Split Screens
Save the Page
Flipped Day

age Flipped Animation in 64K...Almost

Almost doesn’t Cﬁ;lt, they say—at least in horseshoes and maybe a few other things.
This is especially tttte in digital circles, where if you need 12 MB of hard disk to
install something andyou only have 10 MB left (a situation that seems to be some
sort of eternal law) y k

And that’s only infur
up some space. How;
kind of a wall th

ting until you dredge up the gumption to go in there and free
ould you feel if you were up against an “almost-but-not-quite”
ouldn’t be breached by freeing up something elsewhere? Sup-
pose you were a few KB of implementing a wonderful VGA animation scheme
that provided of screen space, square pixels, smooth motion and more than
adequate speed—nbtit all the memory you have is all there is? What would you do?
Scream a little. Or throw something that won’t break easily. Then you sit down and
let your right brain do what it was designed to do. Sure enough, there’s a way, and in
this chapter I'll explain how a little VGA secret called page splitting can save the day
for page flipped animation in 640x480 mode. But to do that, I have to lay a little
groundwork first. Or maybe a lot of groundwork.

No horseshoes here.

A Plethora of Challenges

In its simplest terms, computer animation consists of rapidly redrawing similar im-
ages at slightly differing locations, so that the eye interprets the successive images as

819

a single object in motion over time. The fact that the world is an analog realm and
the images displayed on a computer screen consist of discrete pixels updated at a
maximum rate of about 70 Hz is irrelevant; your eye can interpret both real-world
images and pixel patterns on the screen as objects in motion, and that’s that.

One of the key problems of computer animation is that it takes time to redraw a
screen, time during which the bitmap controlling the screen is in an intermediate
state, with, quite possibly, many objects erased and others half-drawn. Even when
only briefly displayed, a partially-updated screen can cause flicker at best, and at
worst can destroy the illusion of motion entirely.

Another problem of animation is that the screen must update often enough so that
motion appears continuous. A moving object that moves just once every second,
shifting by hundreds of pixels each time it does move, will appear to jump, not to
move smoothly. Therefore, there are two overriding requirements for smooth ani-
mation: 1) the bitmap must be updated quickly (once per frame—60 to 70 Hz—is
ideal, although 30 Hz will do fine), and, 2) the process of redrawing the screen must
be invisible to the user; only the end result should ever be seen. Both of these re-
quirements are met by the program presented in Listings 44.1 and 44.2.

A Page Flipping Animation Demonstration

The listings taken together form a sample animation program, in which a single
object bounces endlessly off other objects, with instructions and a count of bounces
displayed at the bottom of the screen. I'll discuss various aspects of Listings 44.1 and
44.2 during the balance of this article. The listings are too complex and involve too
much VGA and animation knowledge for for me to discuss it all in exhaustive detail
(and I've covered a lot of this stuff earlier in the book); instead, I'll cover the major
elements, leaving it to you to explore the finer points—and, I hope, to experiment
with and expand on the code I'll provide.

LISTING 44.1 L44-1.C

/* Split screen VGA animation program. Performs page flipping in the
top portion of the screen while displaying non-page flipped
information in the split screen at the bottom of the screen.
Compiled with Borland C++ in C compilation mode. */

fFinclude <stdio.h>
f#include <conio.h>
f#finclude <dos.h>

#include <math.h>

f#idefine SCREEN_SEG 0xA000

f#define SCREEN_PIXWIDTH 640 /* in pixels */
ffdefine SCREEN_WIDTH 80 /* in bytes */
jidefine SPLIT_START_LINE 339

f#idefine SPLIT_LINES 141

ftdefine NONSPLIT_LINES 339
ftdefine SPLIT_START_OFFSET 0
ftdefine PAGEO_START_OFFSET (SPLIT_LINES*SCREEN_WIDTH)

820 Chapter 44

f##define PAGE1_START_OFFSET ((SPLIT_LINES+NONSPLIT_LINES)*SCREEN_WIDTH)

f#fdefine CRTC_INDEX 0x3D4 /* CRT Controller Index register */

fidefine CRTC_DATA 0x3D5 /* CRT Controller Data register */

jidefine OVERFLOW 0x07 /* index of CRTC reg holding bit 8 of the
line the split screen starts after */

fidefine MAX_SCAN 0x09 /* index of CRTC reg holding bit 9 of the
line the split screen starts after */

f#define LINE_COMPARE 0x18 /* index of CRTC reg holding Tower 8 bits
of line split screen starts after */

j#fdefine NUM_BUMPERS (sizeof(Bumpers)/sizeof(bumper))

#idefine BOUNCER_COLOR 15

ffdefine BACK_COLOR 1 /* playfield background color */

typedef struct { /* one solid bumper to be bounced off of */
int LeftX,TopY,RightX,BottomY;
int Color;

} bumper;

typedef struct { /* one bit pattern to be used for drawing */
int WidthInBytes;
int Height;
unsigned char *BitPattern;

} image;

typedef struct { /* one bouncing object to move around the screen */

int LeftX,TopY; /* location */

int Width,Height; /* size in pixels */

int DirX,DirY; /* motion vectors */

int CurrentX[2],CurrentY[2]; /* current Tocation in each page */
int Color; /* color in which to be drawn */

image *Rotation0; /* rotations for handling the 8 possible */
image *Rotationl; /* intrabyte start address at which the */
image *Rotation2; /* Teft edge can be */

image *Rotation3;

image *Rotationd;

image *Rotation5;

image *Rotation6;

image *Rotation7;
} bouncer;

void main(void);

void DrawBumperList(bumper *, int, unsigned int);

void DrawSplitScreen(void);

void EnableSplitScreen(void);

void MoveBouncer(bouncer *, bumper *, int);

extern void DrawRect(int,int,int,int,int,unsigned int,unsigned int);
extern void ShowPage(unsigned int);

extern void Drawlmage(int,int,image **,int,unsigned int,unsigned int);
extern void ShowBounceCount(void);

extern void TextUp(char *,int,int,unsigned int,unsigned int);

extern void SetBI0OS8x8Font(void);

/* A11 bumpers in the playfield */

bumper Bumpers[] = {
{0,0,19,339,2}, {0.0,639,19,2}, {620,0,639,339,2},
{0,320,639,339,2}, {60,48,79,67,12}, (60,108,79,127,12},
(60,168,79,187,12}, {60,228,79,247,12}, (120,68,131,131,13},
{120,188,131,271,13}, {240,128,259,147,14}, {240,192,259,211,14},
{208,160,227,179,14}, {272,160,291,179,14}, {228,272,231,319,11},
{192,52,211,55,11}, {302,80,351,99,12}, {320,260,379,267,13},

Split Screens Save the Page Flipped Day 821

{380,120,387,267,13}, {420,60,579,63,11}, (428,110,571,113,11},
{420,160,579,163,11}, {428,210,571,213,11}, {420.260,579.263.11} }:

/* Image for bouncing object when left edge is aligned with bit 7 */
unsigned char _BouncerRotation0[] = {
OxFF,0x0F,0xFO, OxFE,0x07,0xF0, OxFC,0x03,0xF0, OxFC,0x03,0xFO,
OxFE,0x07,0xF0, OxFF,O0xFF,0xFO, OxCF,0xFF,0x30, 0x87,0xFE,0x10,
0x07,0x0E,0x00, 0x07,0x0E,0x00, 0x07,0x0E,0x00, 0x07,0x0E,0x00,
0x87,0xFE,0x10, OxCF,OxFF,0x30, OxFF,O0xFF,0xf0, OxFE,0x07,0xFO,
0xFC,0x03,0xF0, OxFC,0x03,0xF0, OxFE,0x07,0xF0, OxFF,0x0F,0xFO0};
image BouncerRotation0 = {3, 20, _BouncerRotation0};

/* Image for bouncing object when left edge is aligned with bit 3 */
unsigned char _BouncerRotationd[] = {
0x0F,0xFO0,0xFF, OxOF,0xE0,0x7F, OxOF,0xC0,0x3F, 0xOF,0xCO,0x3F,
0xOF ,0xE0,0x7F, OxOF,0xFF,O0xFF, 0x0C,O0xFF,0xF3, 0x08,0x7F,0xEl,
0x00,0x70,0xE0, 0x00,0x70,0xE0, 0x00,0x70,0xEO, 0x00,0x70,0xEO,
0x08,0x7F,0xEl, O0x0C,0xFF,0xF3, OxOF,0xFF,0xFF, OxOF,0xEQ,O0x7F,
0x0F,0xC0,0x3F, 0x0F,0xC0,0x3F, OxOF,0xE0,0x7F, OxOF,0xFO,0xFF};
image BouncerRotation4 = {3, 20, _BouncerRotation4};

/* Initial settings for bouncing object. Only 2 rotations are needed
because the object moves 4 pixels horizontally at a time */

bouncer Bouncer = (156,60,20,20,4,4,156,156,60,60,BOUNCER_COLOR,
&BouncerRotation0,NULL,NULL, NULL,&BouncerRotation4 NULL,NULL,NULL};

unsigned int PageStartOffsets[2] =
{PAGEQ_START_OFFSET,PAGE1_START_OFFSET}:

unsigned int BounceCount;

void main() (
int DisplayedPage, NonDisplayedPage, Done, i:
union REGS regset;

regset.x.ax = 0x0012; /* set display to 640x480 16-color mode */
int86(0x10, ®set, ®set);

SetBI0S8x8Font(); /* set the pointer to the BIOS 8x8 font */
EnableSplitScreen(); /* turn on the split screen */

/* Display page 0 above the split screen */
ShowPage(PageStartOffsets[DisplayedPage = 0]);

/* Clear both pages to background and draw bumpers in each page */
for (i=0; i<2; i++) (
DrawRect(0,0,SCREEN_PIXWIDTH-1,NONSPLIT_LINES-1,BACK_COLOR,
PageStartOffsets[i],SCREEN_SEG);
DrawBumperList(Bumpers,NUM_BUMPERS,PageStartOffsets[i]);

}

DrawSplitScreen(); /* draw the static split screen info */
BounceCount = 0;

ShowBounceCount(); /* put up the initial zero count */

/* Draw the bouncing object at its initial location */
DrawImage(Bouncer.LeftX,Bouncer.TopY,&Bouncer.Rotation0,
Bouncer.Color,PageStartOffsets[DisplayedPage],SCREEN_SEG);

/* Move the object, draw it in the nondisplayed page, and flip the
page until Esc is pressed */

Done = 0;

do {
NonDisplayedPage = DisplayedPage * 1;

822 Chapter 44

}

/* Erase at current Tocation in the nondisplayed page */

DrawRect (Bouncer.CurrentX[NonDisplayedPage],
Bouncer.CurrentY[NonDisplayedPage],
Bouncer.CurrentX[NonDisplayedPage]+Bouncer.Width-1,
Bouncer.CurrentY[NonDisplayedPage]+Bouncer.Height-1,
BACK_COLOR,PageStartOffsets[NonDisplayedPage],SCREEN_SEG);

/* Move the bouncer */

MoveBouncer(&Bouncer, Bumpers, NUM_BUMPERS);

/* Draw at the new location in the nondisplayed page */

DrawImage(Bouncer.LeftX,Bouncer.TopY,&Bouncer.Rotationd,
Bouncer.Color,PageStartOffsets[NonDisplayedPage],
SCREEN_SEG) ;

/* Remember where the bouncer is in the nondisplayed page */

Bouncer.CurrentX[NonDisplayedPage] = Bouncer.LeftX;

Bouncer.CurrentY[NonDisplayedPage] = Bouncer.TopY;

/* Flip to the page we just drew into */

ShowPage(PageStartOffsets[DisplayedPage ~ NonDisplayedPagel):

/* Respaond to any keystroke */

if (kbhit()) {

switch (getch()) {

case 0x1B: /* Esc to end */
Done = 1; break:
case 0: /* branch on the extended code */

switch (getch()) {
case 0x48: /* nudge up */
Bouncer.DirY = -abs(Bouncer.DirY); break;
case Ox4B: ./* nudge left */
Bouncer.DirX = -abs(Bouncer.DirX); break;
case 0x4D: /* nudge right */
Bouncer.DirX = abs(Bouncer.DirX); break;
case 0x50: /* nudge down */
Bouncer.DirY = abs(Bouncer.DirY); break;
}
break;
default:
break;
}
}

} while (!Done);

/* Restore text mode and done */
regset.x.ax = 0x0003;
int86(0x10, ®set, ®set);

/* Draws the specified 1ist of bumpers into the specified page */
void DrawBumperList(bumper * Bumpers, int NumBumpers,

{

}

unsigned int PageStartOffset)

int i;

for (i=0; i<NumBumpers; i++,Bumpers++) {

DrawRect (Bumpers->LeftX,Bumpers->TopY,Bumpers->RightX,
Bumpers->BottomY,Bumpers->Color,PageStartOffset,
SCREEN_SEG) ;

/* Displays the current bounce count */
void ShowBounceCount() {

char CountASCII[7];

Split Screens Save the Page Flipped Day

823

itoa(BounceCount,CountASCII,10); /* convert the count to ASCII */
TextUp(CountASCII1,344,64,SPLIT_START_OFFSET,SCREEN_SEG);
}

/* Frames the split screen and fills it with various text */
void DrawSplitScreen() {
DrawRect(0,0,SCREEN_PIXWIDTH-1,SPLIT_LINES-1,0,SPLIT_START_OFFSET,
SCREEN_SEG);
DrawRect(0,1,SCREEN_PIXWIDTH-1,4,15,SPLIT_START_OFFSET,
SCREEN_SEG);
DrawRect(0,SPLIT_LINES-4,SCREEN_PIXWIDTH-1,SPLIT_LINES-1,15,
SPLIT_START_OFFSET,SCREEN_SEG);
DrawRect(0,1,3,SPLIT_LINES-1,15,SPLIT_START_QFFSET,SCREEN_SEG);
DrawRect (SCREEN_PIXWIDTH-4,1,SCREEN_PIXWIDTH-1,SPLIT_LINES-1,15,
SPLIT_START_OFFSET,SCREEN_SEG);
TextUp("This is the split screen area...",8,8,SPLIT_START_OFFSET,
SCREEN_SEG);
TextUp("Bounces: ",272,64,SPLIT_START_OFFSET,SCREEN_SEG);
TextUp("\033: nudge left™,520,78,SPLIT_START_OFFSET,SCREEN_SEG);
TextUp("\032: nudge right”,520,90,SPLIT_START_OFFSET,SCREEN_SEG):
TextUp{("\031: nudge down",520,102,SPLIT_START_OFFSET,SCREEN_SEG):
TextUp("\030: nudge up",520,114,SPLIT_START_QFFSET,SCREEN_SEG):
TextUp("Esc to end”,520,126,SPLIT_START_OFFSET,SCREEN_SEG);

/* Turn on the split screen at the desired 1ine (minus 1 because the
split screen starts *after* the line specified by the LINE_COMPARE
register) (bit 8 of the split screen start line is stored in the
Overflow register, and bit 9 is in the Maximum Scan Line reg) */

void EnableSplitScreen() {
outp(CRTC_INDEX, LINE_COMPARE);
outp(CRTC_DATA, (SPLIT_START_LINE - 1) & OxFF);
outp(CRTC_INDEX, OVERFLOW);
outp(CRTC_DATA, (((((SPLIT_START_LINE - 1) & 0x100) >> 8) << 4) |

(inp(CRTC_DATA) & ~0x10)));
outp(CRTC_INDEX, MAX_SCAN);
outp(CRTC_DATA, (((((SPLIT_START_LINE - 1) & 0x200) >> 9) << 6) |
(inp(CRTC_DATA) & ~0x40)));
}

/* Moves the bouncer, bouncing if bumpers are hit */
void MoveBouncer(bouncer *Bouncer, bumper *BumperPtr, int NumBumpers)
int NewLeftX, NewTopY, NewRightX, NewBottomY, 1i;

/* Move to new location, bouncing if necessary */
NewlLeftX = Bouncer->LeftX + Bouncer->DirX; /* new coords */
NewTopY = Bouncer->TopY + Bouncer->DirY;
NewRightX = NewlLeftX + Bouncer->Width - 1;
NewBottomY = NewTopY + Bouncer->Height - 1;
/* Compare the new location to all bumpers, checking for bounce */
for (i=0; i<NumBumpers; i++, BumperPtr++) {
/* If moving puts the bouncer inside this bumper, bounce */
if ((NewLeftX <= BumperPtr->RightX) &&
(NewRightX >= BumperPtr->LeftX) &%
(NewTopY <= BumperPtr->BottomY) &&
(NewBottomY >= BumperPtr->TopY)) {
/* The bouncer has tried to move into this bumper; figure
out which edge(s) it crossed, and bounce accordingly */
if (((Bouncer->LeftX > BumperPtr->RightX) &&
(NewLeftX <= BumperPtr->RightX)) ||
(((Bouncer->LeftX + Bouncer->Width - 1) <

824 Chapter 44

BumperPtr->LeftX) &&
(NewRightX >= BumperPtr->LeftX))) {
Bouncer->DirX = -Bouncer->DirX; /* bounce horizontally */
NewLeftX = Bouncer->LeftX + Bouncer->DirX;
}
if (((Bouncer->TopY > BumperPtr->BottomY) &&
(NewTopY <= BumperPtr->BottomY)) ||
(((Bouncer->TopY + Bouncer->Height - 1) <
BumperPtr->TopY) &&
(NewBottomY >= BumperPtr->TopY))) {
Bouncer->DirY = -Bouncer->DirY; /* bounce vertically */
NewTopY = Bouncer->TopY + Bouncer->DBirY;
}
/* Update the bounce count display; turn over at 10000 */
if (++BounceCount >= 10000) {
TextUp("0 ",344,64,SPLIT_START_OFFSET,SCREEN_SEG);
BounceCount = 0;
} else {
ShowBounceCount();
}
}

}
Bouncer->LeftX = NewLeftX; /* set the final new coordinates */

Bouncer->TopY = NewTopY;

LISTING 44.2 L44-2.ASM

; Low-level animation routines.
; Tested with TASM

SCREEN_WIDTH equ 80 ;screen width in bytes
INPUT_STATUS_1 equ 03dah ;Input Status 1 register
CRTC_INDEX equ 03d4h ;CRT Controller Index reg
START_ADDRESS_HIGH equ Och ;bitmap start address high byte
START_ADDRESS_LOW equ 0dh ;bitmap start address low byte
GC_INDEX equ 03ceh ;Graphics Controller Index reg
SET_RESET equ 0 ;GC index of Set/Reset reg
G_MODE equ 5 ;GC index of Mode register
.model small
.data
BIOS8x8Ptr dd ? ;points to BIOS 8x8 font

; Tables used to look up left and right clip masks.
LeftMask db 0ffh, 07fh, 03fh, 01fh, 00fh, 007h, 003h, 001lh
RightMask db 080h, 0cOh, 0eOh, 0fOh, 0f8h, 0fch, Ofeh, Offh

.code
; Draws the specified filled rectangle in the specified color.
; Assumes the display is in mode 12h. Does not clip and assumes
; rectangle coordinates are valid.

; C near-callable as: void DrawRect(int LeftX, int TopY, int RightX,
H int BottomY, int Color, unsigned int ScrnOffset,
; unsigned int ScrnSegment);

DrawRectParms struc

dw 2 dup (?);pushed BP and return address
LeftX dw ? ;X coordinate of left side of rectangle
TopY dw ? ;Y coordinate of top side of rectangle
RightX dw ? ;X coordinate of right side of rectangle

Split Screens Save the Page Flipped Day 825

BottomY dw
Color dw

Scrn0ffset
ScrnSegment
DrawRectParms

public
_DrawRect

push

mov

push

push

cld
mov
mov
mov
out
mov
out
les
mov
mul
add
mov
mov
shr
shr
shr
add
and
mov
mov
mov
and
mov
mov
and
sub
shr
shr
shr
Jjnz
and
MasksSet:
mov
sub
Fillloop:

push
mov
xchg
inc
mov
dec
js
jz
mov
rep

826 Chapter 44

dw
dw ?
ends

_DrawRect
proc near
bp

bp.sp

si

di

dx,GC_INDEX
al,SET_RESET

;Y coordinate of bottom side of rectangle
;color in which to draw rectangle (only the
; lower 4 bits matter)

;offset of base of bitmap in which to draw
;segment of base of bitmap in which to draw

;preserve caller's stack frame
;point to Tocal stack frame
;preserve caller's register variables

ah,byte ptr Color[bp]

dx,ax

;set the color in which to draw

ax,G_MODE + (0300h)

dx,ax

;set to write mode 3

di,dword ptr ScrnOffset[bp] ;point to bitmap start

ax,SCREEN_WIDTH
TopY[bp)

di,ax
ax,LeftX[bp]
bx, ax

ax,1

ax,1

ax,1

di,ax

bx,7
d1,LeftMask[bx]
bx,RightX{bp]
si,bx

bx,7
dh,RightMask[bx]
bx,LeftX[bp]
bx,NOT 7

si,bx

si,1

si,1

si,1

MasksSet

di,dh

bx,BottomY[bp]
bx,TopY[bp]

di

al,dl
es:[dil,al

di

cx,si

[33

LineDone
DrawRightEdge
al,0ffh

stosb

;point to the start of the top scan
i line to fill

;/8 = byte offset from left of screen

;point to the upper-left corner of fill area
;isolate intrapixel address
;set the left-edge clip mask

;isolate intrapixel address of right edge
;set the right-edge clip mask

sintrapixel address of left edge

;# of bytes across spanned by rectangle - 1
;if there's only one byte across,
; combine the masks

:# of scan lines to fill - 1

;remember Tine start offset

;left edge clip mask

;draw the left edge

;point to the next byte

i# of bytes left to do

;# of bytes left to do - 1

;that's it if there's only 1 byte across
;no middle bytes if only 2 bytes across
;non-edge bytes are solid

;draw the solid bytes across the middle

DrawRightEdge:
mov
xchg

LineDone:
pop
add
dec
jns

pop
pop
pop
ret
_DrawRect

al,dh ;right-edge clip mask

es:[di],al ;draw the right edge

di ;retrieve line start offset
di,SCREEN_WIDTH ;point to the next line

bx ;count off scan lines

FillLoop

di ;restore caller’'s register variables
si

bp ;restore caller's stack frame

endp

; Shows the page at the specified offset in the bitmap. Page is
; displayed when this routine returns.

; C near-callable as: void ShowPage(unsigned int StartOffset);

ShowPageParms
dw

StartOffset dw

ShowPageParms

public
_ShowPage

push

mov

struc

2 dup (?) ;pushed BP and return address
? ;offset in bitmap of page to display
ends

_ShowPage

proc near

bp ;preserve caller's stack frame
bp.sp ;point to local stack frame

; Wait for display enable to be active (status is active low), to be
; sure both halves of the start address will take in the same frame.

mov
moy
mov
mov
mov
WaitDE:
in
test
jnz
; Set the start
mov
mov
out
mov
out

b1,START_ADDRESS_LOW ;preload for fastest
bh,byte ptr StartOffset(bp]l ; flipping once display
¢1,START_ADDRESS_HIGH ; enable is detected

ch,byte ptr Start0ffset+1[bp]
dx, INPUT_STATUS_1

al,dx

al,0lh

WaitDE ;display enable is active low (0 = active)
offset in display memory of the page to display.
dx,CRTC_INDEX

ax,bx

dx,ax ;start address low

ax,cx

dx,ax ;start address high

; Now wait for vertical sync, so the other page will be invisible when
; we start drawing to it,

mov
WaitVs:

in

test

jz

pop

ret
_ShowPage

dx, INPUT_STATUS_1

al,dx

al,08h

WaitVvs ;vertical sync is active high (1 = active)
bp ;restore caller's stack frame

endp

; Displays the specified image at the specified Tocation in the
; specified bitmap, in the desired color.

Split Screens Save the Page Flipped Day

827

; C near-callable as: void Drawlmage(int LeftX, int TopY,
H image **RotationTable, int Color, unsigned int ScrnOffset,
H unsigned int ScrnSegment):;

DrawImageParms
dw

DILeftX

DITopY

RotationTable

DIColor

DIScrn0ffset
DIScrnSegment
DrawImageParms

image struc
WidthInBytes
Height
BitPattern
image ends

public
_DrawlImage
push
mov
push
push

cld
mov
mov
mov
out
mov
out
les
mov
mul
add
mov
mov
shr
shr
shr
add
and
shl
add
mov
mov
mov
mov
DrawImageloop:
push
mov

struc
2 dup (?);pushed BP and return address
dw ? ;X coordinate of left side of image
dw ? ;Y coordinate of top side of image
dw ? ;pointer to table of pointers to image
; rotations
dw ? ;color in which to draw image (only the
; Tower 4 bits matter)
dw ? ;offset of base of bitmap in which to draw
dw ? ;segment of base of bitmap in which to draw
ends
dw ?
dw ?
dw ?
_Drawlmage
proc near
bp ;preserve caller's stack frame
bp.sp ;point to local stack frame
si ;preserve caller’s register variables
di
dx,GC_INDEX

al,SET_RESET
ah,byte ptr DIColorfbp]

dx,ax ;set the color in which to draw
ax,G_MODE + (0300h)
dx,ax ;set to write mode 3

di,dword ptr DIScrnOffset{bp] :point to bitmap start
ax,SCREEN_WIDTH

DITopY[bp]l ipoint to the start of the top scan
di,ax ; line on which to draw
ax,DILeftX[bp]

bx,ax

ax,1 ;/8 = byte offset from left of screen
ax,1

ax,1

di,ax ;point to the upper-left corner of draw area
bx,7 ;isolate intrapixel address

bx,1 ;*2 for word look-up
bx,RotationTable[bp] ;point to the image structure for
bx, [bx] ; the intrabyte rotation

dx,[bx]1.WidthInBytes ;image width
si,[bx].BitPattern ;pointer to image pattern bytes

bx,[bx].Height ;image height
di ;remember Tine start offset
cx,dx ;# of bytes across

DrawImageLineloop:

Todsb
xchg
inc

828 Chapter 44

;get the next image byte
es:[di],al ;draw the next image byte
di ;point to the following screen byte

loop
pop
add
dec
inz

pop
pop
pop
ret
_DrawlImage

DrawImagelinelLoop

di ;retrieve line start offset
di,SCREEN_WIDTH ;point to the next Tine

bx ;count off scan lines

DrawlImageloop

di ;restore caller's register varjables
si

bp ;restore caller’'s stack frame

endp

; Draws a O-terminated text string at the specified location in the
; specified bitmap in white, using the 8x8 BIOS font. Must be at an X
; coordinate that's a multiple of 8.

.

; C near-callable as: void TextUp(char *Text, int LeftX, int TopY,
H unsigned int Scrn0ffset, unsigned int ScrnSegment);

TextUpParms

Text
TULeftX

TUTopY
TUScrnOffset
TUScrnSegment
TextUpParms

public
_TextUp proc
push
mov
push
push

clid
mov
mov
out
les
mov
mul
add
mov
mov
shr
shr
shr
add
mov
TextUpLoop:
Jodsb
and
Jjz
push
push
push
call
pop

struc
dw 2 dup (?);pushed BP and return address
dw ? ;pointer to text to draw
dw ? ;X coordinate of left side of rectangle
3 (must be a multiple of 8)
dw ? ;Y coordinate of top side of rectangle
dw ? ;offset of base of bitmap in which to draw
dw ? ;segment of base of bitmap in which to draw
ends
_TextUp
near
bp ipreserve caller's stack frame
bp,sp ;point to local stack frame
si ;preserve caller's register variables
di
dx,GC_INDEX
ax,G_MODE + (0000h)
dx,ax ;set to write mode 0

di,dword ptr TUScrnOffset{bp] :point to bitmap start
ax,SCREEN_WIDTH

TUTopY(bpl ;point to the start of the top scan
di,ax ; line the text starts on
ax,TULeftX[bp]
bx, ax
ax,1 ;/8 = byte offset from left of screen
ax,1
ax,1
di,ax ;point to the upper-left corner of first char
si,Text{bpl ;point to text to draw

;get the next character to draw
al,al
TextUpDone ;done if null byte
si ;preserve text string pointer
di ;preserve character's screen offset
ds ;preserve default data segment
Charup ;draw this character
ds ;restore default data segment

Split Screens Save the Page Flipped Day

829

pop di ;retrieve character's screen offset
pop si ;retrieve text string pointer
inc di ;point to next character's start location
Jmp TextUplLoop

TextUpDone:
pop di ;restore caller's register variables
pop s
pop bp ;restore caller's stack frame
ret

CharUp: ;draws the character in AL at ES:DI
1ds si,[BI0S8x8Ptr] ;point to the 8x8 font start
mov b1,al
sub bh,bh
shi bx,1
shl bx,1
shl bx,1 ;*8 to look up character offset in font
add si,bx ;point DS:SI to character data in font
mov cx,8 ;characters are 8 high

CharUpLoop:
movsb ;copy the next character pattern byte
add di,SCREEN_WIDTH-1 ;point to the next dest byte
Toop CharUpLoop
ret

_TextUp endp

; Sets the pointer to the BIOS 8x8 font.

;s C near-callable as: extern void SetBI0S8x8Font(void);

public

_SetBI0OS8x8Font

_SetBI0S8x8Font proc near

push bp ;preserve caller's stack frame
push si ;preserve caller's register variables
push di ; and data segment (don’t assume BIOS
push ds ; preserves anything)
mov ah,11h ;BIOS character generator function
mov al,30h ;BIOS information subfunction
mov bh,3 ;request 8x8 font pointer
int 10h ;invoke BIOS video services
mov word ptr [BIOS8x8Ptr],bp ;store the pointer
mov word ptr [BIOS8x8Ptr+2],es
pop ds
pop di ;restore caller's register variables
pop st
pop bp ;restore caller's stack frame
ret
_SetBIOS8x8Font endp
end

Listing 44.1 is written in C. It could equally well have been written in assembly lan-
guage, and would then have been somewhat faster. However, I wanted to make the
point (as I've made again and again) that assembly language, and, indeed, optimiza-
tion in general, is needed only in the most critical portions of any program, and then
only when the program would otherwise be too slow. Only in a highly performance-
sensitive situation would the performance boost resulting from converting Listing
44.1 to assembly justify the time spent in coding and the bugs that would likely creep

830 Chapter 44

in—and the sample program already updates the screen at the maximum possible
rate of once per frame even on a 1985-vintage 8-MHz AT. In this case, faster perfor-
mance would result only in a longer wait for the page to flip.

Write Mode 3

It’s possible to update the bitmap very efficiently on the VGA, because the VGA can
draw up to 8 pixels at once, and because the VGA provides a number of hardware
features to speed up drawing. This article makes considerable use of one particularly
unusual hardware feature, write mode 3. We discussed write mode 3 back in Chapter 26,
but we’ve covered a lot of ground since then—so I'm going to run through a quick
refresher on write mode 3.

Some background: In the standard VGA'’s high-resolution mode, mode 12H (640x480
with 16 colors, the mode in which this chapter’s sample program runs), each byte of
display memory controls 8 adjacent pixels on the screen. (The color of each pixel is,
in turn, controlled by 4 bits spread across the four VGA memory planes, but we need
not concern ourselves with that here.) Now, there will often be times when we want
to change some but not all of the pixels controlled by a particular byte of display
memory. This is not easily done, for there is no way to write half a byte, or two bits, or
such to memoryj; it’s the whole byte or none of it at all.

You might think that using AND and OR to manipulate individual bits could solve
the problem. Alas, not so. ANDing and ORing would work if the VGA had only one plane
of memory (like the original monochrome Hercules Graphics Adapter) but the VGA
has four planes, and ANDing and ORing would work only if we selected and manipu-
lated each plane separately, a process that would be hideously slow. No, with the VGA
you must use the hardware assist features, or you might as well forget about real-time
screen updates altogether. Write mode 3 will do the trick for our present needs.

Write mode 3 is useful when you want to set some but not all of the pixels in a single
byte of display memory to the same color. That is, if you want to draw a number of pixels
within a byte in a single color, write mode 3 is a good way to do it.

Write mode 3 works like this. First, set the Graphics Controller Mode register to
write mode 3. (Look at Listing 44.2 for code that does everything described here.)
Next, set the Set/Reset register to the color with which you wish to draw, in the range
0-15. (Itis not necessary to explicitly enable set/reset via the Enable Set/Reset regis-
ter; write mode 3 does that automatically.) Then, to draw individual pixels within a
single byte, simply read display memory, and then write a byte to display memory
with 1-bits where you want the color to be drawn and 0-bits where you want the
current bitmap contents to be preserved. (Note well that the data actually read by the
CPU doesn’t matter; the read operation latches all four planes’ data, as described way
back in Chapter 24.) So, for example, if write mode 3 is enabled and the Set/Reset
register is set to 1 (blue), then the following sequence of operations:

Split Screens Save the Page Flipped Day 831

mov dx,0a000h

mov es,dx

mov al,es:[0]

mov byte ptr es:[0],0f0h

will change the first 4 pixels on the screen (the left nibble of the byte at offset 0 in
display memory) to blue, and will leave the next 4 pixels (the right nibble of the byte
at offset 0) unchanged.

Using one MOV to read from display memory and another to write to display memory
is not particularly efficient on some processors. In Listing 44.2, I instead use XCHG,
which reads and then writes a memory location in a single operation, as in:

mov dx,0a000h
mov es,dx

mov al,0f0h
xchg es:[0],al

Again, the actual value that’s read is irrelevant. In general, the XCHG approach is
more compact than two MOVs, and is faster on 386 and earlier processors, but slower
on 486s and Pentiums.

If all pixels in a byte of display memory are to be drawn in a single color, it’s not
necessary to read before writing, because none of the information in display memory
at that byte needs to be preserved; a simple write of OFFH (to draw all bits) will set all
8 pixels to the set/reset color:

mov dx,0a000h
mov es,dx
mov byte ptr es:[di],0ffh

p If you 're familiar with VGA programming, you re no doubt aware that everything
2| that can be done with write mode 3 can also be accomplished in write mode 0 or
write mode 2 by using the Bit Mask register. However, setting the Bit Mask register
requires at least one OUT per byte written, in addition to the read and write of
display memory, and OUTs are often slower than display memory accesses, espe-
cially on 386s and 486s. One of the great virtues of write mode 3 is that it requires
virtually no OUTSs and is therefore substantially faster for masking than the other
write modes.

In short, write mode 3 is a good choice for single-color drawing that modifies indi-
vidual pixels within display memory bytes. Not coincidentally, the sample application
draws only single-color objects within the animation area; this allows write mode 3 to
be used for all drawing, in keeping with our desire for speedy screen updates.

Drawing Text

We’ll need text in the sample application; is that also a good use for write mode 3?
Sometimes it is, but not in this particular case.

832 Chapter 44

Each character in a font is represented by a pattern of bits, with 1-bits representing
character pixels and 0-bits representing background pixels. Since we’ll be using the
8x8 font stored in the BIOS ROM (a pointer to which can be obtained by calling a
BIOS service, as illustrated by Listing 44.2), each character is exactly 8 bits, or 1 byte
wide. We’ll further insist that characters be placed on byte boundaries (that is, with
their left edges only at pixels with X coordinates that are multiples of 8); this means that
the character bytes in the font are automatically aligned with display memory, and
no rotation or clipping of characters is needed. Finally, we’ll draw all text in white.

Given the above assumptions, drawing text is easy; we simply copy each byte of each
character to the appropriate location in display memory, and voila, we’re done. Text
copying is done in write mode 0, in which the byte written to display memory is
copied to all four planes at once; hence, 1-bits turn into white (color value 0FH, with
1-bits in all four planes), and 0-bits turn into black (color value 0). This is faster than
using write mode 3 because write mode 3 requires a read/write of display memory
(or at least preloading the latches with the background color), while the write mode
0 approach requires only a write to display memory.

approach described above draws both foreground and background pixels within
the character box, forcing the background pixels to black at the same time that it
Jorces the foreground pixels to white. If you want to draw transparent text (that is,
draw only the character pixels, not the surrounding background box), write mode
3 is ideal. Also, matters get far more complicated if characters that aren’t 8 pixels
wide are drawn, or if characters are drawn starting at arbitrary pixel locations,
without the multiple-of-8 column vestriction, so that rotation and masking are re-
quired. Lastly, the Map Mask register can be used to draw text in colors other than
white—but only if the background is black. Otherwise, the data remaining in the
planes protected by the Map Mask will remain and can interfere with the colors of
the text being drawn.

*p Is write mode 0 always the best way to do text? Not at all. The write mode 0

I’'m not going to delve any deeper into the considerable issues of drawing VGA text;
I just want to sensitize you to the existence of approaches other than the ones used
in Listings 44.1 and 44.2. On the VGA, the rule is: If there’s something you want to
do, there probably are 10 ways to do it, each with unique strengths and weaknesses.
Your mission, should you decide to accept it, is to figure out which one is best for
your particular application.

Page Flipping

Now that we know how to update the screen reasonably quickly, it’s time to get on to
the fun stuff. Page flipping answers the second requirement for animation, by keep-
ing bitmap changes off the screen until they’re complete. In other words, page flipping
guarantees that partially updated bitmaps are never seen.

Split Screens Save the Page Flipped Day 833

How is it possible to update a bitmap without seeing the changes as they’re made?
Easy—with page flipping, there are two bitmaps; the program shows you one bitmap
while it updates the other. Conceptually, it’s that simple. In practice, unfortunately,
it’s not so simple, because of the design of the VGA. To understand why that is, we
must look at how the VGA turns bytes in display memory into pixels on the screen.

The VGA bitmap is a linear 64 K block of memory. (True, most adapters nowadays
are SuperVGAs with more than 256 K of display memory, but every make of SuperVGA
has its own way of letting you access that extra memory, so going beyond standard
VGA is a daunting and difficult task. Also, it’s hard to manipulate the large frame
buffers of SuperVGA modes fast enough for real-time animation.) Normally, the
VGA picks up the first byte of memory (the byte at offset 0) and displays the corre-
sponding 8 pixels on the screen, then picks up the byte at offset 1 and displays the
next 8 pixels, and so on to the end of the screen. However, the offset of the first byte
of display memory picked up during each frame is not fixed at 0, but is rather pro-
grammable by way of the Start Address High and Low registers, which together store
the 16-bit offset in display memory at which the bitmap to be displayed during the
next frame starts. So, for example, in mode 10H (640x350, 16 colors), a large enough
bitmap to store a complete screen of information can be stored at display memory
offsets 0 through 27,999, and another full bitmap could be stored at offsets 28,000
through 55,999, as shown in Figure 44.1. (I'm discussing 640x350 mode at the mo-
ment for good reason; we’ll get to 640x480 shortly.) When the Start Address registers
are set to 0, the first bitmap (or page) is displayed; when they are set to 28,000, the
second bitmap is displayed. Page flipped animation can be performed by displaying

A000:0000
fset
goecsir?\cﬁ]

A000:6D60

(pfset 28,000 Page 1
ecimal)

AQ00:DACO Unused Memory
gof'&,er ?6,000
ecimal)

cimad

Memory allocation for mode 10h page flipping.
Figure 44.1

834 Chapter 44

page 0 and drawing to page 1, then setting the start address to page 1 to display that
page and drawing to page 0, and so on ad infinitum.

Knowing When to Flip

There’s a hitch, though, and that hitch is knowing exactly when it is that the page
has flipped. The page doesn’t flip the instant that you set the Start Address registers.
The VGA loads the starting offset from the Start Address registers once before start-
ing each frame, then pays those registers no nevermind until the next frame comes
around. This means that you can set the Start Address registers whenever you want—
but the page actually being displayed doesn’t change until after the VGA loads that
new offset in preparation for the next frame.

The potential problem should be obvious. Suppose that page 1 is being displayed,
and you’re updating page 0. You finish drawing to page 0, set the Start Address reg-
isters to 0 to switch to displaying page 0, and start updating page 1, which is no
longer displayed. Or is it? If the VGA was in the middle of the current frame, display-
ing page 1, when you set the Start Address registers, then page 1 is going to be
displayed for the rest of the frame, no matter what you do with the Start Address
registers. If you start updating page 1 right away, any changes you make may well
show up on the screen, because page 0 hasn’t yet flipped to being displayed in place
of page 1-—and that defeats the whole purpose of page flipping.

To avoid this problem, it is mandatory that you wait until you’re sure the page has
flipped. The Start Address registers are, according to my tests, loaded at the start of
the Vertical Sync signal, although that may not be the case with all VGA clones. The
Vertical Sync status is provided as bit 3 of the Input Status 1 register, so it would seem
that all you need to do to flip a page is set the new Start Address registers, wait for the
start of the Vertical Sync pulse that indicates that the page has flipped, and be on
your merry way.

Almost—but not quite. (Do I hear teeth gnashing in the background?) The problem
is this: Suppose that, by coincidence, you set one of the Start Address registers just
before the start of Vertical Sync, and the other right after the start of Vertical Sync.
Why, then, for one frame the Start Address High value for one page would be mixed
with the Start Address Low value for the other page, and, depending on the start
address values, the whole screen could appear to shift any number of pixels for a
single, horrible frame. This must never happen! The solution is to set the Start Address
registers when you’re certain Vertical Sync is not about to start. The easiest way to
know that is to check for the Display Enable status (bit O of the Input Status 1 regis-
ter) being active; that means that bitmap-controlled pixels are being scanned onto
the screen, and, since Vertical Sync happens in the middle of the vertical non-display
portion of the frame, Vertical Sync can never be anywhere nearby if Display Enable is
active. (Note that one good alternative is to set up both pages with a start address

Split Screens Save the Page Flipped Day 835

that’s a multiple of 256, and just change the Start Address High register and wait for
Vertical Sync, with no Display Enable wait required.)

So, to flip pages, you must complete all drawing to the non-displayed page, wait for
Display Enable to be active, set the new start address, and wait for Vertical Sync to be
active. At that point, you can be fully confident that the page that you just flipped off
the screen is not displayed and can safely (invisibly) be updated. A side benefit of
page flipping is that your program will automatically have a constant time base, with
the rate at which new screens are drawn synchronized to the frame rate of the dis-
play (typically 60 or 70 Hz). However, complex updates may take more than one
frame to complete, especially on slower processors; this can be compensated for by
maintaining a count of new screens drawn and cross-referencing that to the BIOS
timer count periodically, accelerating the overall pace of the animation (moving
farther each time and the like) if updates are happening too slowly.

Enter the Split Screen

So far, I've discussed page flipping in 640x350 mode. There’s a reason for that:
640x350 is the highest-resolution standard mode in which there’s enough display
memory for two full pages on a standard VGA. It’s possible to program the VGA to a
non-standard 640x400 mode and still have two full pages, but that’s pretty much the
limit. One 640x480 page takes 38,400 bytes of display memory, and clearly there isn’t
enough room in 64 K of display memory for two of those monster pages.

And yet, 640x480 is a wonderful mode in many ways. It offersa 1:1 aspect ratio (square
pixels), and it provides by far the best resolution of any 16-color mode. Surely there’s
some way to bring the visual appeal of page flipping to this mode?

Surely there is—but it’s an odd solution indeed. The VGA has a feature, known as
the split screen, that allows you to force the offset from which the VGA fetches video
data back to 0 after any desired scan line. For example, you can program the VGA to
scan through display memory as usual until it finishes scan line number 338, and
then get the first byte of information for scan line number 339 from offset 0 in
display memory.

That, in turn, allows us to divwy up display memory into three areas, as shown in
Figure 44.2. The area from 0 to 11,279 is reserved for the split screen, the area from
11,280 to 38,399 is used for page 0, and the area from 38,400 to 65,519 is used for
page 1. This allows page flipping to be performed in the top 339 scan lines (about 70
percent) of the screen, and leaves the bottom 141 scan lines for non-animation pur-
poses, such as showing scores, instructions, statuses, and suchlike. (Note that the
allocation of display memory and number of scan lines are dictated by the desire to
have as many page-flipped scan lines as possible; you may, if you wish, have fewer
page-flipped lines and reserve part of the bitmap for other uses, such as off-screen
storage for images.)

836 Chapter 44

A000:0000 _
(offset O Split Screen
decimal) (always controls scan lines 339-479)
A000:2C10 Page O -
(offset 11,280 (controls scan lines 0-338
decimal) when start address = 11,280)
A000:9600 Page 1]
(offset 38,400 {controls scan lines 0-338
decimal) when start address = 38,400)
A000: FFFQ
fset 65,520
ijc;ci;d) Unused Memory
Page flipped
Screen animation

Split screen

Memory allocation for mode 12h page flipping.
Figure 44.2

The sample program for this chapter uses the split screen and page flipping exactly
as described above. The playfield through which the object bounces is the page-
flipped portion of the screen, and the rectangle at the bottom containing the bounce
count and the instructions is the split (that is, not animatable) portion of the screen.
Of course, to the user it all looks like one screen. There are no visible boundaries
between the two unless you choose to create them.

Very few animation applications use the entire screen for animation. If you can get
by with 339 scan lines of animation, split-screen page flipping gives you the best
combination of square pixels and high resolution possible on a standard VGA.

So. Is VGA animation worth all the fuss? Mais oui. Run the sample program; if you've
never seen aggressive VGA animation before, you’ll be amazed at how smooth it can
be. Not every square millimeter of every animated screen must be in constant mo-
tion. Most graphics screens need a little quiet space to display scores, coordinates,
file names, or (if all else fails) company logos. If you don’t tell the user he’s/she’s
only getting 339 scan lines of animation, he’ll/she’ll probably never know.

Split Screens Save the Page Flipped Day

837

	previous:
	home:
	next:

