Wu'ed in
Haste; Fried,
Stewed at

Leisure

sed Lines Using Wu's Algorithm

ped into my head as I unenthusiastically picked through the
mily” restaurant, trying to decide whether the meatballs, the
na was likely to shorten my life the least. I decided on the

The thought firstt
salad bar at a loca
fried clams, or the
chicken in mystery sa

when my daughter asked, “Dad, is that fried chicken?”
id. “I think it’s stewed chicken.”

The thought recurref
“I don’t think so,” ¥
“It looks like fried

“Maybe it'sf#@, §tewed chicken,” my wife volunteered hopefully. I took a bite. It
was, indeed, fried,§tewed chicken. I can now, unhesitatingly and without reserva-
tion, recommend thdt you avoid fried, stewed chicken at all costs.

The thought I had was as follows: This is not good food. Not a profound thought, but it
raises an interesting question: Why was I eating in this restaurant? The answer, to
borrow a phrase from E.F. Schumacher, is appropriate technology. For a family on a
budget, with a small child, tired of staring at each other over the kitchen table, this
was a perfect place to eat. It was cheap, it had greasy food and ice cream, no one
cared if children dropped things or talked loudly or walked around, and, most im-
portant of all, it wasn’t home. So what if the food was lousy? Good food was a luxury,
a bonus; everything on the above list was necessary. A family restaurant was the ap-
propriate dining-out technology, given the parameters within which we had to work.

icken.”

775

When I read through SIGGRAPH proceedings and other state-of-the-art computer-
graphics material, all too often I feel like I'm dining at a four-star restaurant with
two-year-old triplets and an empty wallet. We're talking incredibly inappropriate tech-
nology for PC graphics here. Sure, I say to myself as I read about an antialiasing
technique, that sounds wonderful—if I had 24-bpp color, and dedicated hardware to
do the processing, and all day to wait to generate one image. Yes, I think, that is a
good way to do hidden surface removal—in a system with hardware z-buffering. Most
of the stuff in the journal Computer Graphics is riveting, but, alas, pretty much useless
on PCs. When an x86 has to do all the work, speed becomes the overriding param-
eter, especially for real-time graphics.

Literature that’s applicable to fast PC graphics is hard enough to find, but what we’d
really like is above-average image quality combined with terrific speed, and there’s
almost no literature of that sort around. There is some, however, and you folks are
right on top of it. For example, alert reader Michael Chaplin, of San Diego, wrote to
suggest that I might enjoy the line-antialiasing algorithm presented in Xiaolin Wu’s
article, “An Efficient Antialiasing Technique,” in the July 1991 issue of Computer Graph-
ics. Michael was dead-on right. This is a great algorithm, combining excellent
antialiased line quality with speed that’s close to that of non-antialiased Bresenham’s
line drawing. This is the sort of algorithm that makes you want to go out and write a
wire-frame animation program, just so you can see how good those smooth lines
look in motion. Wu antialiasing is a wonderful example of what can be accomplished
on inexpensive, mass-market hardware with the proper programming perspective.
In short, it’s a splendid example of appropriate technology for PCs.

Wu Antialiasing

Antialiasing, as we’ve been discussing for the past few chapters, is the process of
smoothing lines and edges so that they appear less jagged. Antialiasing is partly an
aesthetic issue, because it makes images more attractive. It’s also partly an accuracy
issue, because it makes it possible to position and draw images with effectively more
precision than the resolution of the display. Finally, it’s partly a flat-out necessity, to
avoid the horrible, crawling, jagged edges of temporal aliasing when performing
animation.

The basic premise of Wu antialiasing is almost ridiculously simple: As the algorithm steps
one pixel unit at a time along the major (longer) axis of a line, it draws the two pixels
bracketing the line along the minor axis at each point. Each of the two bracketing
pixels is drawn with a weighted fraction of the full intensity of the drawing color, with
the weighting for each pixel equal to one minus the pixel’s distance along the minor
axis from the ideal line. Yes, it’s a mouthful, but Figure 42.1 illustrates the concept.

The intensities of the two pixels that bracket the line are selected so that they always
sum to exactly 1; that is, to the intensity of one fully illuminated pixel of the drawing
color. The presence of aggregate full-pixel intensity means that at each step, the line

776 Chapter 42

Ideal line is 0.45 pixel
spacings from this pixel,
so the pixel is drawn
with 55% intensity.

.

Ideal line is 0.1 pixel
spacings from this pixel,
so the pixel is drawn
with 90% intensity.

4
Intensity is allocated
between each pixel
pair, always summing
o ol nfensy o I
@

a single pix

L——'.
/

Ideal line is 0.9 pixel
spacings from this pixel,
so the pixel is drawn
with 10% intensity.

7

Ideal line is 0.55 pixel
spacings from this pixel,
so the pixel is drawn
with 45% intensity.

Ideal line is 0.8 pixel
spacings from this pixel,
so the pixel is drawn
with 20% intensity.

|
®

}
O
I

Ideal line is 0.2 pixel
spacings from this pixel,
so the pixel is drawn
with 80% intensity.

The basic concept of Wu antialiasing.
Figure 42.1

has the same brightness it would have if a single pixel were drawn at precisely the
correct location. Moreover, thanks to the distribution of the intensity weighting, that
brightness is centered at the ideal line. Not coincidentally, a line drawn with pixel
pairs of aggregate single-pixel intensity, centered on the ideal line, is perceived by
the eye not as a jagged collection of pixel pairs, but as a smooth line centered on the
ideal line. Thus, by weighting the bracketing pixels properly at each step, we can
readily produce what looks like a smooth line at precisely the right location, rather
than the jagged pattern of line segments that non-antialiased line-drawing algorithms
such as Bresenham’s (see Chapters 35, 36, and 37) trace out.

You might expect that the implementation of Wu antialiasing would fall into two
distinct areas: tracing out the line (that is, finding the appropriate pixel pairs to
draw) and calculating the appropriate weightings for each pixel pair. Not so, however.
The weighting calculations involve only a few shifts, XORs, and adds; for all practical
purposes, tracing and weighting are rolled into one step—and a very fast step it is.
How fast is it? On a 33-MHz 486 with a fast VGA, a good but not maxed-out assembly
implementation of Wu antialiasing draws a more than respectable 5,000 150-pixel-
long vectors per second. That’s especially impressive considering that about 1,500,000

Wu'ed in Haste; Fried, Stewed at Leisure 777

actual pixels are drawn per second, meaning that Wu antialiasing is drawing at around
50 percent of the maximum memory bandwidth—half the fastest theoretically pos-
sible drawing speed—of an AT-bus VGA. In short, Wu antialiasing is about as fast an
antialiased line approach as you could ever hope to find for the VGA.

Tracing and Intensity in One

Horizontal, vertical, and diagonal lines do not require Wu antialiasing because they
pass through the center of every pixel they meet; such lines can be drawn with fast,
special-case code. For all other cases, Wu lines are traced out one step at a time along
the major axis by means of a simple, fixed-point algorithm. The move along the
minor axis with respect to a one-pixel move along the major axis (the line slope for
lines with slopes less than 1, 1/slope for lines with slopes greater than 1) is calculated
with a single integer divide. This value, called the “error adjust,” is stored as a fixed-
point fraction, in 0.16 format (that is, all bits are fractional, and the decimal point is
just to the left of bit 15). An error accumulator, also in 0.16 format, is initialized to 0.
Then the first pixel is drawn; no weighting is needed, because the line intersects its
endpoints exactly.

Now the error adjust is added to the error accumulator. The error accumulator indi-
cates how far between pixels the line has progressed along the minor axis at any
given step; when the error accumulator turns over, it’s time to advance one pixel
along the minor axis. At each step along the line, the major-axis coordinate advances
by one pixel. The two bracketing pixels to draw are simply the two pixels nearest the
line along the minor axis. For instance, if X is the current major-axis coordinate and
Y is the current minor-axis coordinate, the two pixels to be drawn are (X,Y) and
(X,Y+1). In short, the derivation of the pixels at which to draw involves nothing
more complicated than advancing one pixel along the major axis, adding the error
adjust to the error accumulator, and advancing one pixel along the minor axis when
the error accumulator turns over.

So far, nothing special; but now we come to the true wonder of Wu antialiasing. We
know which pair of pixels to draw at each step along the line, but we also need to
generate the two proper intensities, which must be inversely proportional to dis-
tance from the ideal line and sum to 1, and that’s a potentially time-consuming
operation. Let’s assume, however, that the number of possible intensity levels to be
used for weighting is the value NumLevels = 2" for some integer n, with the mini-
mum weighting (0 percent intensity) being the value 2°-1, and the maximum
weighting (100 percent intensity) being the value 0. Given that, lo and behold, the
most significant n bits of the error accumulator select the proper intensity value for
one element of the pixel pair, as shown in Figure 42.2. Better yet, 2°-1 minus the
intensity of the first pixel selects the intensity of the other pixel in the pair, because
the intensities of the two pixels must sum to 1; as it happens, this result can be ob-
tained simply by flipping the n least-significant bits of the first pixel’s value. All this

778 Chapter 42

At this step, the error accumulator For a 32-level intensity weighting,

is 0.25, describing this pixel’s distance the upper 5 bits of the error
from the ideal line. In 0.16 accumulator, 01000b, form the
fixed-point format, 0.25is / pixel value for the correct weighted
0100000000000000b. \ intensity for this pixel, 75%.

Ideal

line

The inverse of the upper 5 bits of the error
< accumulator, 10111b, forms the pixel value for
the correct weighted intensity for this pixel, 25%.

Wu intensity calculations.
Figure 42.2

works because what the error accumulator accumulates is precisely the ideal line’s
current distance between the two bracketing pixels.

The intensity calculations take longer to describe than they do to perform. All that’s
involved is a shift of the error accumulator to rightjustify the desired intensity weight-
ing bits, and then an XOR to flip the least-significant n bits of the first pixel’s value in
order to generate the second pixel’s value. Listing 42.1 illustrates just how efficient
Wu antialiasing is; the intensity calculations take only three statements, and the en-
tire Wu line-drawing loop is only nine statements long. Of course, a single C statement
can hide a great deal of complexity, but Listing 42.6, an assembly implementation,
shows that only 15 instructions are required per step along the major axis—and the
number of instructions could be reduced to ten by special-casing and loop unroll-
ing. Make no mistake about it, Wu antialiasing is fast.

LISTING 42.1 L42-1.C

/* Function to draw an antialiased 1ine from (X0,Y0) to (X1,Yl), using an
antialiasing approach published by Xiaolin Wu in the July 1991 issue of
Computer Graphics. Requires that the palette be set up so that there

are NumLevels intensity levels of the desired drawing color, starting at
color BaseColor (100% intensity) and followed by (NumLevels-1) levels of
evenly decreasing intensity, with color (BaseColor+NumlLevels-1) being 0%
intensity of the desired drawing color (black). This code is suitable for
use at screen resolutions, with lines typically no more than 1K long; for
tonger lines, 32-bit error arithmetic must be used to avoid problems with
fixed-point inaccuracy. No clipping is performed in DrawWuline; it must be
performed either at a higher Tevel or in the DrawPixel function.

Tested with Borland C++ in C compilation mode and the small model.

*

%k % ok ok 3k kb ok F

*/
extern void DrawPixel(int, int, int);

Wu'ed in Haste; Fried, Stewed at Leisure

779

/* Wu antialiased line drawer.

* (X0,Y0),(X1,Y1l) = line to draw

* BaseColor = color # of first color in block used for antialiasing, the

* 100% intensity version of the drawing color

* NumLevels = size of color block, with BaseColor+NumLevels-1 being the

* 0% intensity version of the drawing color

* IntensityBits = log base 2 of NumLevels; the # of bits used to describe
* the intensity of the drawing color. 2**IntensityBits=—NumlLevels

void DrawWuline(int X0, int Y0, int X1, int Y1, int BaseColor, int NumLevels,
unsigned int IntensityBits)
{
unsigned int IntensityShift, ErrorAdj. ErrorAcc;
unsigned int ErrorAccTemp, Weighting, WeightingComplementMask;
int DeltaX, DeltaY, Temp, XDir;

/* Make sure the line runs top to bottom */

if (YO > Y1) {
Temp = Y0; YO = Y1; Y1 = Temp;
Temp = X0; X0 = X1; X1 = Temp;

}

/* Draw the initial pixel, which is always exactly intersected by
the 1ine and so needs no weighting */

DrawPixel(X0, YO, BaseColor);

if ((DeltaX = X1 - X0) >= 0) {

XDir = 1;
} else {
XDir = -1;

DeltaX = -DeltaX; /* make DeltaX positive */

/* Special-case horizontal, vertical, and diagonal lines, which
require no weighting because they go right through the center of
every pixel */

if ((DeltaY = Y1 - Y0) == 0) {

/* Horizontal line */
while (DeltaX-- != 0) {
X0 += XDir;
DrawPixel(X0, YO, BaseColor);
}
return;

if (DeltaX == 0) {
/* Vertical line */
do {
YO++;
DrawPixel(X0, Y0, BaseColor);
} while (--DeltaY != 0);
return;

}
if (DeltaX = Delta¥) {
/* Diagonal line */
do {
X0 += XDir;
YO++;
DrawPixel(X0, YO, BaseColor);
} while (--DeltaY != 0);
return;
}
/* 1line is not horizontal, diagonal, or vertical */
ErrorAcc = 0; /* initialize the line error accumulator to 0 */

780 Chapter 42

/* § of bits by which to shift ErrorAcc to get intensity level */
IntensityShift = 16 - IntensityBits;

/*

Mask used to flip all bits in an intensity weighting, producing the
result (1 - intensity weighting) */

WeightingComplementMask = NumLevels - 1;

/*
if

}
/*

Is this an X-major or Y-major line? */

(DeltaY > DeltaX) {

/* Y-major 1ine; calculate 16-bit fixed-point fractional part of a
pixel that X advances each time Y advances 1 pixel, truncating the
result so that we won't overrun the endpoint along the X axis */

ErrorAdj = ((unsigned long) DeltaX << 16) / (unsigned long) DeltaY;

/* Draw all pixels other than the first and last */

while (--DeltaY) {

ErrorAccTemp = ErrorAcc; /* remember currrent accumulated error */

ErrorAcc += ErrorAdj; /* calculate error for next pixel */

if (ErrorAcc <= ErrorAccTemp) {

/* The error accumulator turned over, so advance the X coord */
X0 += XDir;

}

YO++; /* Y-major, so always advance Y */

/* The IntensityBits most significant bits of ErrorAcc give us the
intensity weighting for this pixel, and the complement of the
weighting for the paired pixel */

Weighting = ErrorAcc >> IntensityShift;

DrawPixel (X0, YO, BaseColor + Weighting):

DrawPixel (X0 + XDir, YO,

BaseColor + (Weighting ~ WeightingComplementMask));

}

/* Draw the final pixel, which is always exactly intersected by the line
and so needs no weighting */

DrawPixel(X1, Y1, BaseColor);

return;

It's an X-major line; calculate 16-bit fixed-point fractional part of a
pixel that Y advances each time X advances 1 pixel, truncating the
result to avoid overrunning the endpoint along the X axis */

ErrorAdj = ((unsigned long) DeltaY << 16) / (unsigned long) DeltaX;

/*

Draw all pixels other than the first and last */

while (--DeltaX) {

}

ErrorAccTemp = ErrorAcc: /* remember currrent accumulated error */

ErrorAcc += ErrorAdj: /* calculate error for next pixel */

if (ErrorAcc <= ErrorAccTemp) {

/* The error accumulator turned over, so advance the Y coord */
YO++;

}

X0 += XDir; /* X-major, so always advance X */

/* The IntensityBits most significant bits of ErrorAcc give us the
intensity weighting for this pixel, and the complement of the
weighting for the paired pixel */

Weighting = ErrorAcc >> IntensityShift;

DrawPixel (X0, Y0, BaseColor + Weighting);

DrawPixel(X0, YO + 1,

BaseColor + (Weighting ~ WeightingComplementMask));

/* Draw the final pixel, which is always exactly intersected by the line

and so needs no weighting */

DrawPixel (X1, Y1, BaseColor)

Wu'ed in Haste; Fried, Stewed at Leisure

781

Sample Wu Antialiasing

The true test of any antialiasing technique is how good it looks, so let’s have a look at
Wu antialiasing in action. Listing 42.1 is a C implementation of Wu antialiasing.
Listing 42.2 is a sample program that draws a variety of Wu-antialiased lines, followed
by non-antialiased lines, for comparison. Listing 42.3 contains DrawPixel() and SetMode()
functions for mode 13H, the VGA’s 320x200 256-color mode. Finally, Listing 42.4 is
a simple, non-antialiased line-drawing routine. Link these four listings together and
run the resulting program to see both Wu-antialiased and non-antialiased lines.

LISTING 42.2 142-2.C

/* Sample Tine-drawing program to demonstrate Wu antialiasing. Also draws
* non-antialiased lines for comparison.

* Tested with Borland C++ in C compilation mode and the small model.

*/

#include <dos.h>

f#Hinclude <conio.h>

void SetPalette(struct WuColor *);

extern void DrawWuLine(int, int, int, int, int, int, unsigned int):
extern void Drawline(int, int, int, int, int);

extern void SetMode(void);

extern int ScreenWidthInPixels; /* screen dimension globals */
extern int ScreenHeightInPixels;

f#idefine NUM_WU_COLORS 2 /* # of colors we'l1l do antialiased drawing with */

struct WuColor { /* describes one color used for antialiasing */
int BaseColor; /* # of start of palette intensity block in DAC */
int NumLevels: /* # of intensity levels */
int IntensityBits; /* IntensityBits == 10g2 NumLevels */
int MaxRed; /* red component of color at full intensity */
int MaxGreen; /* green component of color at full intensity */
int MaxBlue; /* blue component of color at full intensity */

};

enum {WU_BLUE=0, WU_WHITE=1}; /* drawing colors */

struct WuColor WuColors[NUM_WU_COLORS] = /* blue and white */
{{192, 32, 5, 0, 0, Ox3F}, {224, 32, 5, Ox3F, Ox3F, Ox3F}};

void main()

{
int CurrentColor, i;
union REGS regset;

/* Draw Wu-antialiased Tines in all directions */
SetMode();
SetPalette(WuColors);
for (i=b; i<ScreenWidthInPixels; 1 += 10) {
DrawWuLine(ScreenWidthInPixels/2-ScreenWidthInPixels/10+i/5,
ScreenHeightInPixels/5, i, ScreenHeightInPixels-1,
WuColors[WU_BLUE].BaseColor, WuColors[WU_BLUE].NumLevels,
WuColors[WU_BLUE].IntensityBits);
}
for (i=0; i<ScreenHeightInPixels; i += 10) {
DrawWuLine(ScreenWidthInPixels/2-ScreenWidthInPixels/10, i/5, 0, i,
WuColors[WU_BLUE].BaseCotor, WuColors[WU_BLUE].NumLevels,
WuColors[WU_BLUE].IntensityBits);
}

782 Chapter 42

/

v

{

for (i=0; i<ScreenHeightInPixels; i += 10) {
DrawWuLine(ScreenWidthInPixels/2+ScreenWidthInPixels/10, i/5,
ScreenWidthInPixels-1, i, WuColors[WU_BLUEY.BaseColor,
WuColors[WU_BLUE].NumLevels, WuColors[WU_BLUE].IntensityBits);
}
for (i=0; i<ScreenWidthInPixels; i += 10) {
DrawWulLine(ScreenWidthInPixels/2-ScreenWidthInPixels/10+1/5,
ScreenHeightInPixels, i, 0, WuColors[WU_WHITE].BaseColor,
WuColors[WU_WHITE].NumLevels,
WuColors[WU_WHITE].IntensityBits):
}
getch(); /* wait for a key press */

/* Now clear the screen and draw non-antialiased 1ines */
SetMode();
SetPalette(WuColors);
for (i=0; i<ScreenWidthInPixels; i += 10) {
Drawline(ScreenWidthInPixels/2-ScreenWidthInPixels/10+i/5,
ScreenHeightInPixels/5, i, ScreenHeightInPixels-1,
WuColors[WU_BLUE].BaseColor):
}
for (i=0; i<ScreenHeightInPixels; i += 10) {
Drawiine(ScreenWidthInPixels/2-ScreenWidthInPixels/10, i/5, 0, 1,
WuColors[WU_BLUE].BaseColor);
}
for (i=0; i<ScreenHeightInPixels; i += 10) {
DrawlLine(ScreenWidthInPixels/2+ScreenWidthInPixels/10, i/5,
ScreenWidthInPixels-1, i, WuColors[WU_BLUE].BaseColor);
}
for (i=0; i<ScreenWidthInPixels; i += 10) {
Drawline(ScreenWidthInPixels/2-ScreenWidthInPixels/10+i/5,
ScreenHeightInPixels, i, 0, WuColors[WU_WHITE].BaseColor):
}
getch(); /* wait for a key press */

regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
int86(0x10, ®set, ®set); /* return to text mode */

* Sets up the palette for antialiasing with the specified colors.

* Intensity steps for each color are scaled from the full desired intensity
* of the red, green, and blue components for that color down to 0%

* intensity; each step is rounded to the nearest integer. Colors are

* corrected for a gamma of 2.3. The values that the palette is programmed

* with are hardwired for the VGA's 6 bit per color DAC.

*/

oid SetPalette(struct WuColor * WColors)

int i, J;

union REGS regset;

struct SREGS sregset;

static unsigned char PaletteBlock[2561{3]1: /* 256 RGB entries */

/* Gamma-corrected DAC color components for 64 linear levels from 0% to
100% intensity */

static unsigned char GammaTable[] = {
0, 10, 14, 17, 19, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34,
35, 36, 37, 37, 38, 39, 40, 41, 41, 42, 43, 44, 44, 45, 46, 46,
47, 48, 48, 49, 49, 50, 51, 51, 52, 52, 53, 53, 54, 54, 55, 55,
56, 56, 57, 57, 58, 58, 59, 59, 60, 60, 61, 61, 62, 62, 63, 63};

Wu'ed in Haste; Fried, Stewed at Leisure

783

for (i=0; i<NUM_WU_COLORS; i++) {
for (j=0; j<WColors[i].NumLevels; j++) {

PaletteBlock[j1{0] = GammaTable[((doubie)WColors[i].MaxRed * (1.0 -
(double)j / (double)(WColors[i].NumLevels - 1))) + 0.5];

PaletteBlock[j][1] = GammaTable[((double)WColors[i].MaxGreen * (1.0 -
(double)j / (double)(WColors[i].NumLevels - 1))) + 0.5]:

PaletteBlock[j]l[2] = GammaTable[((double)WColors[i].MaxBlue * (1.0 -
(double)j / (double)(WColors[i].NumlLevels - 1))) + 0.5];

}
/* Now set up the palette to do Wu antialiasing for this color */
regset.x.ax = 0x1012; /* set block of DAC registers function */

regset.x.bx = WColors[i].BaseColor; /* first DAC location to load */
regset.x.cx = WColors[i].NumLevels; /* # of DAC locations to load */
regset.x.dx = (unsigned int)PaletteBlock; /* offset of array from which
to load RGB settings */
sregset.es = _DS; /* segment of array from which to load settings */
int86x(0x10, ®set, ®set, &sregset); /* load the palette biock */

LISTING 42.3 L42-3.C

/* VGA mode 13h pixel-drawing and mode set functions.

* Tested with Borland C++ in C compilation mode and the small model.
*/

f#Hinclude <dos.h>

/* Screen dimension globals, used in main program to scale. */
int ScreenWidthInPixels = 320;
int ScreenHeightInPixels = 200;

/* Mode 13h draw pixel function. */
void DrawPixel(int X, int Y, int Color)
{
fidefine SCREEN_SEGMENT 0xA000

unsigned char far *ScreenPtr;

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;
FP_OFF(ScreenPtr) = (unsigned int) Y * ScreenWidthInPixels + X;
*ScreenPtr = Color;

}

/* Mode 13h mode-set function. */
void SetMode()

{
union REGS regset;
/* Set to 320x200 256-color graphics mode */
regset.x.ax = 0x0013;
int86(0x10, ®set, ®set);
}

LISTING 42.4 L42-4.C

/* Function to draw a non-antialiased line from (X0,Y0) to (X1,Yl), using a
* simple fixed-point error accumulation approach.

* Tested with Borland C++ in C compilation mode and the small model.

*/

extern void DrawPixel(int, int, int);

784 Chapter 42

/

v
{

* Non-antialiased line drawer.

* (X0,Y0),(X1,Yl) = Tine to draw, Color = color in which to draw
*/

oid DrawLine(int X0, int Y0, int X1, int Y1, int Color)

unsigned long ErrorAcc, ErrorAdj;
int DeltaX, DeltaY, XDir, Temp;

/* Make sure the line runs top to bottom */
if (YO > Y1) {
Temp = Y0; YO = Y1; Y1 = Temp:
Temp = X0; X0 = X1; X1 = Temp;
}
DrawPixel (X0, Y0, Color); /* draw the initial pixel */
if ((DeltaX = X1 - X0) >= 0) {
XDir = 1;
} else {
XDir = -1;
DeltaX = -DeltaX; /* make DeltaX positive */
}
if ((DeltaY = Y1 - YO) == 0) /* done if only one point in the Tine */
if (DeltaX = 0) return;

ErrorAcc = 0x8000; /* initialize line error accumulator to .5, so we can
advance when we get halfway to the next pixel */
/* Is this an X-major or Y-major line? */
if (DeltaY > DeltaX) {
/* Y-major Tine; calculate 16-bit fixed-point fractional part of a
pixel that X advances each time Y advances 1 pixel */
ErrorAdj = ((((unsigned long)DeltaX << 17) / (unsigned long)DeltaY) +

1) >> 1;
/* Draw all pixels between the first and last */
do {
ErrorAcc += ErrorAdj: /* calculate error for this pixel */

if (ErrorAcc & ~OxFFFFL) (
/* The error accumulator turned over, so advance the X coord */

X0 += XDir;

ErrorAcc &= OxFFFFL; /* clear integer part of result */
}
YO++; /* Y-major, so always advance Y */

DrawPixel(X0, Y0, Color);
} while (--DeltaY);
return;
}
/* It's an X-major line; calculate 16-bit fixed-point fractional part of a
pixel that Y advances each time X advances 1 pixel */
ErrorAdj = ((({unsigned long)DeltaY << 17) / (unsigned long)DeltaX) +

1) > 1:
/* Draw all remaining pixels */
do {
ErrorAcc += ErrorAdj: /* calculate error for this pixel */

if (ErrorAcc & ~OxFFFFL) {
/* The error accumulator turned over, so advance the Y coord */

YO++;

ErrorAcc &= OXFFFFL; /* clear integer part of result */
}
X0 += XDir; /* X-major, so always advance X */

DrawPixel (X0, Y0, Color);
} while (--DeltaX);

Wu'ed in Haste; Fried, Stewed at Leisure

785

Listing 42.1 isn’t particularly fast, because it calls DrawPixel() for each pixel. On the
other hand, DrawPixel() makes it easy to try out Wu antialiasing in a variety of modes;
just adapt the code in Listing 42.3 for the 256-color mode you want to support. For
example, Listing 42.5 shows code to draw Wu-antialiased lines in 640x480 256-color
mode on SuperVGAs built around the Tseng Labs ET4000 chip with at least 512K of
display memory installed. It’s well worth checking out Wu antialiasing at 640x480.
Although antialiased lines look much smoother than normal lines at 320x200 reso-
lution, they’re far from perfect, because the pixels are so big that the eye can’t blend
them properly. At 640x480, however, Wu-antialiased lines look fabulous; from a couple
of feet away, they look as straight and smooth as if they were drawn with a ruler.

LISTING 42.5 1L42-5.C

/* Mode set and pixel-drawing functions for the 640x480 256-color mode of
* Tseng Labs ET4000-based SuperVGAs.

* Tested with Borland C++ in C compilation mode and the small model.

*/

#include <dos.h>

/* Screen dimension globals, used in main program to scale */
int ScreenWidthInPixels = 640;
int ScreenHeightInPixels = 480;

/* ETA000 640x480 256-color draw pixel function. */
void DrawPixel(int X, int Y, int Color)

{
ftdefine SCREEN_SEGMENT 0xA000 -
#define GC_SEGMENT_SELECT 0x3CD /* ET4000 segment (bank) select reg */

unsigned char far *ScreenPtr;
unsigned int Bank;
unsigned long BitmapAddress;

/* full bitmap address of pixel, as measured from address 0 to OxFFFFF */
BitmapAddress = (unsigned long) Y * ScreenWidthInPixels + X;

/* Bank # is upper word of bitmap addr */

Bank = BitmapAddress >> 16;

/* Upper nibble is read bank #, lower nibble is write bank # */
outp(GC_SEGMENT_SELECT, (Bank << 4) | Bank);

/* Draw into the bank */

FP_SEG(ScreenPtr) = SCREEN_SEGMENT;

FP_OFF(ScreenPtr) = (unsigned int) BitmapAddress;

*ScreenPtr = Color;

}

/* ETA000 640x480 256-color mode-set function. */
void SetMode()
{

union REGS regset;

/* Set to 640x480 256-color graphics mode */
regset.x.ax = 0Ox002E;
int86(0x10, ®set, ®set);

}

Listing 42.1 requires that the DAC palette be set up so that a NumLevel-long block of
palette entries contains linearly decreasing intensities of the drawing color. The size

786 Chapter 42

of the block is programmable, but must be a power of two. The more intensity levels,
the better. Wu says that 32 intensities are enough; on my system, eight and even four
levels looked pretty good. I found that gamma correction, which gives linearly spaced
intensity steps, improved antialiasing quality significantly. Fortunately, we can pro-
gram the palette with gamma-corrected values, so our drawing code doesn’t have to
do any extra work.

Listing 42.1 isn’t very fast, so I implemented Wu antialiasing in assembly, hard-coded
for mode 13H. The implementation is shown in full in Listing 42.6. High-speed graph-
ics code and fast VGAs go together like peanut butter and jelly, which is to say very
well indeed; the assembly implementation ran more than twice as fast as the C code
on my 486. Enough said!

LISTING 42.6 L42-6.ASM

; C near-callable function to draw an antialiased line from

; (X0,Y0) to (X1,Y1), in mode 13h, the VGA's standard 320x200 256-color
mode. Uses an antialiasing approach published by Xiaolin Wu in the July

; 1991 issue of Computer Graphics. Requires that the palette be set up so
that there are NumLevels intensity levels of the desired drawing color,
starting at color BaseColor (100% intensity) and followed by (NumlLevels-1)
levels of evenly decreasing intensity, with color (BaseColor+NumLevels-1)
being 0% intensity of the desired drawing color (black). No clipping is
performed in DrawWuline. Handles a maximum of 256 intensity levels per
antialiased color. This code is suitable for use at screen resolutions,

; with Tines typically no more than 1K long; for longer lines, 32-bit error
arithmetic must be used to avoid problems with fixed-point inaccuracy.

; Tested with TASM.

; C near-callable as:
H void DrawWulLine(int X0, int Y0, int X1, int Y1, int BaseColor,
: int NumLevels, unsigned int IntensityBits);

SCREEN_WIDTH_IN_BYTES equ 320 :# of bytes from the start of one scan line
; to the start of the next
SCREEN_SEGMENT equ 0a000h ;segment in which screen memory resides

; Parameters passed in stack frame.
parms struc
dw 2 dup (?) ;pushed BP and return address

X0 dw ? ;X coordinate of line start point

Yo dw ? ;Y coordinate of line start point

X1 dw ? ;X coordinate of line end point

Y1 dw ? ;Y coordinate of line end point

BaseColor dw ? ;color # of first color in block used for

;antialiasing, the 100% intensity version of the
;drawing color

NumLevels dw ? ;size of color block, with BaseColor+NumLevels-1
; being the 0% intensity version of the drawing color
; (maximum NumlLevels = 256)

IntensityBits dw ? ;Yog base 2 of NumLevels; the # of bits used to
; describe the intensity of the drawing color.
i 2**IntensityBits==NumLevels
; (maximum IntensityBits = 8)

parms ends

Wu'ed in Haste; Fried, Stewed at Leisure

787

.model small
.code
; Screen dimension globals, used in main program to scale.
_ScreenWidthInPixels dw 320
_ScreenHeightInPixels dw 200
.code
public _DrawWulLine
_DrawWuline proc near
push bp ;preserve caller's stack frame
mov bp,sp ;point to local stack frame
push si ;preserve C's register variables
push di
push ds ;preserve C's default data segment
cld ;make string instructions increment their pointers
; Make sure the line runs top to bottom.
mov si,[bpl.X0
mov ax,[bpl.YO
cmp ax,[bpl.Yl ;swap endpoints if necessary to ensure that
jna NoSwap ; YO <= Y1
xchg [bpl.Y1l,ax
mov [bpl.YO0,ax
xchg [bpl.X1,si
mov [bpl.X0,si
NoSwap:

; Draw the initial pixel, which is always exactly intersected by the line
; and so needs no weighting.

mov
mov
mov
mul

add
mov
mov

mov
mov
sub
Jjns

neg
neg
DeltaXSet:

dx,SCREEN_SEGMENT

ds,dx ;point DS to the screen segment
dx,SCREEN_WIDTH_IN_BYTES
dx ;YO * SCREEN_WIDTH_IN_BYTES yields the offset

; of the start of the row start the initial
; pixel is on

si,ax ;point DS:SI to the initial pixel
al,byte ptr [bpl.BaseColor ;color with which to draw
[si].al ;draw the initial pixel
bx,1 ;XDir = 1; assume DeltaX >= 0
cx,[bp].X1
c¢x,[bpl.X0 ;DettaX; is it >= 1?7
DeltaXSet ;yes, move left->right, all set

;no, move right->jeft
cX ;make DeltaX positive
bx ;XDir = -1

; Special-case horizontal, vertical, and diagonal lines, which require no

; weighting
mov
sub
jnz

and
jns
std
DoHorz:
Tea
mov

788 Chapter 42

because they go right through the center of every pixel.
dx,[bp]l.Y1
dx,[bpl.Y0 ;DeltaY; is it 0?
NotHorz ;no, not horizontal
;yes, is horizontal, special case
bx,bx ;draw from left->right?
DoHorz ;yes, all set

;no, draw right->left

di,[bx+si] spoint DI to next pixel to draw
ax,ds

mov es,ax ;point ES:DI to next pixel to draw
mov al,byte ptr [bp].BaseColor ;color with which to draw
;CX = DeltaX at this point
rep stosb ;draw the rest of the horizontal line
cld ;restore default direction flag
jmp Done ;and we're done
align 2
NotHorz:
and cx,cx ;is DeltaX 0?
jnz NotVert ;no, not a vertical Tine
;yes, is vertical, special case
mov al,byte ptr [bp].BaseColor ;color with which to draw
VertLoop:
add si,SCREEN_WIDTH_IN_BYTES ;point to next pixel to draw
mov [si],al ;draw the next pixel
dec dx ;--Deltay
jnz VertlLoop
jmp Done ;and we're done
align 2
NotVert:
cmp cx,dx ;DeltaX == DeltaY?
jnz NotDiag ;no, not diagonal
;yes, is diagonal, special case
mov al,byte ptr [bpl.BaseColor ;color with which to draw
DiaglLoop:
Tea si,[si+SCREEN_WIDTH_IN_BYTES+bx]
;advance to next pixel to draw by
; incrementing Y and adding XDir to X
mov [si],al ;draw the next pixel
dec dx ;--DeltaY
jnz DiaglLoop
jmp Done ;and we're done
; Line is not horizontal, diagonal, or vertical.
align 2
NotDiag:
; Is this an X-major or Y-major line?
cmp dx,cx
b XMajor ;it's X-major

; It's a Y-major line. Calculate the 16-bit fixed-point fractional part of a
; pixel that X advances each time Y advances 1 pixel, truncating the result
; to avoid overrunning the endpoint along the X axis.

xchg dx,cx ;DX = DeltaX, CX = DeltaY

sub ax,ax ;make DeltaX 16.16 fixed-point value in DX:AX

div cx ;AX = (DeltaX << 16) / DeltaY. Won't overflow
; because DeltaX < DeltaY

mov di,cx ;DI = DeltaY (loop count)

sub si,bx ;back up the start X by 1, as explained below

mov dx,-1 ;initialize the line error accumulator to -1,

; so that it will turn over immediately and

; advance X to the start X. This is necessary
; properly to bias error sums of 0 to mean

; "advance next time" rather than "advance

; this time,” so that the final error sum can
; never cause drawing to overrun the final X
; coordinate (works in conjunction with

; truncating ErrorAdj, to make sure X can't

; overrun)

Wu'ed in Haste; Fried, Stewed at Leisure

789

mov cx,8 ;CL = # of bits by which to shift

sub cx,[bp]l.IntensityBits s ErrorAcc to get intensity level (8
; instead of 16 because we work only
; with the high byte of ErrorAcc)

mov ch,byte ptr [bp].NumLevels ;mask used to flip all bits in an
dec ch ; intensity weighting, producing
s result (1 - intensity weighting)
mov bp,BaseColor[bp] ;***stack frame not available***
s***from now on ek
xchg bp,ax ;BP = ErrorAdj, AL = BaseColor,

; AH = scratch register

; Draw all remaining pixels.

YMajorLoop:
add dx,bp ;calculate error for next pixel
jnc NoXAdvance ;not time to step in X yet
;the error accumulator turned over,
;s0 advance the X coord
add si,bx sadd XDir to the pixel pointer
NoXAdvance:
add si,SCREEN_WIDTH_IN_BYTES ;Y-major, so always advance Y

; The IntensityBits most significant bits of ErrorAcc give us the intensity
; weighting for this pixel, and the complement of the weighting for the
; paired pixel.

mov ah,dh ;msb of ErrorAcc
shr ah,cl ;Weighting = ErrorAcc >> IntensityShift:
add ah,al ;BaseCotor + Weighting
mov [si].ah ;DrawPixel(X, Y, BaseColor + Weighting);
mov ah,dh ;msb of ErrorAcc
shr ah,cl ;Weighting = ErrorAcc >> IntensityShift;
xor ah,ch ;Weighting » WeightingComplementMask
add ah,al ;BaseColor + (Weighting *» WeightingComplementMask)
mov [si+bx],ah ;DrawPixel (X+XDir, Y,

; BaseColor + (Weighting ~ WeightingComplementMask));
dec di ;--DeltaY
jnz YMajorlLoop
jmp Done ;we're done with this line

; It's an X-major line.
align 2
XMajor:
; Calculate the 16-bit fixed-point fractional part of a pixel that Y advances
; each time X advances 1 pixel, truncating the result to avoid overrunning
; the endpoint along the X axis.

sub ax,ax ;make DeltaY 16.16 fixed-point value in DX:AX

div c¢x ;AX = (DeltaY << 16) / Deltax. Won't overflow
; because DeltaY < DeltaX

mov di,cx ;DI = DeltaX (loop count)

sub si,SCREEN_WIDTH_IN_BYTES ;back up the start X by 1, as
; explained below

mov dx,-1 ;initialize the line error accumulator to -1,
; so that it will turn over immediately and
; advance Y to the start Y. This is necessary
; properly to bias error sums of 0 to mean
; "advance next time"” rather than "advance
; this time," so that the final error sum can
; never cause drawing to overrun the final Y
; coordinate (works in conjunction with
; truncating ErrorAdj, to make sure Y can't
; overrun)

790 Chapter 42

mov cx,8 ;CL = #f of bits by which to shift

sub cx,[bp].IntensityBits ; ErrorAcc to get intensity level (8
; instead of 16 because we work only
; with the high byte of ErrorAcc)

mov ch,byte ptr [bp].NumLevels ;mask used to flip all bits in an

dec c¢h ; intensity weighting, producing
; result (1 - intensity weighting)
mov bp,BaseColor[bp] ;*¥**stack frame not available***
;*¥**from now on ki
xchg bp,ax ;BP = ErrorAdj, AL = BaseColor,

; AH = scratch register
; Draw all remaining pixels.

XMajorlLoop:
add dx,bp ;calculate error for next pixel
jnc NoYAdvance ;not time to step in Y yet
;the error accumulator turned over,
; so advance the Y coord
add si,SCREEN_WIDTH_IN_BYTES ;advance Y
NoYAdvance:
add si,bx ;X-major, so add XDir to the pixel pointer

; The IntensityBits most significant bits of ErrorAcc give us the intensity
; weighting for this pixel, and the complement of the weighting for the
; paired pixel.

mov ah,dh ;msb of ErrorAcc

shr ah,cl ;Weighting = ErrorAcc >> IntensityShift;

add ah,al ;BaseColor + Weighting

mov [si],ah ;DrawPixel(X, Y, BaseColor + Weighting):

mov ah,dh ;msb of ErrorAcc

shr ah,cl ;Weighting = ErrorAcc >> IntensityShift;

xor ah,ch ;Weighting ~ WeightingComplementMask

add ah,al ;BaseColor + (Weighting ~ WeightingComplementMask)

mov [si+SCREEN_WIDTH_IN_BYTES],ah

;DrawPixel(X, Y+SCREEN_WIDTH_IN_BYTES,

; BaseColor + (Weighting *» WeightingComplementMask));
dec di ;--DeltaX
jnz XMajorLoop

Done: ;we're done with this line
pop ds ;restore C's default data segment
pop di ;restore C's register variables
pop si
pop bp ;restore caller's stack frame
ret ;done

_DrawWuLine endp
end

Notes on Wu Antialiasing

Wu antialiasing can be applied to any curve for which it’s possible to calculate at
each step the positions and intensities of two bracketing pixels, although the imple-
mentation will generally be nowhere near as efficient as it is for lines. However, Wu’s
article in Computer Graphics does describe an efficient algorithm for drawing antialiased
circles. Wu also describes a technique for antialiasing solids, such as filled circles and
polygons. Wu’s approach biases the edges of filled objects outward. Although this is
no good for adjacent polygons of the sort used in rendering, it’s certainly possible to

Wu'ed in Haste; Fried, Stewed at Leisure 791

design a more accurate polygon-antialiasing approach around Wu’s basic weighting
technique. The results would not be quite so good as more sophisticated antialiasing
techniques, but they would be much faster.

*‘p In general, the results obtained by Wu antialiasing are only so-so, by theoretical
' measures. Wu antialiasing amounts to a simple box filter placed over a fixed-point
step approximation of a line, and that process introduces a good deal of deviation
from the ideal. On the other hand, Wu notes that even a 10 percent error in inten-
sity doesn t lead to noticeable loss of image quality, and for Wu-antialiased lines
up to 1K pixels in length, the error is under 10 percent. If it looks good, it is good—

and it looks good.

With a 16-bit error accumulator, fixed-point inaccuracy becomes a problem for Wu-
antialiased lines longer than 1K. For such lines, you should switch to using 32-bit
error values, which would let you handle lines of any practical length.

In the listings, I have chosen to truncate, rather than round, the error-adjust value.
This increases the intensity error of the line but guarantees that fixed-point inaccu-
racy won’t cause the minor axis to advance past the endpoint. Overrunning the
endpoint would result in the drawing of pixels outside the line’s bounding box, and
potentially even in an attempt to access pixels off the edge of the bitmap.

Finally, I should mention that, as published, Wu’s algorithm draws lines symmetri-
cally, from both ends at once. I haven’t done this for a number of reasons, not least
of which is that symmetric drawing is an inefficient way to draw lines that span banks
on banked Super-VGAs. Banking aside, however, symmetric drawing is potentially
faster, because it eliminates half of all calculations; in so doing, it cuts cumulative
error in half, as well.

With or without symmetrical processing, Wu antialiasing beats fried, stewed chicken
hands-down. Trust me on this one.

792 Chapter 42

	previous:
	home:
	next:

