Adding a

Dimension

on Using Mode X

programming micros, more than 11 years ago now, there wasn’t
much money in it, 6% visibility, or anything you could call a promising career. Some-
times, it was a way to aégomplish things that would never have gotten done otherwise
because minicomput st too much; other times, it paid the rent; mostly,
though, it was just fo n. Given free computer time for the first time in my life, 1
went wild, writing vérsions of all sorts of software I had seen on mainframes, in ar-
cades, wherever. Itgwas a wonderful way to learn how computers work: Trial and
error in an envi ent where nobody minded the errors, with no meter ticking.

Many sorts of software demanded no particular skills other than a quick mind and a
willingness to experimpent: Space Invaders, for instance, or full-screen operating system
shells. Others, such as compilers, required a good deal of formal knowledge. Still others
required not only knowledge but also more horse-power than I had available. The
latter I filed away on my ever-growing wish list, and then forgot about for a while.

Three-dimensional animation was the most alluring of the areas I passed over long
ago. The information needed to do rotation, projection, rendering, and the like was
neither so well developed nor widely so available then as it is now, although, in truth,
it seemed more intimidating than it ultimately proved to be. Even had I possessed
the knowledge, though, it seems unlikely that I could have coaxed satisfactory 3-D
animation out of a 4 MHz Z80 system with 160x72 monochrome graphics. In those
days, 3-D was pretty much limited to outrageously expensive terminals attached to
minis or mainframes.

933

Times change, and they seem to do so much faster in computer technology than in
other parts of the universe. A 486 is capable of decent 3-D animation, owing to its
integrated math coprocessor; not in the class of, say, an 1860, but pretty good none-
theless. A 386 is less satisfactory, though; the 387 is no match for the 486’s coprocessor,
and most 386 systems lack coprocessors. However, all is not lost; 32-bit registers and
built-in integer multiply and divide hardware make it possible to do some very inter-
esting 3-D animation on a 386 with fixed-point arithmetic. Actually, it’s possible to
do a surprising amount of 3-D animation in real mode, and even on lesser x86 pro-
cessors; in fact, the code in this article will perform real-time 3-D animation
(admittedly very simple, but nonetheless real-time and 3-D) on a 286 without a 287,
even though the code is written in real-mode C and uses floating-point arithmetic.
In short, the potential for 3-D animation on the x86 family is considerable.

With this chapter, we kick off an exploration of some of the sorts of 3-D animation
that can be performed on the x86 family. Mind you, I'm talking about real-time 3-D
animation, with all calculations and drawing performed on-the-fly. Generating frames
ahead of time and playing them back is an excellent technique, but I'm interested in
seeing how far we can push purely real-time animation. Granted, we’re not going to
make it to the level of Terminator 2, but we should have some fun nonetheless. The
first few chapters in this final section of the book may seem pretty basic to those of
you experienced with 3-D programming, and, at the same time, 3-D neophytes will
inevitably be distressed at the amount of material I skip or skim over. That can’t be
helped, but at least there’ll be working code, the references mentioned later, and
some explanation; that should be enough to start you on your way with 3-D.

Animating in three dimensions is a complex task, so this will be the largest single
section of the book, with later chapters building on earlier ones; and even this first 3-D
chapter will rely on polygon fill and page-flip code from earlier chapters.

In a sense, I've saved the best for last, because, to my mind, real-time 3-D animation
is one of the most exciting things of any stripe that can be done with a computer—
and because, with today’s hardware, it can in fact be done. Nay, it can be done
amazingly well.

References on 3-D Drawing

There are several good sources for information about 3-D graphics. Foley and van
Dam’s Computer Graphics: Principles and Practice (Second Edition, Addison-Wesley, 1990)
provides a lengthy discussion of the topic and a great many references for further
study. Unfortunately, this book is heavy going at times; a more approachable discus-
sion is provided in Principles of Interactive Computer Graphics, by Newman and Sproull
(McGraw-Hill, 1979). Although the latter book lacks the last decade’s worth of graphics
developments, it nonetheless provides a good overview of basic 3-D techniques, in-
cluding many of the approaches likely to work well in realtime on a PC.

934 Chapter 50

A source that you may or may not find useful is the series of six books on C graphics
by Lee Adams, as exemplified by High-Performance CAD Graphics in C (Windcrest/
Tab, 1986). (I don’t know if all six books discuss 3-D graphics, but the four I've seen
do.) To be honest, this book has a number of problems, including: Relatively little
theory and explanation; incomplete and sometimes erroneous discussions of graph-
ics hardware; use of nothing but global variables, with cryptic names like “array3”
and “B21;” and—well, you get the idea. On the other hand, the book at least touches
on a great many aspects of 3-D drawing, and there’s a lot of C code to back that up.
A number of people have spoken warmly to me of Adams’ books as their introduc-
tion to 3-D graphics. I wouldn’t recommend these books as your only 3-D references,
but if you’re just starting out, you might want to look at one and see if it helps you
bridge the gap between the theory and implementation of 3-D graphics.

The 3-D Drawing Pipeline

Each 3-D object that we’ll handle will be built out of polygons that represent the
surface of the object. Figure 50.1 shows the stages a polygon goes through enroute
to being drawn on the screen. (For the present, we’ll avoid complications such as
clipping, lighting, and shading.) First, the polygon is transformed from object space,
the coordinate system the object is defined in, to world space, the coordinate system
of the 3-D universe. Transformation may involve rotating, scaling, and moving the
polygon. Fortunately, applying the desired transformation to each of the polygon
vertices in an object is equivalent to transforming the polygon; in other words, trans-
formation of a polygon is fully defined by transformation of its vertices, so it is not
necessary to transform every point in a polygon, just the vertices. Likewise, transfor-
mation of all the polygon vertices in an object fully transforms the object.

Once the polygon is in world space, it must again be transformed, this time into view
space, the space defined such that the viewpoint is at (0,0,0), looking down the Z
axis, with the Yaxis straight up and the X axis off to the right. Once in view space, the
polygon can be perspective-projected to the screen, with the projected X and Y coor-
dinates of the vertices finally being used to draw the polygon.

That's really all there is to basic 3-D drawing: transformation from object space to world
space to view space to the screen. Next, we’ll look at the mechanics of transformation.

One note: I'll use a purely right-handed convention for coordinate systems. Right-
handed means that if you hold your right hand with your fingers curled and the
thumb sticking out, the thumb points along the Z axis and the fingers point in the
direction of rotation from the X axis to the Y axis, as shown in Figure 50.2. Rotations
about an axis are counter-clockwise, as viewed looking down an axis toward the ori-
gin. The handedness of a coordinate system is just a convention, and left-handed
would do equally well; however, right-handed is generally used for object and world
space. Sometimes, the handedness is flipped for view space, so that increasing Z
equals increasing distance from the viewer along the line of sight, but I have chosen

Adding a Dimension

935

Object space to world
space transformation

Polygon transformed into world space, the shared 3-D
universe. At this point, (0,0,0) is the origin of the 3-D
universe and is not affected by the location or

space transformation
s Polyg?on transformed into view space, the 3-D universe
as it looks from the vieWﬁoint,' the viewpoint becomes |
| the origin (0,0,0), with the viewer looking straight down ||
| the Z axis.

Perspective projection from view
space fo the screen

Transformed and proiecd pol

A 5 A

The 3-D drawing pipeline.
Figure 50.1

Direction of positive rotation
around the Z axis,
from the X axis

@ to the Y axis

Y4

A right-handed coordinate system.
Figure 50.2

936 Chapter 50

not to do that here, to avoid confusion. Therefore, Z decreases as distance along the
line of sight increases; a view space coordinate of (0,0,-1000) is directly ahead, twice
as far away as a coordinate of (0,0,-500).

Projection

Working backward from the final image, we want to take the vertices of a polygon, as
transformed into view space, and project them to 2-D coordinates on the screen,
which, for projection purposes, is assumed to be centered on and perpendicular to
the Z axis in view space, at some distance from the screen. We’re after visual realism,
so we’ll want to do a perspective projection, in order that farther objects look smaller
than nearer objects, and so that the field of view will widen with distance. This is
done by scaling the X and Y coordinates of each point proportionately to the Z
distance of the point from the viewer, a simple matter of similar triangles, as shown
in Figure 50.3. It doesn’t really matter how far down the Z axis the screen is assumed
to be; what matters is the ratio of the distance of the screen from the viewpoint to the
width of the screen. This ratio defines the rate of divergence of the viewing pyra-
mid—the full field of view—and is used for performing all perspective projections.
Once perspective projection has been performed, all that remains before calling the
polygon filler is to convert the projected X and Y coordinates to integers, appropri-
ately clipped and adjusted as necessary to center the origin on the screen or otherwise
map the image into a window, if desired.

Translation
Translation means adding X, Y, and Z offsets to a coordinate to move it linearly through
space. Translation is as simple as it seems; it requires nothing more than an addition

Y (up)
A
i Top of view
) pyramid 3D point
' -D poin
: fo be
! < projected
| oint projected fo screen
g e
) . (direction
Viewpoint of view)

Bottom of view pyramid

Perspective projection.
Figure 50.3

Adding a Dimension 937

for each axis. Translation is, for example, used to move objects from object space, in
which the center of the object is typically the origin (0,0,0), into world space, where
the object may be located anywhere.

Rotation

Rotationis the process of circularly moving coordinates around the origin. For our present
purposes, it’s necessary only to rotate objects about their centers in object space, so
as to turn them to the desired attitude before translating them into world space.

Rotation of a point about an axis is accomplished by transforming it according to the

formulas shown in Figure 50.4. These formulas map into the more generally useful
matrix-multiplication forms also shown in Figure 50.4. Matrix representation is more

(a)

newx = x

newy = cos(theta) * y - sin(theta) * z
newz = sin(theta) * y + cos|theta) * z

Matrix form of rotation around X axis:
1 0 0 X
0 cos(theta) -sin thetq’ X |y
0 sinftheta) cos{theta z

newx = cos{theta) * x + sin(theta) * z
newy =y
newz = -sin(theta) * x + cos(theta) * z

Matrix form of rotation around Y axis:
cos(theta) O sin(theta) X
0 1 0 X |y
-sin(theta) O cos(theta) z

(c) ,

newx = cos{theta) * x - sin(theta) * y

newy = sin(theta) * x + cos(theta) *'y

newz = z

Matrix form of rotation around Z axis:

cos(theta) -sin thefo; 0 X
gn(l‘neta) cos({fheto (]) x |y

z

3-D rotation formulas.
Figure 50.4

938 Chapter 50

useful for two reasons: First, it is possible to concatenate multiple rotations into a
single matrix by multiplying them together in the desired order; that single matrix
can then be used to perform the rotations more efficiently.

Second, 3x3 rotation matrices can become the upper-left-hand portions of 4x4 ma-
trices that also perform translation (and scaling as well, but we won’t need scaling in
the near future), as shown in Figure 50.5. A 4x4 matrix of this sort utilizes homoge-
neous coordinates; that’s a topic way beyond this book, but, basically, homogeneous
coordinates allow you to handle both rotations and translations with 4x4 matrices,
thereby allowing the same code to work with either, and making it possible to concat-
enate a long series of rotations and translations into a single matrix that performs
the same transformation as the sequence of rotations and transformations.

There’s much more to be said about transformations and the supporting matrix
math, but, in the interests of getting to working code in this chapter, I'll leave that to
be discussed as the need arises.

A Simple 3-D Example

At this point, we know enough to be able to put together a simple working 3-D ani-
mation example. The example will do nothing more complicated than display a
single polygon as it sits in 3-D space, rotating around the Y axis. To make things a
little more interesting, we’ll let the user move the polygon around in space with the
arrow keys, and with the “A” (away), and “T” (toward) keys. The sample program
requires two sorts of functionality: The ability to transform and project the polygon
from object space onto the screen (3-D functionality), and the ability to draw the

Rotation of 90" around the Y axis Translation {move) of 100 units along the
X axis and 10 units along the Z axis
B 1 11000] [|
I) I
i 0 1 0 i E 0 i x y
i -1 0 0 1! 10 i z
ool
IR B 0 o114 1
Not used at the moment A 3-D point represented in
homogeneous coordinates

A 4x4 Transformation Matrix.
Figure 50.5

Adding a Dimension 939

projected polygon (complete with clipping) and handle the other details of anima-
tion (2-D functionality).

Happily (and not coincidentally), we put together a nice 2-D animation framework
back in Chapters 47, 48, and 49, during our exploratory discussion of Mode X, so we
don’t have much to worry about in terms of non-3-D details. Basically, we’ll use Mode
X (320%x240, 256 colors), and we’ll flip between two display pages, drawing to one
while the other is displayed. One new 2-D element that we need is the ability to clip
polygons; while we could avoid this for the moment by restricting the range of mo-
tion of the polygon so that it stays fully on the screen, certainly in the long run we’ll
want to be able to handle partially or fully clipped polygons. Listing 50.1 is the low-
level code for a Mode X polygon filler that supports clipping. (The high-level polygon
fill code is mode independent, and is the same as that presented in Chapters 38, 39,
and 40, as noted further on.) The clipping is implemented at the low level, by trim-
ming the Y extent of the scan line list up front, then clipping the X coordinates of
each scan line in turn. This is not a particularly fast approach to clipping—ideally,
the polygon would be clipped before it was scanned into a line list, avoiding poten-
tially wasted scanning and eliminating the line-by-line X clipping—but it’s much
simpler, and, as we shall see, polygon filling performance is the least of our worries at
the moment.

LISTING 50.1 L50-1.ASM
: Draws all pixels in the 1ist of horizontal lines passed in, in
; Mode X, the VGA's undocumented 320x240 256-color mode. Clips to
; the rectangle specified by (ClipMinX,CiipMinY),(ClipMaxX,CYipMaxY).
; Draws to the page specified by CurrentPageBase.
; C near-callable as:
void DrawHorizontallLinelList(struct HLineList * HLinelistPtr,
int Color);

; A1l assembly code tested with TASM and MASM

SCREEN_WIDTH equ 320

SCREEN_SEGMENT equ 0a000h

SC_INDEX equ 03c4h ;Sequence Controller Index

MAP_MASK equ 2 ;Map Mask register index in SC

HLine struc

XStart dw ? ;X coordinate of leftmost pixel in line
XEnd dw ? ;X coordinate of rightmost pixel in line
HLine ends

HLinelList struc

Lngth dw ? ;# of horizontal lines

YStart dw ? ;Y coordinate of topmost line
HLinePtr dw ? ;pointer to list of horz lines
HLinekist ends

Parms struc
dw 2 dup(?) ;return address & pushed BP
HLinelistPtr dw ? ;pointer to HLinelList structure

940 Chapter 50

Color dw ? ;color with which to fill
Parms ends
.model small
.data
extrn _CurrentPageBase:word,_ClipMinX:word
extrn _ClipMinY:word,_ClipMaxX:word, _ClipMaxY:word
; Plane masks for clipping left and right edges of rectangle.
LeftClipPlaneMask db 00fh,00eh,00ch,008h
RightClipPlaneMask db 001h,003h,007h,00fh
.code
align 2
ToFil1Done:
Jjmp Fi11Done
public _DrawHorizontallinelist
align 2
_DrawHorizontalLinebList proc
push bp ;preserve caller's stack frame
mov bp.sp ;point to our stack frame
push si ;preserve caller's register variables
push di
cld ;make string instructions inc pointers
mov dx,SC_INDEX
mov al,MAP_MASK
out dx,al ;point SC Index to the Map Mask
mov ax,SCREEN_SEGMENT
mov es,ax ;point ES to display memory for REP STOS
mov si,[bptHLineListPtr] ;point to the line list
mov bx,[si+HLinePtr] ;point to the XStart/XEnd descriptor
; for the first (top) horizontal line
mov cx,[si+YStart] ;first scan 1ine to draw
mov si,[si+Lngth] ;# of scan lines to draw
cmp si,0 ;are there any lines to draw?
jle ToFil1Done ino, so we're done
cmp cx,[_ClipMinY] ;clipped at top?
jge MinYNotClipped ;no
neg CcX ;yes, discard however many lines are
add cx,[_ClipMinY] ; clipped
sub si,cx ;that many fewer lines to draw
jle ToFillDone ;no lines left to draw
shil cx,1 ;Tines to skip*2
shl cx,1 ;1ines to skip*4
add bx.cx ;advance through the line Tist
mov cx,[_CTipMinY] ;start at the top clip line
MinYNotClipped:
mov dx,si
add dx,cx ;bottom row to draw + 1
cmp dx,[_ClipMaxY] ;clipped at bottom?
jle MaxYNotClipped ;no
sub dx,[_ClipMaxY] ;# of lines to clip off the bottom
sub si,dx ;# of lines left to draw
Jjle ToFil1Done ;all Tines are clipped
MaxYNotClipped:
mov ax,SCREEN_WIDTH/4 ;point to the start of the first
mul [; scan line on which to draw
add ax,[_CurrentPageBase] ;offset of first line
mov dx,ax ;ES:DX points to first scan line to draw
mov ah,byte ptr [bp+Color] ;color with which to fill
FilllLoop:
push bx ;remember 1ine list location
push dx ;remember offset of start of line

Adding a Dimension

941

push
mov
cmp
Jge
mov
MinXNotClipped:
mov
mov
cmp
M
mov
dec
MaxXNotClipped:

cmp
J1
shr
shr
add
mov
and
mov
mov
and
mov
and
sub
shr
shr
jnz
and

MasksSet:
mov
Fil1RowsLoop:
mov
out
mov
stosb
dec
Jjs
jz
mov
out
mov
rep
DoRightEdge:
mov
out
mov
stosb
Fil1LoopBottom:
LineFillDone:
pop
pop
pop
add
add
dec
jnz

942 Chapter 50

si sremember # of lines to draw

di, [bx+XStart] ;1eft edge of fill on this line
di,.[_ClipMinX] ;clipped to left edge?

MinXNotClipped ;no

di,[_ClipMinX] ;yes, ¢lip to the left edge

si,di

cx,[bx+XEnd] ;right edge of fill

cx,[_ClipMaxX] ;clipped to right edge?

MaxXNotClipped ;no

cx,[_C1ipMaxX] ;yes, clip to the right edge

cx

cx,di

LineFil1Done ;skip if negative width

di,1 1X/4 = offset of first rect pixel in scan
di,1 i Tine

di,dx ;offset of first rect pixel in display mem
dx,si ;XStart

$1,0003h ;1ook up left-edge plane mask
bh,LeftClipPlaneMask[si] ; to clip & put in BH

si,cx

si,0003h ;look up right-edge plane
b1,RightC1ipPlaneMask[si] ; mask to clip & put in BL

dx,not 011b ;calculate # of addresses across rect
cx,dx

¢x,1

cx,1 ;# of addresses across rectangle to fill - 1
MasksSet ;there's more than one byte to draw

bh,bl ;there's only one byte, so combine the left

; and right edge clip masks

dx,SC_INDEX+1 ;already points to the Map Mask reg
al,bh ;put left-edge clip mask in AL
dx,al ;set the left-edge plane (clip) mask
al,ah ;put color in AL
;draw the left edge
cx ;count off left edge byte
Fil1LoopBottom ;that's the only byte
DoRightEdge sthere are only two bytes
al,00fh ;middle addresses are drawn 4 pixels at a pop
dx,al ;set the middle pixel mask to no clip
al,ah ;put color in AL
stosb ;draw the middle addresses four pixels apiece
al,bl ;put right-edge clip mask in AL
dx,al ;set the right-edge plane (clip) mask
al,ah ;put color in AL

;draw the right edge

si ;retrieve # of lines to draw

dx ;retrieve offset of start of line
bx ;retrieve Tine Tist location
dx,SCREEN_WIDTH/4 ;point to start of next line
bx,size HLine ;point to the next line descriptor
si ;count down lines

FilllLoop

Fil1Done:

pop di ;restore caller's register variables
pop si
pop bp ;restore caller's stack frame
ret
_DrawHorizontalLinelList endp
end

The other 2-D element we need is some way to erase the polygon at its old location
before it’s moved and redrawn. We’ll do that by remembering the bounding rect-
angle of the polygon each time it’s drawn, then erasing by clearing that area with a
rectangle fill.

With the 2-D side of the picture well under control, we’re ready to concentrate on
the good stuff. Listings 50.2 through 50.5 are the sample 3-D animation program.
Listing 50.2 provides matrix multiplication functions in a straightforward fashion.
Listing 50.3 transforms, projects, and draws polygons. Listing 50.4 is the general
header file for the program, and Listing 50.5 is the main animation program.

Other modules required are: Listings 47.1 and 47.6 from Chapter 47 (Mode X mode
set, rectangle fill); Listing 49.6 from Chapter 49; Listing 39.4 from Chapter 39 (poly-
gon edge scan); and the FillConvexPolygon() function from Listing 38.1 in Chapter
38. All necessary code modules, along with a project file, are present in the
subdirectory for this chapter on the listings disk, whether they were presented in this
chapter or some earlier chapter. This will be the case for the next several chapters as
well, where listings from previous chapters are referenced. This scheme may crowd
the listings diskette a little bit, but it will certainly reduce confusion!

LISTING 50.2 L50-2.C

/* Matrix arithmetic functions.
Tested with Borland C++ in the small model. */

/* Matrix multiplies Xform by SourceVec, and stores the result in
DestVec. Multiplies a 4x4 matrix times a 4x1 matrix; the result
is a 4x1 matrix, as follows:

| | [4]
| 4x4 | X | x|
1|

| 4|
= x|
[| I Il
- - R _...*/
void XformVec(double Xform[41[4], double ® SourceVec,
double * DestVec)
{

int i,3;

for (i=0; i<4; i++) {
DestVec[i] = 0;
for (j=0; j<4; j++)
DestVec[i] += Xform[i1[j] * SourceVec[j]:

Adding a Dimension 943

/* Matrix multiplies SourceXforml by SourceXform2 and stores the
result in DestXform. Multiplies a 4x4 matrix times a 4x4 matrix;
the result is a 4x4 matrix, as follows:

I 4x4 } X = 4x4 : - : 4x4 I

I I | I I I

- - */

void ConcatXforms(double SourceXforml[4]1[4], double SourceXform2[4][4],
double DestXform[41[4])

{
int i,3.k;
for (i=0; i<4; i++) {
for (j=0; j<4; j++) {
DestXform[iJ[j] = O:
for (k=0; k<4; k++)
DestXform[iJ[j] += SourceXforml{il[k] * SourceXform2[k][j]:
1
}
}

LISTING 50.3 L50-3.C

/* Transforms convex polygon Poly (which has PolylLength vertices),
performing the transformation according to Xform (which generally
represents a transformation from object space through world space
to view space), then projects the transformed polygon onto the
screen and draws it in color Color. Also updates the extent of the
rectangle (EraseRect) that's used to erase the screen later.
Tested with Borland C++ in the small model. */

f#include "polygon.h"

void XformAndProjectPoly(double Xform[4][4], struct Point3 * Poly,
int PolylLength, int Color)
{
int i;
struct Point3 XformedPoly[MAX_POLY_LENGTH];
struct Point ProjectedPoly[MAX_POLY_LENGTH];
struct PointlListHeader Polygon;

/* Transform to view space, then project to the screen */
for (i=0; i<PolylLength; i++) {
/* Transform to view space */
XformVec(Xform, (double *)&Poly[i]. (double *)&XformedPoly[i]);
/* Project the X & Y coordinates to the screen, rounding to the
nearest integral coordinates. The Y coordinate is negated to
flip from view space, where increasing Y is up, to screen
space, where increasing Y is down. Add in half the screen
width and height to center on the screen */
ProjectedPoly[i]l.X = ((int) (XformedPoly[i].X/XformedPoly[i].Z *
PROJECTION_RATIO*(SCREEN_WIDTH/2.0)+0.5))+SCREEN_WIDTH/2;
ProjectedPoly[i].Y = ((int) (XformedPoly[i].Y/XformedPoly[i].Z *
-1.0 * PROJECTION_RATIO * (SCREEN_WIDTH / 2.0) + 0.5)) +
SCREEN_HEIGHT/2;
/* Appropriately adjust the extent of the rectangle used to
erase this page later */
if (ProjectedPoly[i].X > EraseRect[NonDisplayedPage].Right)
if (ProjectedPoly[i].X < SCREEN_WIDTH)
EraseRect[NonDisplayedPage].Right = ProjectedPoly[i].X;
else EraseRect[NonDisplayedPagel.Right = SCREEN_WIDTH;

944 Chapter 50

if (ProjectedPoly[i].Y > EraseRect[NonDisplayedPage].Bottom)
if (ProjectedPoly[i].Y < SCREEN_HEIGHT)
EraseRect[NonDisplayedPage].Bottom = ProjectedPoly[i].Y;
else EraseRect[NonDisplayedPage].Bottom = SCREEN_HEIGHT;
if (ProjectedPoly[i].X < EraseRect[NonDisplayedPage].Left)
if (ProjectedPoly[i].X > 0)
EraseRect[NonDisplayedPage].Left = ProjectedPoly[i].X:
else EraseRect[NonDisplayedPage].Left = O;
if (ProjectedPoly[i].Y < EraseRect[NonDisplayedPage].Top)
if (ProjectedPoly[il.Y > 0)
EraseRect[NonDisplayedPage].Top = ProjectedPoly[i].Y;
else EraseRect[NonDisplayedPage].Top = 0;
}
/* Draw the polygon */
DRAW_POLYGON(ProjectedPoly, PolylLength, Color, 0, 0);
}

LISTING 50.4 POLYGON.H

/* POLYGON.H: Header file for polygon-filling code, also includes
a number of useful items for 3-D animation. */

f#define MAX_POLY_LENGTH 4 /* four vertices is the max per poly */

#define SCREEN_WIDTH 320

f#define SCREEN_HEIGHT 240

f#fdefine PAGEO_START_OFFSET 0

f#define PAGE1_START_OFFSET (((1ong)SCREEN_HEIGHT*SCREEN_WIDTH)/4)

/* Ratio: distance from viewpoint to projection plane / width of
projection plane. Defines the width of the field of view. Lower
absolute values = wider fields of view; higher values = narrower */

#define PROJECTION_RATIO -2.0 /* negative because visible Z

coordinates are negative */

/* Draws the polygon described by the point 1ist PointList in color

Color with all vertices offset by (X.,Y) */

fidefine DRAW_POLYGON(PointList,NumPoints,Color,X,Y) \
Polygon.Length = NumPoints; \
Polygon.PointPtr = PointlList; \

FillConvexPolygon(&Polygon, Color, X, Y);:

/* Describes a single 2-D point */
struct Point {
int X; /* X coordinate */
int Y; /* Y coordinate */
}:
/* Describes a single 3-D point in homogeneous coordinates */
struct Point3 {

double X; /* X coordinate */
double Y; /* Y coordinate */
double Z; /* 7 coordinate */
double W;

/* Describes a series of points (used to store a list of vertices that
describe a polygon: each vertex is assumed to connect to the two
adjacent vertices, and the last vertex is assumed to connect to the

first) */
struct PointListHeader {
int Length; /* # of points */
struct Point * PointPtr; /* pointer to list of points */

b

Adding a Dimension

945

/* Describes the beginning and ending X coordinates of a single
horizontal line */

struct HLine {
int XStart; /* X coordinate of leftmost pixel in line */
int XEnd; /* X coordinate of rightmost pixel in line */

}s

/* Describes a Length-long series of horizontal lines, all assumed to
be on contiguous scan lines starting at YStart and proceeding
downward (used to describe a scan-converted polygon to the
lTow-level hardware-dependent drawing code) */

struct HLinelList {

int Length; /* # of horizontal lines */
int YStart; /* Y coordinate of topmost line */
struct HLine * HLinePtr; /* pointer to 1ist of horz lines */

};
struct Rect { int Left, Top, Right, Bottom; };

extern void XformVec(double Xform[{4][4], double * SourceVec,
double * DestVec):
extern void ConcatXforms(double SourceXforml[4][4],
double SourceXform2[41[4], double DestXform[4]1[4]);
extern void XformAndProjectPoly(double Xform[4][4],
struct Point3 * Poly, int PolylLength, int Color)
extern int FillConvexPolygon(struct PointListHeader *, int, int, int);
extern void Set320x240Mode(void);
extern void ShowPage(unsigned int StartOffset):
extern void FillRectangleX(int StartX, int StartY, int EndX,
int EndY, unsigned int PageBase, int Color);
extern int DisplayedPage, NonDisplayedPage;
extern struct Rect EraseRect[];

LISTING 50.5 L50-5.C

/* Simple 3-D drawing program to view a polygon as it rotates in
Mode X. View space is congruent with world space, with the
viewpoint fixed at the origin (0,0,0) of world space, looking in
the direction of increasingly negative Z. A right-handed
coordinate system is used throughout.

Tested with Borland C++ in the small model. */

#include <conio.h>

#include <stdio.h>

#include <dos.h>

#include <math.h>

#include "polygon.h"

void main(void);

/* Base offset of page to which to draw */

unsigned int CurrentPageBase = 0;

/* Clip rectangle; clips to the screen */

int ClipMinX=0, ClipMinY=0;

int C1ipMaxX=SCREEN_WIDTH, ClipMaxY=SCREEN_HEIGHT;

/* Rectangle specifying extent to be erased in each page */

struct Rect EraseRect[2] = { {0, O, SCREEN_WIDTH, SCREEN_HEIGHT},
{0, 0, SCREEN_WIDTH, SCREEN_HEIGHT} };

/* Transformation from polygon's object space to world space.
Initially set up to perform no rotation and to move the polygon
into world space -140 units away from the origin down the Z axis.
Given the viewing point, -140 down the Z axis means 140 units away
straight ahead in the direction of view. The program dynamically
changes the rotation and translation. */

946 Chapter 50

static double PolyWorldXform[4]1[4] = {
{1.0, 0.0, 0.0, 0.0},
(0.0, 1.0, 0.0, 0.03,
{0.0, 0.0, 1.0, -140.0},
{0.0, 0.0, 0.0, 1.0} };

/* Transformation from world space into view space. In this program,
the view point is fixed at the origin of world space, looking down
the Z axis in the direction of increasingly negative Z, so view
space is identical to world space; this is the identity matrix. */

static double WorldViewXform[4][4] = {
{1.0, 0.0, 0.0, 0.0},

{0.0, 1.0, 0.0, 0.0},
(0.0, 0.0, 1.0, 0.0},
{0.0, 0.0, 0.0, 1.0}

static unsigned int PageStartOffsets[2] =
{PAGEQ_START_OFFSET,PAGE1_START_OFFSET};
int DisplayedPage, NonDisplayedPage;

void main() {
int Done = 0;
double WorkingXform[41[4];
static struct Point3 TestPoly[] =

{{-30,-15,0,1},(0,15,0,1},{10,-5,0,1}};

J#define TEST_POLY_LENGTH (sizeof(TestPoly)/sizeof(struct Point3))
double Rotation = M_PI / 60.0; /* initial rotation = 3 degrees */
union REGS regset;

Set320x240Mode();
ShowPage(PageStartOffsets[DisplayedPage = 0]);
/* Keep rotating the polygon, drawing it to the undisplayed page,
and flipping the page to show it */
do {
CurrentPageBase = /* select other page for drawing to */
PageStartOffsets[NonDisplayedPage = DisplayedPage * 1];
/* Modify the object space to world space transformation matrix
for the current rotation around the Y axis */
PolyWor1dXform{01[0] = PolyWorldXform[2]1[2] = cos(Rotation):
PolyWorldXform[2]1[0] = -(PolyWorldXform[0]1[2] = sin(Rotation));
/* Concatenate the object-to-world and world-to-view
transformations to make a transformation matrix that will
convert vertices from object space to view space in a single
operation */
ConcatXforms(WorldViewXform, PolyWorldXform, WorkingXform);
/* Clear the portion of the non-displayed page that was drawn
to last time, then reset the erase extent */
Fij1RectangleX(EraseRect[NonDisplayedPage].Left,
EraseRect[NonDisplayedPage].Top,
EraseRect[NonDisplayedPage].Right,
EraseRect[NonDisplayedPage].Bottom, CurrentPageBase, 0):
EraseRect[NonDisplayedPage].Left =
EraseRect[NonDisplayedPage].Top = OX7FFF;
EraseRect[NonDisplayedPage].Right =
EraseRect[NonDisplayedPage].Bottom = 0;
/* Transform the polygon, project it on the screen, draw it */
XformAndProjectPoly(WorkingXform, TestPoly, TEST_POLY_LENGTH,9):
/* Flip to display the page into which we just drew */
ShowPage(PageStartOffsets[DisplayedPage = NonDisplayedPage]);
/* Rotate 6 degrees farther around the Y axis */
if ((Rotation += (M_PI/30.0)) >= (M_PI*2)) Rotation -= M_PI*2;

Adding a Dimension

947

if (kbhit()) {
switch (getch()) {
case 0x1B: /* Esc to exit */
Done = 1; break;

case 'A': case 'a': /* away (-1) */
PolyWor1dXform[2][3] -= 3.0; break;

case 'T': /* towards (+Z). Don't allow to get too */

case "t': /* close, so Z clipping isn't needed */

if (PolyWorldXform[2]1[3] < -40.0)
PolyWorldXform[21(3] += 3.0: break:
case 0: /* extended code */
switch (getch()) {
case Ox4B: /* left (-X) */
PolyWorldXform[0]J[3] -= 3.0; break;
case 0x4D: /* right (+X) */
PolyWorldXform[0][3] += 3.0; break:
case 0x48: /* up (+Y) */
PolyWorl1dXform[1][3] += 3.0; break;
case 0x50: /* down (-Y) */
PolyWorldXform[1][3] -= 3.0; break;
default:
break;
}
break;
default: /* any other key to pause */
getch(): break:
}
}
} while (!Done);
/* Return to text mode and exit */
regset.x.ax = 0x0003; /* AL = 3 selects 80x25 text mode */
int86(0x10, ®set, ®set);
}

Notes on the 3-D Animation Example

The sample program transforms the polygon’s vertices from object space to world
space to view space to the screen, as described earlier. In this case, world space and
view space are congruent—we’re looking right down the negative Z axis of world
space—so the transformation matrix from world to view is the identity matrix; you
might want to experiment with changing this matrix to change the viewpoint. The
sample program uses 4x4 homogeneous coordinate matrices to perform transfor-
mations, as described above. Floating-point arithmetic is used for all 3-D calculations.
Setting the translation from object space to world space is a simple matter of chang-
ing the appropriate entry in the fourth column of the object-to-world transformation
matrix. Setting the rotation around the Y axis is almost as simple, requiring only the
setting of the four matrix entries that control the Yrotation to the sines and cosines
of the desired rotation. However, rotations involving more than one axis require
multiple rotation matrices, one for each axis rotated around; those matrices are then
concatenated together to produce the object-to-world transformation. This area is
trickier than it might initially appear to be; more in the near future.

The maximum translation along the Z axis is limited to -40; this keeps the polygon
from extending past the viewpoint to positive Z coordinates. This would wreak havoc

948 Chapter 50

with the projection and 2-D clipping, and would require 3-D clipping, which is far
more complicated than 2-D. We’ll get to 3-D clipping at some point, but, for now, it’s
much simpler just to limit all vertices to negative Z coordinates. The polygon does
get mighty close to the viewpoint, though; run the program and use the “I"” key to
move the polygon as close as possible—the near vertex swinging past provides a strik-
ing sense of perspective.

The performance of Listing 50.5 is, perhaps, surprisingly good, clocking in at 16
frames per second on a 20 MHz 386 with a VGA of average speed and no 387, al-
though there is, of course, only one polygon being drawn, rather than the hundreds
or thousands we’d ultimately like. What’s far more interesting is where the execu-
tion time goes. Even though the program is working with only one polygon, 73 percent
of the time goes for transformation and projection. An additional 7 percent is spent
waiting to flip the screen. Only 20 percent of the total time is spent in all other
activity—and only 2 percent is spent actually drawing polygons. Clearly, we’ll want to
tackle transformation and projection first when we look to speed things up. (Note,
however, that a math coprocessor would considerably decrease the time taken by
floating-point calculations.)

In Listing 50.3, when the extent of the bounding rectangle is calculated for later
erasure purposes, that extent is clipped to the screen. This is due to the lack of
clipping in the rectangle fill code from Listing 47.5 in Chapter 47; the problem
would more appropriately be addressed by putting clipping into the fill code, but,
unfortunately, I lack the space to do that here.

Finally, observe the jaggies crawling along the edges of the polygon as it rotates. This
is temporal aliasing at its finest! We won’t address antialiasing further, realtime
antialiasing being decidedly nontrivial, but this should give you an idea of why
antialiasing is so desirable.

An Ongoing Journey

In the next chapter, we’ll assign fronts and backs to polygons, and start drawing only
those that are facing the viewer. That will enable us to handle convex polyhedrons,
such as tetrahedrons and cubes. We’ll also look at interactively controllable rotation,
and at more complex rotations than the simple rotation around the Y axis that we
did this time. In time, we’ll use fixed-point arithmetic to speed things up, and do
some shading and texture mapping. The journey has only begun; we’ll get to all that
and more soon.

Adding a Dimension 949

	previous:
	home:
	next:

