

ree little words should strike terror into the heart of anyone
who owns more t bag and a toothbrush. Our last move was the usual

the distance from the old house to the new was only
“everything smaller than a washing machine. We have

a sizable household , kids, computers, you name it-so the moving pro-
A large number-33, to be exact. I personally spent

riving back and forth between the two houses. The move took

things: What does this have to do with high-perfor-
mance programming, and why on earth didn’t I rent a truck and get the move over
in one or two trips, saving hours of driving? As it happens, the second question an-
swers the first. I didn’t rent a truck because it seerned easier and cheaper to use cars-no
big truck to drive, no rentals, spread the work out more manageably, and so on.
It wasn’t easier, and wasn’t even much cheaper. (It costs quite a bit to drive a car 330
miles, to say nothing of the value of 15 hours of my time.) But, at the time, it seemed
as though my approach would be easier and cheaper. In fact, I didn’t realize just how
much time I had wasted driving back and forth until I sat down to write this chapter.
In Chapter 1, I briefly discussed using restartable blocks. This, you might remember, is
the process of handling in chunks data sets too large to fit in memory so that they

113

searching files with restartable blocks

can be processed just about as fast as if they did fit in memory. The restartable block
approach is very fast but is relatively difficult to program.
At the opposite end of the spectrum lies byte-by-byte processing, whereby DOS (or,
in less extreme cases, a group of library functions) is allowed to do all the hard work,
so that you only have to deal with one byte at a time. Byte-by-byte processing is easy to
program but can be extremely slow, due to the vast overhead that results from invok-
ing DOS each time a byte must be processed.
Sound familiar? It should. I moved via the byte-by-byte approach, and the overhead
of driving back and forth made for miserable performance. Renting a truck (the
restartable block approach) would have required more effort and forethought, but
would have paid off handsomely.

The easy, familiar approach often has nothing in its favor except that it requires p less thinking; not a great virtue when writing high-performance code-or when
moving.

And with that, let’s look at a fairly complex application of restartable blocks.

Searching for Text
The application we’re going to examine searches a file for a specified string. We’ll
develop a program that will search the file specified on the command line for a
string (also specified on the command line), then report whether the string was
found or not. (Because the searched-for string is obtained via argv, it can’t contain
any whitespace characters.)
This is a very limited subset of what search utilities such as grep can do, and isn’t
really intended to be a generally useful application; the purpose is to provide insight
into restartable blocks in particular and optimization in general in the course of
developing a search engine. That search engine will, however, be easy to plug into
any program, and there’s nothing preventing you from using it in a more fruitful
context, like searching through a user-selectable file set.
The first point to address in designing our program involves the appropriate text-
search approach to use. Literally dozens of workable ways exist to search a file. We
can immediately discard all approaches that involve reading any byte of the file more
than once, because disk access time is orders of magnitude slower than any data
handling performed by our own code. Based on our experience in Chapter 1, we
can also discard all approaches that get bytes either one at a time or in small sets
from DOS. We want to read big “buffers-full” of bytes at a pop from the searched file,
and the bigger the buffer the better-in order to minimize DOS’s overhead. A good
rough cut is a buffer that will be between 16K and 64K, depending on the exact
search approach, 64Kbeing the maximum size because near pointers make for supe-
rior performance.

1 1 4 Chapter 5

So we know we want to work with a large buffer, filling it as infrequently as possible.
Now we have to figure out how to search through a file by loading it into that large
buffer in chunks. To accomplish this, we have to know how we want to do our search-
ing, and that’s not immediately obvious. Where do we begin?

Well, it might be instructive to consider how we would search if our search involved
only one buffer, already resident in memory. In other words, suppose we don’t have to
bother with file handling at all, and further suppose that we don’t have to deal with
searching through multiple blocks. After all, that’s a good description of the all-important
inner loop of our searching program, where the program will spend virtually all of its
time (aside from the unavoidable disk access overhead).

Avoiding the String Trap
The easiest approach would be to use a C/C++ library function. The closest match to
what we need is strstr(), which searches one string for the first occurrence of a second
string. However, while strstr() would work, it isn’t ideal for our purposes. The problem is
this: Where we want to search a fixed-length buffer for the first occurrence of a string,
strstr() searches a string for the first occurrence of another string.
We could put a zero byte at the end of our buffer to allow strstr() to work, but why
bother? The strstr() function must spend time either checking for the end of the
string being searched or determining the length of that string-wasted effort given
that we already know exactly how long our search buffer is. Even if a given strstr()
implementation is well-written, its performance will suffer, at least for our applica-
tion, from unnecessary overhead.

This illustrates why you shouldn ’t think ofC/C+ + libraryfunctions as black boxes;
understand what they do and try to figure out how they do it, and relate that to
their performance in the context you i-e interested in.

Brute-Force Techniques
Given that no C/Ct+ library function meets our needs precisely, an obvious alterna-
tive approach is the brute-force technique that uses memcmp() to compare every
potential matching location in the buffer to the string we’re searching for, as illus-
trated in Figure 5.1.
By the way, we could, of course, use our own code, working with pointers in a loop, to
perform the comparison in place of memcmp(). But memcmp() will almost certainly
use the very fast REPZ CMPS instruction. However, never assume! It wouldn’t hurt to
use a debugger to check out the actual machine-code implementation of memcmp()
from your compiler. If necessary, you could always write your own assembly language
implementation of memcmp().

Crossing the Border 1 15

Invoking memcmp() for each potential match location works, but entails consider-
able overhead. Each comparison requires that parameters be pushed and that a call
to and return from memcmp() be performed, along with a pass through the com-
parison loop. Surely there’s a better way!
Indeed there is. We can eliminate most calls to memcmp() by performing a simple
test on each potential match location that will reject most such locations right off the
bat. We’ll just check whether the first character of the potentially matching buffer
location matches the first character of the string we’re searching for. We could make
this check by using a pointer in a loop to scan the buffer for the next match for the
first character, stopping to check for a match with the rest of the string only when the
first character matches, as shown in Figure 5.2.

Using memchr()
There’s yet a better way to implement this approach, however. Use the memchr() func-
tion, which does nothing more or less than find the next occurrence of a specified
character in a fixed-length buffer (presumably by using the extremely efficient REPNZ
SCASB instruction, although again it wouldn’t hurt to check). By using memchr() to
scan for potential matches that can then be fully tested with memcmp(), we can build
a highly efficient search engine that takes good advantage of the information we have
about the buffer being searched and the string we’re searching for. Our engine also
relies heavily on repeated string instructions, assuming that the memchr() and
memcmp() library functions are properly coded.

1 16 Chapter 5

The brute-force searching technique.
Figure 5.1

We’re going to go with the this approach in our file-searching program; the only
trick lies in deciding how to integrate this approach with restartable blocks in order
to search through files larger than our buffer. This certainly isn’t the fastest-possible
searching algorithm; as one example, the Boyer-Moore algorithm, which cleverly
eliminates many buffer locations as potential matches in the process of checking
preceding locations, can be considerably faster. However, the Boyer-Moore algorithm
is quite complex to understand and implement, and would distract us from our main
focus, restartable blocks, so we’ll save it for a later chapter (Chapter 14, to be pre-
cise). Besides, I suspect you’ll find the approach we’ll use to be fast enough for most
purposes.
Now that we’ve selected a searching approach, let’s integrate it with file handling
and searching through multiple blocks. In other words, let’s make it restartable.

Making a Search Restartable
As it happens, there’s no great trick to putting the pieces of this search program
together. Basically, we’ll read in a buffer of data (we’ll work with 16K at a time to
avoid signed overflow problems with integers), search it for a match with the
memchr()/memcmp() engine described, and exit with a “string found” response if
the desired string is found.

Crossing the Border 1 1 7

Otherwise, we’ll load in another buffer full of data from the file, search it, and so on.
The only trick lies in handling potentially matching sequences in the file that start in
one buffer and end in the next-that is, sequences that span buffers. We’ll handle
this by copying the unchecked bytes at the end of one buffer to the start of the next
and reading that many fewer bytes the next time we fill the buffer.
The exact number of bytes to be copied from the end of one buffer to the start of the
next is the length of the searched-for string minus 1, since that’s how many bytes at
the end of the buffer can’t be checked as possible matches (because the check would
run off the end of the buffer).
That’s really all there is to it. Listing 5.1 shows the file-searching program. As you can
see, it’s not particularly complex, although a few fairly opaque lines of code are
required to handle merging the end of one block with the start of the next. The code
that searches a single block-the function SearchForString()-is simple and compact
(as it should be, given that it’s by far the most heavily-executed code in the listing).
Listing 5.1 nicely illustrates the core concept of restartable blocks: Organize your
program so that you can do your processing within each block as fast as you could if
there were only one block-which is to say at top speed-and make your blocks as
large as possible in order to minimize the overhead associated with going from one
block to the next.

LISTING 5.1 SEARCH.C
I* Program t o s e a r c h t h e f i l e s p e c i f i e d b y t h e f i r s t c o m m a n d - l i n e
* argument f o r t h e s t r i n g s p e c i f i e d b y t h e s e c o n d c o m m a n d - l i n e
* argument . Per fo rms the search by read ing and search ing b locks
* o f s i z e BLOCK-SIZE. *I

i n c l u d e < s t d i o . h >
i n c l u d e < f c n t l . h>
i n c l u d e < s t r i n g . h >
i n c l u d e < a l l o c . h > I* a l 1 o c . h f o r B o r l a n d c o m p i l e r s ,

m a l 1 o c . h f o r M i c r o s o f t c o m p i l e r s */

d e f i n e BLOCK-SIZE 0x4000 I* w e ’ l l p r o c e s s t h e f i l e i n 1 6 K b l o c k s * /

I* Searches the spec i f ied number o f sequences i n t h e s p e c i f i e d
b u f f e r f o r m a t c h e s t o S e a r c h s t r i n g o f S e a r c h S t r i n g L e n g t h . N o t e
t h a t t h e c a l l i n g code shou ld a l ready have shor tened SearchLength
i f n e c e s s a r y t o c o m p e n s a t e f o r t h e d i s t a n c e f r o m t h e e n d o f t h e
b u f f e r t o t h e l a s t p o s s i b l e s t a r t o f a matching sequence i n t h e
b u f f e r .

*I

i n t SearchForString(unsigned c h a r * B u f f e r , i n t S e a r c h L e n g t h ,

(
u n s i g n e d c h a r * S e a r c h s t r i n g . i n t S e a r c h S t r i n g L e n g t h)

uns igned cha r *Po ten t i a lMa tch :

I* Search s o l o n g as t h e r e a r e p o t e n t i a l - m a t c h l o c a t i o n s

w h i l e (SearchLength) I
r e m a i n i n g *I

I* See i f t h e f i r s t c h a r a c t e r o f S e a r c h s t r i n g c a n be found * /

1 18 Chapter 5

i f ((P o t e n t i a l M a t c h =

memchr (Buf fe r . *Searchs t r ing , SearchLength)) -- NULL) I

I
break: /* No matches i n t h i s b u f f e r */

I* The f i r s t c h a r a c t e r m a t c h e s : see i f t h e r e s t o f t h e s t r i n g

i f (SearchSt r i ngLeng th -= 1 1 {
a l s o matches * /

r e t u r n (1) : I* Tha t one m a t c h i n g c h a r a c t e r was t h e w h o l e
s e a r c h s t r i n g , s o we 've go t a match * I

1
e l s e {

/ * Check whether the remain ing charac ters match * I
i f (!memcmp(PotentialMatch + 1. S e a r c h s t r i n g + 1.

SearchSt r i ngLeng th - 1)) {
r e t u r n c l) ; / * We've g o t a match * I

1
1
I* The s t r i n g d o e s n ' t m a t c h : k e e p g o i n g b y p o i n t i n g p a s t t h e

SearchLength -- P o t e n t i a l M a t c h - B u f f e r + 1;
B u f f e r - P o t e n t i a l M a t c h + 1:

p o t e n t i a l m a t c h l o c a t i o n we j u s t r e j e c t e d * I

1

1

m a i n (i n t a r g c . c h a r * a r g v []) {

r e t u r n (0) : I* No match found * /

i n t Done: / * I n d i c a t e s
i n t Handle: / * H a n d l e o f
i n t Work ingLength; / * L e n g t h o f
i n t S e a r c h S t r i n g L e n g t h ; / * L e n g t h o f
i n t B lockSearchLength: I* Length t o
i n t Found; / * I n d i c a t e s

s t a t u s * I

whether search i s done * /
f i l e b e i n g s e a r c h e d * /
c u r r e n t b l o c k * /
s t r i n g t o s e a r c h f o r */
s e a r c h i n c u r r e n t b l o c k * /
f i n a l s e a r c h c o m o l e t i o n

i n t NextLoadCount; I * # o f b y t e s t o r e a d i n t o n e x t b l o c k ,
a c c o u n t i n g f o r b y t e s c o p i e d f r o m t h e
l a s t b l o c k * /

uns igned char *Work ingBlock; I* B l o c k s t o r a g e b u f f e r *I
u n s i g n e d c h a r * S e a r c h s t r i n g ; I* P o i n t e r t o t h e s t r i n g t o s e a r c h f o r */
uns igned char *NextLoadPt r ; / * O f f s e t a t w h i c h t o s t a r t l o a d i n g

t h e n e x t b l o c k , a c c o u n t i n g f o r
b y t e s c o p i e d f r o m t h e l a s t b l o c k * /

/ * Check f o r t h e p r o p e r number o f arguments *I
i f (a rgc !- 3 {

p r i n t f (" u s a g e : s e a r c h f i l e n a m e s e a r c h - s t r i n g \ n ") ;
e x i t (1) :

1

/ * T r y t o open t h e f i l e t o be searched * /
i f ((Handle - open(a rgv [l] . OERDONLY 1 0-BINARY)) -- -1 1 {

p r i n t f (" C a n ' t open f i l e : % s \ n " . a r g v [l l) ;
e x i t (1) :

>
I* C a l c u l a t e t h e l e n g t h o f t e x t t o s e a r c h f o r * I
S e a r c h s t r i n g - argvCE1:
SearchSt r i ngLeng th - s t r l e n (S e a r c h S t r i n g) :
I* T r y t o g e t memory i n w h i c h t o b u f f e r t h e d a t a */
i f ((Work ingBlock = malloc(BLOCK-SIZE)) -- NULL 1 I

p r i n t f (" C a n ' t g e t enough memory\n"):
e x i t (1) ;

1

Crossing the Border 1 19

I* Load t h e f i r s t b l o c k a t t h e s t a r t o f t h e b u f f e r , and t r y t o

NextLoadPtr - WorkingBlock:
NextLoadCount = BLOCK-SIZE:
Done = 0: I* Not done w i t h s e a r c h y e t *I
Found = 0: I* Assume we w o n ' t f i n d a match * I
/ * S e a r c h t h e f i l e i n BLOCK-SIZE chunks * /

fill t h e e n t i r e b u f f e r * /

do
I*

i f

1
I*

i f

1

/*

Read i n however many b y t e s a r e n e e d e d t o fill o u t t h e b l o c k
(a c c o u n t i n g f o r b y t e s c o p i e d o v e r f r o m t h e l a s t b l o c k) . o r
t h e r e s t o f t h e b y t e s i n t h e f i l e , w h i c h e v e r i s l e s s * I
((WorkingLength - read(Hand1e. NextLoadPtr .

p r i n t f (" E r r o r r e a d i n g f i l e % s \ n " . a r g v C 1 1) :
e x i t (1) :

NextLoadCount)) == -1) I

I f we d i d n ' t r e a d all t h e b y t e s we requested, we're done
a f t e r t h i s b l o c k , w h e t h e r we f i n d a m a t c h o r n o t * I
(WorkingLength !- NextLoadCount {
Done - 1:

A c c o u n t f o r a n y b y t e s we cop ied f rom the end o f t h e l a s t
b l o c k i n t h e t o t a l l e n g t h o f t h i s b l o c k *I

WorkingLength +- NextLoadPtr - WorkingBlock:
/ * C a l c u l a t e t h e number o f b y t e s i n t h i s b l o c k t h a t c o u l d

p o s s i b l y be t h e s t a r t o f a m a t c h i n g s e q u e n c e t h a t l i e s
e n t i r e l y i n t h i s b l o c k (s e q u e n c e s t h a t r u n o f f t h e e n d o f
t h e b l o c k will b e t r a n s f e r r e d t o t h e n e x t b l o c k and found
when t h a t b l o c k i s s e a r c h e d)

* I
i f ((B lockSearchLength -

WorkingLength - SearchSt r ingLength + 1) <= 0 1 {
Done = 1: / * Too f e w c h a r a c t e r s i n t h i s b l o c k f o r

t h e r e t o b e any poss ib le matches , s o t h i s
i s t h e f i n a l b l o c k and we ' re done w i thout
f i n d i n g a match

*I
I
e l s e {

/ * S e a r c h t h i s b l o c k *I
i f (SearchForS t r i ng (Work ingB1ock . BlockSearchLength.

S e a r c h s t r i n g . S e a r c h S t r i n g L e n g t h)) {
Found = 1: I* We've found a match *I
Done = 1:

I
e l s e I

I*

i f

1
/*

Copy any b y t e s f r o m t h e end o f t h e b l o c k t h a t s t a r t
p o t e n t i a l l y - m a t c h i n g s e q u e n c e s t h a t w o u l d r u n o f f
t h e e n d o f t h e b l o c k o v e r t o t h e n e x t b l o c k */
(SearchSt r ingLength > 1) I
memcpy(WorkingB1ock.

WorkingBlock+BLOCK-SIZE - SearchSt r ingLength + 1.
SearchSt r ingLength - 1) :

Set up t o l o a d t h e n e x t b y t e s f r o m t h e f i l e a f t e r t h e
b y t e s c o p i e d f r o m t h e end o f t h e c u r r e n t b l o c k * I

NextLoadPtr = WorkingBlock + SearchSt r ingLength - 1:
NextLoadCount - BLOCK-SIZE - S e a r c h S t r i n g L e n g t h + 1:

1

120 Chapter 5

I
1 w h i l e (!Done) :

/* R e p o r t t h e r e s u l t s * /
i f (Found) (

1 e l s e I

I
e x i t (F o u n d) ; / * R e t u r n t h e f o u n d / n o t f o u n d s t a t u s a s t h e

p r i n t f (” S t r i n g f o u n d \ n ”) :

p r i n t f (” S t r i n g n o t f o u n d \ n ”) :

DOS e r r o r l e v e l * /
}

Interpreting Where the Cycles Go
To boost the overall performance of Listing 5.1, I would normally convert
SearchForString() to assembly language at this point. However, I’m not going to do
that, and the reason is as important a lesson as any discussion of optimized assembly
code is likely to be. Take a moment to examine some interesting performance as-
pects of the C implementation, and all should become much clearer.
As you’ll recall from Chapter 1, one of the important rules for optimization involves
knowing when optimization is worth bothering with at all. Another rule involves
understanding where most of a program’s execution time is going. That’s more true
for Listing 5.1 than you might think.
When Listing 5.1 is run on a 1 MB assembly source file, it takes about three seconds
to find the string “xxxend” (which is at the end of the file) on a 20 MHz 386 ma-
chine, with the entire file in a disk cache. If BLOCK-SIZE is trimmed from 16K to
4K, execution time does not increaseperceptibly! At 2K, the program slows slightly; it’s not
until the block size shrinks to 64 bytes that execution time becomes approximately
double that of the 16K buffer.
So the first thing we’ve discovered is that, while bigger blocks do make for the best
performance, the increment in performance may not be very large, and might not
justify the extra memory required for those larger blocks. Our next discovery is that,
even though we read the file in large chunks, most of the execution time of Listing
5.1 is nonetheless spent in executing the read() function.
When I replaced the read() function call in Listing 5.1 with code that simply fools
the program into thinking that a 1 MB file is being read, the program ran almost
instantaneously-in less than 1/2 second, even when the searched-for string wasn’t
anywhere to be found. By contrast, Listing 5.1 requires three seconds to run even
when searching for a single character that isn’t found anywhere in the file, the case
in which a single call to memchr() (and thus a single REPNZ SCASB) can eliminate
an entire block at a time.
All in all, the time required for DOS disk access calls is taking up at least 80 percent
of execution time, and search time is less than 20 percent of overall execution time.
In fact, search time is probably a good deal less than 20 percent of the total, given

Crossing the Border 1 21

that the overhead of loading the program, running through the C startup code,
opening the file, executing printf(), and exiting the program and returning to the
DOS shell are also included in my timings. Given which, it should be apparent why
converting to assembly language isn’t worth the trouble-the best we could do by
speeding up the search is a 10 percent or so improvement, and that would require
more than doubling the performance of code that already uses repeated string in-
structions to do most of the work.
Not likely.

Knowing When Assembly Is Pointless
So that’s why we’re not going to go to assembly language in this example-which is not
to say it would never be worth converting the search engine in Listing 5.1 to assembly.
If, for example, your application will typically search buffers in which the first char-
acter of the search string occurs frequently as might be the case when searching a
text buffer for a string starting with the space character an assembly implementation
might be several times faster. Why? Because assembly code can switch from REPNZ
S W B to match the first character to REPZ CMPS to check the remaining charac-
ters in just a few instructions.
In contrast, Listing 5.1 must return from memchr(), set up parameters, and call
memcmp() in order to do the same thing. Likewise, assembly can switch back to
REPNZ SCASB after a non-match much more quickly than Listing 5.1. The switch-
ing overhead is high; when searching a file completely filled with the character z for
the string “zy,” Listing 5.1 takes almost 1/2 minute, or nearly an order of magnitude
longer than when searching a file filled with normal text.
It might also be worth converting the search engine to assembly for searches performed
entirely in memory; with the overhead of file access eliminated, improvements in search-
engine performance would translate directly into significantly faster overall
performance. One such application that would have much the same structure as List-
ing 5.1 would be searching through expanded memory buffers, and another would be
searching through huge (segment-spanning) buffers.
And so we find, as we so often will, that optimization is definitely not a cut-and-dried
matter, and that there is no such thing as a single “best” approach.

You must know what your application will typically do, and you must know whether p you ’re more concerned with average or worst-case performance before you can
decide how best to speed up yourprogram-and, indeed, whether speeding it up is
worth doing at all.

By the way, don’t think that just because very large block sizes don’t much improve
performance, it wasn’t worth using restartable blocks in Listing 5.1. Listing 5.1 runs
more than three times more slowly with a block size of 32 bytes than with a block size

122 Chapter 5

of 4K, and any byte-by-byte approach would surely be slower still, due to the over-
head of repeated calls to DOS and/or the C stream I/O library.
Restartable blocks do minimize the overhead of DOS file-access calls in Listing 5.1;
it’s just that there’s no way to reduce that overhead to the point where it becomes
worth attempting to further improve the performance of our relatively efficient search
engine. Although the search engine is by no means fully optimized, it’s nonetheless
as fast as there’s any reason for it to be, given the balance of performance among the
components of this program.

Always Look Where Execution Is Going
I’ve explained two important lessons: Know when it’s worth optimizing further, and
use restartable blocks to process large data sets as a series of blocks, with each block
handled at high speed. The first lesson is less obvious than it seems.
When I set out to write this chapter, I fully intended to write an assembly language
version of Listing 5.1, and I expected the assembly version to be much faster. When
I actually looked at where execution time was going (which I did by modifylng the
program to remove the calls to the read() function, but a code profiler could be used
to do the same thing much more easily), I found that the best code in the world
wouldn’t make much difference.

When you try to speed up code, take a moment to identzfy the hot spots in your 1 program so that you know where optimization is needed and whether it will make
a significant difference before you invest your time.

As for restartable blocks: Here we tackled a considerably more complex application
of restartable blocks than we did in Chapter l-which turned out not to be so difficult
after all. Don’t let irregularities in the programming tasks you tackle, such as strings
that span blocks, fluster you into settling for easy, general-and slow-solutions.
Focus on making the inner loop-the code that handles each block-as efficient as
possible, then structure the rest of your code to support the inner loop.
Programming with restartable blocks isn’t easy, but when speed is an issue, using
restartable blocks in the right places more than pays for itself with greatly improved
performance. And when speed is not an issue, of course, or in code that’s not time-
critical, you wouldn’t dream of wasting your time on optimization.
Would you?

Crossing the Border 1 23

	next:
	home:
	previous:

