.
Unfortunately, the implementation was also slow as molasses. In this chapter we’ll
work up polygon-filling code that’s fast enough to be truly usable.

Our original polygon filling code involved three major tasks, each performed by a
separate function:

» Tracing each polygon edge to generate a coordinate list (performed by the func-
tion ScanEdge);

» Drawing the scanned-out horizontal lines that constitute the filled polygon
(DrawHorizontalLineList); and

* Characterizing the polygon and coordinating the tracing and drawing
(FillConvexPolygon).

The amount of time that the previous chapter’s sample program spent in each of these
areas is shown in Table 39.1. As you can see, half the time was spent drawing and the
other half was spent tracing the polygon edges (the time spent in FillConvexPolygon
was relatively minuscule), so we have our choice of where to begin optimizing.

Fast Drawing

Let’s start with drawing, which is easily sped up. The previous chapter’s code used a
double-nested loop that called a draw-pixel function to plot each pixel in the poly-
gon individually. That’s a ridiculous approach in a graphics mode that offers linearly
mapped memory, as does VGA mode 13H, the mode in which we’re working. At the
very least, we could point a far pointer to the left edge of each polygon scan line,
then draw each pixel in that scan line in quick succession, using something along
the lines of *ScrPtr++ = FillColor; inside a loop.

However, it seems silly to use a loop when the x86 has an instruction, REP STOS,
that’s uniquely suited to filling linear memory buffers. There’s no way to use REP
STOS directly in C code, but it’s a good bet that the memset library function uses
REP STOS, so you could greatly enhance performance by using memset to draw
each scan line of the polygon in a single shot. That, however, is easier said than done.
The memset function linked in from the library is tied to the memory model in use;
in small (which includes Tiny, Small, or Medium) data models memset accepts only
near pointers, so it can’t be used to access screen memory. Consequently, a large
(which includes Compact, Large, or Huge) data model must be used to allow memset
to draw to display memory—a clear case of the tail wagging the dog. This is an excel-
lent example of why, although it is possible to use C to do virtually anything, it’s
sometimes much simpler just to use a little assembly code and be done with it.

At any rate, Listing 39.1 for this chapter shows a version of DrawHorizontalLineList
that uses memset to draw each scan line of the polygon in a single call. When linked
to Chapter 38’s test program, Listing 39.1 increases pure drawing speed (disregard-
ing edge tracing and other nondrawing time) by more than an order of magnitude

Fast Convex Polygons 727

Total Polygon DrawHorizontal FillConvex
Implementation Filling Time LineList ScanEdge Polygon

Drawing to display memory in mode 13h

C floating point scan/ 11.69 5.80 seconds 5.86 0.03
DrawPixel drawing

code from Chapter 38, (50% of total) (50%) (<1%)
(small model)

C floating point scan/ 6.64 0.49 6.11 0.04
memset drawing

(Listing 39.1, (7%) (92%) (<1%)
compact model)

C integer scan/ 0.60 0.49 0.07 0.04
memset drawing

(Listing 39.1 & (82%) (12%) (7%)
Listing 39.2,

compact model)

C integer scan/ 0.45 0.36 0.06 0.03
ASM drawing

(Listing 39.2 & (80%) (13%) (7%)
Listing 39.3,

small model)

ASM integer scan/ 0.42 0.36 0.03 0.03
ASM drawing

(Listing 40.3 & (86%) (7%) (7%)
Listing 40.4,

small model)

Drawing to system memory

C integer scan/ 0.31 0.20 0.07 0.04
memset drawing

(Listing 39.1 & (65%) (23%) (13%)
Listing 39.2,

compact model)

ASM integer scan/ 0.13 0.07 0.03 0.03

ASM drawing

(Listing 39.3 & (54%) (23%) (23%)
Listing 39.4,

small model)

All times are in seconds, as measured with Turbo Profiler on a 20-MHz cached 386 with no math coprocessor
installed. Note that time spent in main() is not included. C code was compiled with Borland C++ with maximum

optimization (-G -O -Z -r -a); assembly language code was assembled with TASM. Percentages of combined times
are rounded fo the nearest percent, so the sum of the three percentages does not always equal 100.

Table 39.1 Polygon fill performance.

728 Chapter 39

over Chapter 38’s draw-pixel-based code, despite the fact that Listing 39.1 requires a
large (in this case, the Compact) data model. Listing 39.1 works fine with Borland
C++, but may not work with other compilers, for it relies on the aforementioned
interaction between memset and the selected memory model.

LISTING 39.1 L39-1.C

/* Draws all pixels in the 1ist of horizontal lines passed in, in
mode 13h, the VGA's 320x200 256-cotor mode. Uses memset to fill
each 1ine, which is much faster than using DrawPixel but requires
that a large data model (compact, large, or huge) be in use when
running in real mode or 286 protected mode.
A1l C code tested with Borland C++. */

#include <string.h>
#Hinclude <dos.h>
#include "polygon.h"

fidefine SCREEN_WIDTH 320
fidefine SCREEN_SEGMENT 0xA000

void DrawHorizontalLineList(struct HLineList * HLineListPtr,

int Color)
{

struct HLine *HLinePtr;

int Length, Width;

unsigned char far *ScreenPtr;

/* Point to the start of the first scan line on which to draw */

ScreenPtr = MK_FP(SCREEN_SEGMENT,

HLinelistPtr->YStart * SCREEN_WIDTH);

/* Point to the XStart/XEnd descriptor for the first (top)
horizontal line */

HLinePtr = HLineListPtr->HLinePtr;

/* Draw each horizontal line in turn, starting with the top one and
advancing one line each time */

Length = HLineListPtr->Length;

while (Length-- > 0) {
/* Draw the whole horizontal line if it has a positive width */
if ((Width = HLinePtr->XEnd - HLinePtr->XStart + 1) > 0)

memset(ScreenPtr + HLinePtr->XStart, Color, Width);

HLinePtr++; /* point to next scan line X info */
ScreenPtr += SCREEN_WIDTH; /* point to next scan line start */

}

}

At this point, I'd like to mention that benchmarks are notoriously unreliable; the
results in Table 39.1 are accurate only for the test program, and only when running
on a particular system. Results could be vastly different if smaller, larger, or more
complex polygons were drawn, or if a faster or slower computer/VGA combination
were used. These factors notwithstanding, the test program does fill a variety of poly-
gons of varying complexity sized from large to small and in between, and certainly
the order of magnitude difference between Listing 39.1 and the old version of
DrawHorizontalLineList is a clear indication of which code is superior.

Fast Convex Polygons 729

Anyway, Listing 39.1 has the desired effect of vastly improving drawing time. There
are cycles yet to be had in the drawing code, but as tracing polygon edges now takes
92 percent of the polygon filling time, it’s logical to optimize the tracing code next.

Fast Edge Tracing

There’s no secret as to why last chapter’s ScanEdge was so slow: It used floating point
calculations. One secret of fast graphics is using integer or fixed-point calculations,
instead. (Sure, the floating point code would run faster if a math coprocessor were
installed, but it would still be slower than the alternatives; besides, why require a
math coprocessor when you don’t have to?) Both integer and fixed-point calcula-
tions are fast. In many cases, fixed-point is faster, but integer calculations have one
tremendous virtue: They’re completely accurate. The tiny imprecision inherent in
either fixed or floating-point calculations can result in occasional pixels being one
position off from their proper location. This is no great tragedy, but after going to so
much trouble to ensure that polygons don’t overlap at common edges, why not get it
exactly right?

In fact, when I tested out the integer edge tracing code by comparing an integer-
based test image to one produced by floating-point calculations, two pixels out of
the whole screen differed, leading me to suspect a bug in the integer code. It turned
out, however, that’s in those two cases, the floating point results were sufficiently
imprecise to creep from just under an integer value to just over it, so that the ceil
function returned a coordinate that was one too large.
*p Floating point is very accurate—but it is not precise. Integer calculations, prop-
erly performed, are.

Listing 39.2 shows a C implementation of integer edge tracing. Vertical and diagonal
lines, which are trivial to trace, are special-cased. Other lines are broken into two
categories: Y¥major (closer to vertical) and X-major (closer to horizontal). The han-
dlers for the ¥major and X-major cases operate on the principle of similar triangles:
The number of X pixels advanced per scan line is the same as the ratio of the X delta
of the edge to the Y delta. Listing 39.2 is more complex than the original floating
point implementation, but not painfully so. In return for that complexity, Listing

39.2 is more than 80 times faster at scanning edges—and, as just mentioned, it’s
actually more accurate than the floating point code.

Ya gotta love that integer arithmetic.

LISTING 39.2 139-2.C

/* Scan converts an edge from (X1,Yl) to (X2,Y2), not including the
point at (X2,Y2). If SkipFirst == 1, the point at (X1,Yl) isn't
drawn; if SkipFirst == 0, it is. For each scan line, the pixel
closest to the scanned edge without being to the Teft of the
scanned edge is chosen. Uses an all-integer approach for speed and
precision. */

730 Chapter 39

#include <math.h>
#include "polygon.h"

void ScankEdge(int X1, int Y1, int X2, int Y2, int SetXStart,

{

int SkipFirst, struct HLine **EdgePointPtr)

int Y, DeltaX, Height, Width, AdvanceAmt, ErrorTerm, i;
int ErrorTermAdvance, XMajorAdvanceAmt;
struct HLine *WorkingEdgePointPtr;

WorkingEdgePointPtr = *EdgePointPtr: /* avoid double dereference */
AdvanceAmt = ((DeltaX = X2 - X1) > 0) 71 : -1;
/* direction in which X moves (Y2 is
always > Y1, so Y always counts up) */

if ((Height = Y2 - Y1) <= 0) /* Y Tength of the edge */
return; /* guard against 0-length and horizontal edges */

/* Figure out whether the edge is vertical, diagonal, X-major
{mostly horizontal), or Y-major (mostly vertical) and handle
appropriately */

if ((Width = abs(DeltaX)) == 0) {

/* The edge is vertical; special-case by just storing the same
X coordinate for every scan line */
/* Scan the edge for each scan line in turn */
for (i = Height - SkipFirst; i-- > 0; WorkingkdgePointPtr++) {
/* Store the X coordinate in the appropriate edge list */
if (SetXStart == 1)
WorkingEdgePointPtr->XStart = X1;
else
WorkingEdgePointPtr->XEnd = X1;
}
} else if (Width == Height) {
/* The edge is diagonal; special-case by advancing the X
coordinate 1 pixel for each scan line */
if (SkipFirst) /* skip the first point if so indicated */
X1 += AdvanceAmt; /* move 1 pixel to the left or right */
/* Scan the edge for each scan line in turn */
for (i = Height - SkipFirst; i-- > 0; WorkingEdgePointPtr++) {
/* Store the X coordinate in the appropriate edge Tist */
if (SetXStart == 1)
WorkingEdgePointPtr->XStart = X1;
else
WorkingEdgePointPtr->XEnd = X1;
X1 += AdvanceAmt; /* move 1 pixel to the left or right */
}
} else if (Height > Width) {
/* Edge is closer to vertical than horizontal (Y-major) */
if (DeltaX >= 0)
ErrorTerm = 0; /* initial error term going left->right */
else
ErrorTerm = -Height + 1; /* going right->left */
if (SkipFirst) { /* skip the first point if so indicated */
/* Determine whether it's time for the X coord to advance */
if ((ErrorTerm += Width) > 0) {
X1 += AdvanceAmt; /* move 1 pixel to the left or right */
ErrorTerm -= Height; /* advance ErrorTerm to next point */
}
}
/* Scan the edge for each scan line in turn */
for (i = Height - SkipFirst; i-- > 0; WorkingEdgePointPtr++) {

Fast Convex Polygons

731

/* Store the X coordinate in the appropriate edge 1ist */
if (SetXStart == 1)
WorkingEdgePointPtr->XStart = X1;
else
WorkingEdgePointPtr->XEnd = X1;
/* Determine whether it's time for the X coord to advance */
if ((ErrorTerm += Width) > 0) {
X1 += AdvanceAmt: /* move 1 pixel to the left or right */
ErrorTerm -= Height; /* advance ErrorTerm to correspond */
1
}
} else {
/* Edge is closer to horizontal than vertical (X-major) */
/* Minimum distance to advance X each time */
XMajorAdvanceAmt = (Width / Height) * AdvanceAmt;
/* Error term advance for deciding when to advance X 1 extra */
ErrorTermAdvance = Width % Height;
if (DeltaX >= 0)
ErrorTerm = 0; /* initial error term going left->right */
else
ErrorTerm = -Height + 1; /* going right->left */
if (SkipFirst) { /* skip the first point if so indicated */
X1 += XMajorAdvanceAmt: /* move X minimum distance */
/* Determine whether it's time for X to advance one extra */
if ((ErrorTerm += ErrorTermAdvance) > 0) {
X1 += AdvanceAmt; /* move X one more */
ErrorTerm -= Height; /* advance ErrorTerm to correspond */
}
}
/* Scan the edge for each scan line in turn */
for (i = Height - SkipFirst; i-- > 0; WorkingEdgePointPtr++) {
/* Store the X coordinate in the appropriate edge 1ist */
if (SetXStart = 1)
WorkingEdgePointPtr->XStart = X1;

else
WorkingEdgePointPtr->XEnd = X1;
X1 += XMajorAdvanceAmt; /* move X minimum distance */

/* Determine whether it's time for X to advance one extra */
if ((ErrorTerm += ErrorTermAdvance) > 0) {

X1 += AdvanceAmt; /* move X one more */

ErrorTerm -= Height: /* advance ErrorTerm to correspond */

}

EdgePointPtr = WorkingEdgePointPtr; / advance caller's ptr */
}

The Finishing Touch: Assembly Language

The C implementation in Listing 39.2 is now nearly 20 times as fast as the original,
which is good enough for most purposes. Still, it requires that one of the large data
models be used (for memset), and it’s certainly not the fastest possible code. The
obvious next step is assembly language.

Listing 39.3 is an assembly language version of DrawHorizontalLineList. In actual
use, it proved to be about 36 percent faster than Listing 39.1; better than a poke in
the eye with a sharp stick, but just barely. There’s more to these timing results than

732 Chapter 39

meets that eye, though. Display memory generally responds much more slowly than
system memory, especially in 386 and 486 systems. That means that much of the time
taken by Listing 39.3 is actually spent waiting for display memory accesses to com-
plete, with the processor forced to idle by wait states. If, instead, Listing 39.3 drew to
a local buffer in system memory or to a particularly fast VGA, the assembly imple-
mentation might well display a far more substantial advantage over the C code.

And indeed it does. When the test program is modified to draw to a local buffer,
both the C and assembly language versions get 0.29 seconds faster, that being a mea-
sure of the time taken by display memory wait states. With those wait states factored
out, the assembly language version of DrawHorizontalLineList becomes almost three
times as fast as the C code.

There is a lesson here. An optimization has no fixed payoff; its value fluctuates
according to the context in which it is used. There's relatively little benefit to further
optimizing code that already spends half its time waiting for display memory; no mat-
ter how good your optimizations, you'll get only a two-times speedup at best, and
generally much less than that. There is, on the other hand, potential for tremen-
dous improvement when drawing to system memory, so if that'’s where most of your
drawing will occur, optimizations such as Listing 39.3 are well worth the effort.

Know the environments in which your code will run, and know where the cycles go
in those environments.

LISTING 39.3 L39-3.ASM

; Draws all pixels in the 1ist of horizontal lines passed in, in

; mode 13h, the VGA's 320x200 256-color mode. Uses REP ST0S to fill
; each line.

; C near-callable as:

H void DrawHorizontallineList(struct HLinelist * HLinelistPtr,
H int Color);

; A11 assembly code tested with TASM and MASM

SCREEN_WIDTH equ 320
SCREEN_SEGMENT equ 0a000h

HLine struc

XStart dw ? ;X coordinate of Teftmost pixel in line
XEnd dw ? ;X coordinate of rightmost pixel in Tine
HLine ends

HLinelist struc

Lngth dw ? :# of horizontal lines

YStart dw ? ;Y coordinate of topmost Tine
HLinePtr dw ? ;pointer to 1ist of horz lines
HLinelist ends

Parms struc
dw 2 dup(?) ;return address & pushed BP

HLineListPtr dw ? ;pointer to HLinelist structure
Color dw ? ;color with which to fil1l
Parms ends

Fast Convex Polygons 733

.model small
.code

public _DrawHorizontallLinelList

align 2
_DrawHorizontallLinelList proc

push bp

mov bp,sp

push si

push di

cld

mov ax,SCREEN_SEGMENT
mov es,ax

mov si,[bp+HLineListPtr]
mov ax,SCREEN_WIDTH

mul [si+YStart]

mov dx,ax

mov bx,[si+HLinePtr]

mov si,[si+Lngth]
and si,si
jz Fil1Done
mov al,byte ptr [bp+Color]
mov ah,al
FillLoop:
mov di,[bx+XStart]
mov cx, [bx+XEnd]

sub cx,di

Js LineFil1Done

inc ¢x

add di,dx

test di,1

jz MainFill

stosb

dec cx

Jjz LineFil1Done
MainFill:

shr ¢x,1

rep stosw
ade cx,cx

rep stosb
LineFil1Done:

add bx,size HLine

add dx,SCREEN_WIDTH

dec si

jnz FillLoop
FillDone:

pop di

pop si

pop bp

ret
_DrawHorizontallinelList endp

end

734 Chapter 39

;preserve caller's stack frame
;point to our stack frame
;preserve caller's register variables

;make string instructions inc pointers

;point ES to displiay memory for REP STOS

;point to the line list

;point to the start of the first scan
; Tine in which to draw

;ES:DX points to first scan line to

; draw

;point to the XStart/XEnd descriptor

; for the first (top) horizontal line
;# of scan lines to draw

;are there any lines to draw?

;no, so we're done

;color with which to fill

sduplicate color for STOSW

;left edge of fill on this line
;right edge of fill

;skip if negative width

;width of fi11 on this Tine

;offset of Teft edge of fill

;does fi1l start at an odd address?
;no

;yes, draw the odd leading byte to
; word-align the rest of the fill
;count off the odd leading byte
;done if that was the only byte

:# of words in fill

;fi11 as many words as possible

;1 if there's an odd trailing byte to
; do, 0 otherwise

;fi11 any odd trailing byte

;point to the next line descriptor
;point to the next scan line
;count off lines to fill

srestore caller's register variables

;restore caller’'s stack frame

Maximizing REP STOS

Listing 39.3 doesn’t take the easy way out and use REP STOSB to fill each scan line;
instead, it uses REP STOSW to fill as many pixel pairs as possible via word-sized
accesses, using STOSB only to do odd bytes. Word accesses to odd addresses are
always split by the processor into 2-byte accesses. Such word accesses take twice as
long as word accesses to even addresses, so Listing 39.3 makes sure that all word
accesses occur at even addresses, by performing a leading STOSB first if necessary.

Listing 39.3 is another case in which it’s worth knowing the environment in which your
code will run. Extra code is required to perform aligned word-at-a-time filling, resulting
in extra overhead. For very small or narrow polygons, that overhead might overwhelm
the advantage of drawing a word at a time, making plain old REP STOSB faster.

Faster Edge Tracing

Finally, Listing 39.4 is an assembly language version of ScanEdge. Listing 39.4 is a
relatively straightforward translation from C to assembly, but is nonetheless about
twice as fast as Listing 39.2.

The version of ScanEdge in Listing 39.4 could certainly be sped up still further by
unrolling the loops. FillConvexPolygon, the overall coordination routine, hasn’t even
been converted to assembly language, so that could be sped up as well. I haven’t both-
ered with these optimizations because all code other than DrawHorizontalLineList
takes only 14 percent of the overall polygon filling time when drawing to display
memory; the potential return on optimizing nondrawing code simply isn’t great
enough to justify the effort. Part of the value of a profiler is being able to tell when to
stop optimizing; with Listings 39.3 and 39.4 in use, more than two-thirds of the time
taken to draw polygons is spent waiting for display memory, so optimization is pretty
much maxed out. However, further optimization might be worthwhile when draw-
ing to system memory, where wait states are out of the picture and the nondrawing
code takes a significant portion (46 percent) of the overall time.

Again, know where the cycles go.

By the way, note that all the versions of ScanEdge and FillConvexPolygon that we’ve
looked at are adapter-independent, and that the C code is also machine-indepen-
dent; all adapter-specific code is isolated in DrawHorizontalLineList. This makes it
easy to add support for other graphics systems, such as the 8514/A, the XGA, or, for
that matter, a completely non-PC system.

I.ISTING 39.4 L39-4.ASM

Scan converts an edge from (X1,Y1) to (X2,Y2), not including the
H p01nt at (X2,Y2). If SkipFirst == 1, the point at (X1,Y1l) isn't

; drawn; if SkipFirst == 0, it is. For each scan line, the pixel
. closest to the scanned edge without being to the left of the scanned
; edge is chosen. Uses an all-integer approach for speed & precision.

Fast Convex Polygons 735

; C near-callable as:
H void ScanEdge(int X1, int Y1, int X2, int Y2, int SetXStart,

H int SkipFirst, struct HLine **EdgePointPtr);

; Edges must not go bottom to top; that is, Y1 must be <= Y2.

; Updates the pointer pointed to by EdgePointPtr to point to the next
; free entry in the array of HLine structures.

HLine struc

XStart dw ?
XEnd dw ?
HLine ends

Parms struc

dw 2 dup(?)

X1 dw ?
Y1l dw ?
X2 dw ?
Y2 dw ?
SetXStart dw ?
SkipFirst dw ?
EdgePointPtr dw ?
Parms ends

;0ffsets from BP in

AdvanceAmt
Height
LOCAL_SIZE

equ -2
equ -4
equ 4

.model small

.code

public _Scantdge

align
_Scantdge
push
mov
sub
push
push
mov
mov
cmp

jz
add

2
proc
bp
bp,sp
sp,LOCAL_SIZE
si
di
di,[bp+EdgePointPtr]
di,[di]
[bp+SetXStart],1

HLinePtrSet
di,XEnd

HLinePtrSet:

mov
sub
jle
mov
sub

mov
mov
sub
jz

bx, [bp+Y2]
bx,[bp+Y1]
ToScanEdgeExit
[bp+Height],bx
CX,CX

dx,1

ax, [bp+x2]
ax, [bp+X1]
IsVertical

736 Chapter 39

;X coordinate of leftmost pixel in scan line
;X coordinate of rightmost pixel in scan line

;return address & pushed BP

;X start coord of edge

;Y start coord of edge

;X end coord of edge

;Y end coord of edge

;1 to set the XStart field of each

; HLine struc, 0 to set XEnd

;1 to skip scanning the first point
; of the edge, 0 to scan first point
;pointer to a pointer to the array of
; HLine structures in which to store
; the scanned X coordinates

stack frame of local variables.

;total size of local variables

caller's stack frame

our stack frame

space for local variables
caller's register variables

;preserve
;point to
;allocate
;preserve

;point to the HLine array

;set the XStart field of each HLine
; struc?

;yes, DI points to the first XStart
ino, point to the XEnd field of the
; first HLine struc

;edge height

;guard against O-Tength & horz edges
;Height = Y2 - Y1

;assume ErrorTerm starts at 0 (true if
; we're moving right as we draw)
;assume AdvanceAmt = 1 (move right)

;DeltaX = X2 - X1
;it's a vertical edge--special case it

jns SetAdvanceAmt

mov ¢x,1
sub cx,bx
neg dx
neg ax
SetAdvanceAmt:

mov [bp+AdvanceAmt],dx

;:DeltaX >= 0

;DeltaX < 0 (move left as we draw)
;ErrorTerm = -Height + 1
;AdvanceAmt = -1 (move left)
;Width = abs(DeltaX)

; Figure out whether the edge is diagonal, X-major (more horizontal),
; or Y-major (more vertical) and handle appropriately.

cmp ax,bx
jz IsDiagonal
Jjb YMajor

sub dx,dx
div bx

mov si,ax

test [bptAdvanceAmt],8000h
jz XMajorAdvanceAmtSet

neg si

XMajorAdvanceAmtSet: H
mov ax,{bp+Xl1]

cmp [bp+SkipFirst],1

jz XMajorSkipEntry
XMajorLoop:

mov [di].ax

add di,size HLine

XMajorSkipEntry:
add ax,si
add cx,dx

jle XMajorNoAdvance

add ax,[bp+AdvanceAmt]
sub cx,[bp+Height]
XMajorNoAdvance:
dec bx
jnz XMajorLoop
jmp ScanEdgeDone
align 2
ToScankdgeExit:
jmp ScanEdgeExit
align 2
IsVertical:
mov ax,[bp+X1]
sub bx,[bp+SkipFirst]
jz ScantdgeExit
Verticalloop:
mov [di],ax
add di,size HLine
dec bx
jnz Verticalloop
jmp ScanEdgeDone
align 2
IsDiagonal:
mov ax,[bp+X1]
cmp [bp+SkipFirst],1

jz DiagonalSkipEntry;yes

;if Width==Height, it's a diagonal edge
;it's a diagonal edge--special case
;it's a Y-major (more vertical) edge
;it's an X-major (more horz) edge
;prepare DX:AX (Width) for division
;Width/Height

;DX = error term advance per scan line
;SI = minimum # of pixels to advance X
; on each scan line

;move left or right?

;right, already set

;1eft, negate the distance to advance
; on each scan line

;starting X coordinate
;skip the first point?
iyes

;store the current X value
;point to the next HlLine struc

;set X for the next scan line
;advance error term

;not time for X coord to advance one
; extra

;advance X coord one extra

;adjust error term back

;count off this scan ltine

;starting (and only) X coordinate
;Toop count = Height - SkipFirst
;no scan lines left after skipping 1st

;store the current X valtue

;point to the next HLine struc
;count off this scan line

;starting X coordinate
;skip the first point?

Fast Convex Polygons

737

Diagonalloop:

mov [di],ax

add di,size HLine
DiagonalSkipEntry:

add ax,dx

dec bx

jnz DiagonalLoop

Jjmp ScanEdgeDone

align 2
YMajor:

push bp

mov si,[bp+X1]

cmp [bp+SkipFirst],1

mov bp.bx

jz YMajorSkipEntry
YMajorLoop:

mov [di],si

add di,size HLine
YMajorSkipEntry:

add cx,ax

jle YMajorNoAdvance

add si,dx

sub ¢cx,bp
YMajorNoAdvance:

dec bx

jnz YMajorlLoop

pop bp
ScanEdgeDone:

cmp [bp+SetXStart],1

jz UpdateHLinePtr

sub di,XEnd
UpdateHLinePtr:

mov bx,[bp+EdgePointPtr]

mov [bx],di
ScankEdgeExit:

pop di

pop si

mov sp,bp

pop bp

ret
_Scankdge endp

end

738 Chapter 39

Previous Home

;store the current X value
;point to the next HLine struc

;advance the X coordinate
;count off this scan line

;preserve stack frame pointer
;starting X coordinate

;skip the first point?

;put Height in BP for error term calcs
;yes, skip the first point

;store the current X value
;point to the next HLine struc

;advance the error term

snot time for X coord to advance
;advance the X coordinate

;adjust error term back

;count off this scan line

;restore stack frame pointer

;were we working with XStart field?
;yes, DI points to the next XStart
;no, point back to the XStart field

;point to pointer to HLine array
;update caller's HLine array pointer

;restore caller's register variables

;deallocate local variables
;restore caller's stack frame

Next

	previous:
	home:
	next:

