3-D Shading

're going to add quite a bit more: support for 8088 and
odel, and shading. That’s an awful lot to cover in one
pill over into the next chapter), so let’s get to it!

arithmetic. In this cha
80286 PCs, a general

|der Processors

To date, X-Sh s run on only the 386 and 486, because it uses 32-bit multiply and
divide instructions ghat sub-386 processors don’t support. I chose 32-bit instructions
for two reasons: Théy're much faster for 16.16 fixed-point arithmetic than any ap-
proach that works on the 8088 and 286; and they’re much easier to implement than
any other approach. In short, I was after maximum performance, and I was perhaps
just a little lazy.

I should have known better than to try to sneak this one by you. The most common
feedback I've gotten on X-Sharp is that I should make it support the 8088 and 286.
Well, I can take a hint as well as the next guy. Listing 54.1 is an improved version of
FIXED.ASM, containing dual 386,/8088 versions of CosSin(), XformVec(), and
ConcatXforms(), as well as FixedMul() and FixedDiv().

Given the new version of FIXED.ASM, with USE386 set to 0, X-Sharp will now run on
any processor. That’s not to say that it will run fast on any processor, or at least not as

1007

fast as it used to. The switch to 8088 instructions makes X-Sharp’s fixed-point calcula-
tions about 2.5 times slower overall. Since a PC is perhaps 40 times slower than a 486/33,
we’re talking about a hundred-times speed difference between the low end and main-
stream. A 486/33 can animate a 72-sided ball, complete with shading (as discussed
later), at 60 frames per second (fps), with plenty of cycles to spare; an 8-MHz AT can
animate the same ball at about 6 fps. Clearly, the level of animation an application
uses must be tailored to the available CPU horsepower.

The implementation of a 32-bit multiply using 8088 instructions is a simple matter of
adding together four partial products. A 32-bit divide is not so simple, however. In
fact, in Listing 54.1 I’'ve chosen not to implement a full 32x32 divide, but rather only
a 32x16 divide. The reason is simple: performance. A 32x16 divide can be imple-
mented on an 8088 with two DIV instructions, but a 32x32 divide takes a great deal
more work, so far as I can see. (If anyone has a fast 32x32 divide, or has a faster way
to handle signed multiplies and divides than the approach taken by Listing 54.1,
please drop me a line care of the publisher.) In X-Sharp, division is used only to
divide either X or Yby Z in the process of projecting from view space to screen space,
so the cost of using a 32x16 divide is merely some inaccuracy in calculating screen
coordinates, especially when objects get very close to the Z = 0 plane. This error is
not cumulative (that is, it doesn’t carry over to later frames), and in my experience
doesn’t cause noticeable image degradation; therefore, given the already slow per-
formance of the 8088 and 286, I've opted for performance over precision.

At any rate, please keep in mind that the non-386 version of FixedDiv() is not a
general-purpose 32x32 fixed-point division routine. In fact, it will generate a divide-
by-zero error if passed a fixed-point divisor between -1 and 1. As I've explained, the
non-386 version of Fixed-Div() is designed to do just what X-Sharp needs, and no
more, as quickly as possible.

LISTING 54.1 FIXED.ASM

; Fixed point routines.
; Tested with TASM

USE386 equ 1 ;1 for 386-specific opcodes, 0 for
; 8088 opcodes
MUL_ROUNDING_ON equ 1 ;1 for rounding on multiplies,

; 0 for no rounding. Not rounding is faster,
; rounding is more accurate and generally a
; good idea

DIV_ROUNDING_ON equ O ;1 for rounding on divides,
;: 0 for no rounding. Not rounding is faster,
; rounding is more accurate, but because
; division is only performed to project to
; the screen, rounding quotients generally
; isn't necessary

ALIGNMENT equ 2
.model small
.386
.code

1008 Chapter 54

,

; Multiplies two fixed-point values together.
; C near-callable as:
H Fixedpoint FixedMul(Fixedpoint M1, Fixedpoint M2);
FMparms struc

M1
M2

dw 2 dup(?)
dd ?
dd ?

FMparms ends
align ALIGNMENT

public _FixedMul
_FixedMul proc near

push bp

mov bp,sp
if USE386

mov eax,[bp+M1]

imul dword ptr [bp+M2]
if MUL_ROUNDING_ON

add eax,8000h

adc edx,0

endif ;MUL_ROUNDING_ON

shr

eax,16

else ;!USE386

push si

push di

sub cx,cx

mov ax,word ptr [bp+M1+2]

mov si,word ptr [bp+Ml]

and ax,ax

jns CheckSecondOperand

neg ax

neg si

sbb ax,0

inc ¢x
CheckSecondOperand:

mov bx,word ptr [bp+M2+2]

mov di,word ptr [bp+M2]

and bx,bx

jns SaveSignStatus

neg bx

neg di

sbb bx,0

xor c¢x,1
SaveSignStatus:

push c¢x

push ax

mul bx

mov CX,ax

;return address & pushed BP

;multiply

;round by adding 24(-17)
;whole part of result is in DX

;put the fractional part in AX

;do four partial products and

; add them together, accumulating
; the result in CX:BX

;preserve C register variables

;figure out signs, so we can use
; unsigned multiplies
;assume both operands positive

;first operand negative?
;no
;yes, so negate first operand

imark that first operand is negative

;second operand negative?
;no
;yes, so negate second operand

;mark that second operand is negative

sremember sign of result; 1 if result

; negative, 0 if result nonnegative
;remember high word of M1

;high word M1 times high word M2
;accumulate result in CX:BX (BX not used
; until next operation, however)

;assume no overflow into DX

3-D Shading

1009

mov ax,si

mul bx
mov bx,ax
add cx,dx
pop ax
mul di
add bx,ax

adc c¢x,dx
mov ax,si
mul di

if MUL_ROUNDING_ON
add ax,8000h

adc bx,dx

else ;!MUL_ROUNDING_ON

add bx,dx

endif ;MUL_ROUNDING_ON

adc c¢x,0
mov dx,cx
mov ax,bx
pop ¢x
and c¢x,cx

jz FixedMulDone

neg dx
neg ax
sbb dx,0
FixedMulDone:
pop di
pop si

endif ;USE386

pop bp
ret
_FixedMul endp

;low word M1 times high word M2

;accumulate result in CX:BX
;retrieve high word of M1

;high word M1 times Tow word M2
;accumulate result in CX:BX
;low word M1 times low word M2

;round by adding 2~(-17)

;don’'t round

;accumulate result in CX:BX

;is the result negative?
;no, we're all set
;yes, so negate DX:AX

;restore C register variables

; Divides one fixed-point value by another.
; C near-callable as:
H Fixedpoint FixedDiv(Fixedpoint Dividend, Fixedpoint Divisor);

FBparms struc
dw 2 dup(?)
Dividend dd ?
Divisor dd ?
FDparms ends
align ALIGNMENT
public _FixedDiv
_FixedDiv proc near
push bp
mov bp,sp
if USE386
if DIV_ROUNDING_ON
sub cX,CX
mov eax,[bp+Dividend]
and eax,eax
jns FDP1
inc cX
neg eax

1010 Chapter 54

;return address & pushed BP

;assume positive result

;positive dividend?

pyes

;mark it's a negative dividend
;make the dividend positive

FDP1:

FDP2:

FDP3:

sub edx, edx ;make it a 64-bit dividend, then shift
; Teft 16 bits so that result will be in EAX

rol eax, 16 ;put fractional part of dividend in
; high word of EAX
mov dx,ax ;put whole part of dividend in DX
sub ax,ax sclear low word of EAX
mov ebx,dword ptr [bp+Divisor]
and ebx,ebx ;positive divisor?
jns FOP2 syes
dec cX ;mark it's a negative divisor
neg ebx ;make divisor positive
div ebx ;divide
shr ebx,1 ;divisor/2, minus 1 if the divisor is
adc ebx,0 ; even
dec ebx
cmp ebx,edx ;:set Carry if the remainder is at least
adc eax,0 ; half as large as the divisor, then
; use that to round up if necessary
and CXx,CX ;should the result be made negative?
Jjz FDP3 ino
neg eax ;yes, negate it

else ;!DIV_ROUNDING_ON

mov edx, [bp+Dividend]

sub eax,eax

shrd eax,edx,16 ;position so that result ends up
sar edx,16 3 in EAX

idiv dword ptr [bp+Divisor]

endif ;DIV_ROUNDING_ON

shld edx,eax,16 ;whole part of result in DX;
; fractional part is already in AX
else ; IUSE386
;NOTE!!! Non-386 division uses a 32-bit dividend but only the upper 16 bits
; of the divisor; in other words, only the integer part of the divisor is
; used. This is done so that the division can be accomplished with two fast
; hardware divides instead of a slow software implementation, and is (in my
; opinion) acceptable because division is only used to project points to the
; screen (normally, the divisor is a Z coordinate), so there's no cumulative
; error, although there will be some error in pixel placement (the magnitude
; of the error is less the farther away from the Z=0 plane objects are). This
; is *not* a general-purpose divide, though; if the divisor is less than 1,
; for instance, a divide-by-zero error will result! For this reason, non-386
; projection can't be performed for points closer to the viewpoint than Z=1.
;figure out signs, so we can use
; unsigned divisions
sub cX,CX ;assume both operands positive
mov ax,word ptr [bp+Dividend+2]
and ax,ax ;first operand negative?
Jns CheckSecondOperandD ;no
neg ax ;yes, so negate first operand
negy word ptr [bp+Dividend]
sbb ax,0
inc cX ;mark that first operand is negative
CheckSecondOperandD:
mov bx,word ptr [bp+Divisor+2]
and bx,bx ;second operand negative?
Jjns SaveSignStatusD ;no

3-D Shading

1011

1012

neg bx ;yes, so negate second operand

neg word ptr [bp+Divisor]
sbb bx,0
xor cx.1 ;mark that second operand is negative
SaveSignStatusD:
push cx sremember sign of result; 1 if result
; negative, 0 if result nonnegative
sub dx,dx ;put Dividend+2 (integer part) in DX:AX
div bx ;first half of 32/16 division, integer part
; divided by integer part
mov Cx,ax ;set aside integer part of result
mov ax,word ptr [bp+Dividend] ;concatenate the fractional part of

; the dividend to the remainder (fractional
; part) of the result from dividing the
; integer part of the dividend

div bx ;second half of 32/16 division

if DIV_ROUNDING_ON EQ O
shr bx,1 sdivisor/2, minus 1 if the divisor is
adc bx,0 ; even
dec bx
cmp bx,dx ;set Carry if the remainder is at least
adc ax,0 ; half as large as the divisor, then
ade c¢x,0 ; use that to round up if necessary

endif ;DIV_ROUNDING_ON

mov dx,cx ;absolute value of result in DX:AX
pop ¢x
and cx,cx ;is the result negative?
Jjz FixedDivDone ;no, we're all set
neg dx ;yes, so negate DX:AX
neg ax
sbb dx,0
FixedDivDone:

endif ;USE386

pop bp
ret
_FixedDiv endp

; Returns the sine and cosine of an angle.
; C near-caliable as:
H void CosSin(TAngle Angle, Fixedpoint *Cos, Fixedpoint *);

align ALIGNMENT
CosTable label dword
include costable.inc

SCparms struc

dw 2 dup(?) ;return address & pushed BP
Angle dw ? ;angie to calculate sine & cosine for
Cos dw ? ;pointer to cos destination
Sin dw ? ;pointer to sin destination
SCparms ends

align ALIGNMENT
public _CosSin

Chapter 54

_CosSin proc near
push bp
mov bp,sp
if USE386
mov bx,[bp].Angle
and bx,bx
jns CheckInRange
MakePos:
add bx,360%10
js MakePos

jmp short CheckInRange

align ALIGNMENT
MakeInRange:

sub bx,360*10
CheckInRange:

cmp bx,360*10

Jjg MakeInRange

cmp bx,180*10
ja BottomHalf
cmp bx,90*10
ja Quadrantl

shl bx,2
mov eax,CosTable[bx]
neg bx

mov edx,CosTable[bx+90*10*4]
Jmp short CSDone

align ALIGNMENT

Quadrantl:
neg bx
add bx,180*10
shl bx,2
mov eax,CosTable[bx]
neg eax
neqg bx

mov edx,CosTahle[bx+90*10*4]
Jjmp short CSDone

align ALIGNMENT
BottomHalf:

neg bx

add bx,360*10

cmp bx,90*10

Jja Quadrant2

shl bx,2

mov eax,CosTable[bx]

neg bx

mov edx,CosTable[90*10*4+bx]
neg edx

jmp short CSDone

align ALIGNMENT
Quadrant2:

neg bx

add bx,180*10

;preserve stack frame
;set up local stack frame

;make sure angle’s between 0 and 2*pi

;less than 0, so make it positive

;make sure angle is no more than 2*pi

;figure out which quadrant
;quadrant 2 or 3
;quadrant 0 or 1

;quadrant 0
;look up sine

;sin(Angte) = cos(90-Angle)
;1ook up cosine

;convert to angle between 0 and 90

;look up cosine
;negative in this quadrant
;stn(Angle) = cos(90-Angle)
;1ook up cosine

;quadrant 2 or 3

;convert to angle between 0 and 180
;quadrant 2 or 3

;quadrant 3
;look up cosine
;sin(Angle) = cos(90-Angle)

;look up sine
;negative in this quadrant

;convert to angle between 0 and 90

3-D Shading 1013

shl
mov
neg
neg
mov
neg
CSDone:
mov
mov
mov
mov

bx,2

eax,CosTable[bx] sTook up cosine

eax ;negative in this quadrant
bx ;sin(Angle) = cos(90-Angle)
edx,CosTab1e[90*10*4+bx] ;100k up sine

edx ;negative in this quadrant

bx,[bp]l.Cos
[bx],eax
bx,[bp}.Sin
[bx],edx

else ;!USE386

mov bx,.[bpl.Angle
and bx,bx ;make sure angle's between 0 and 2*pi
jns CheckInRange
MakePos: ;less than 0, so make it positive
add bx,360*10
Js MakePos
jmp short CheckInRange
align ALIGNMENT
MakeInRange: ;make sure angle is no more than 2*pi
sub bx,360%10
CheckInRange:
cmp bx,360*10
Jjog MakeInRange
cmp bx,180*10 ;figure out which quadrant
ja BottomHalf ;quadrant 2 or 3
cmp bx,90*10 ;quadrant 0 or 1
ja Quadrantl
;quadrant 0
shl bx,2
mov ax,word ptr CosTable[bx] ;1ook up sine
mov dx,word ptr CosTable[bx+2]
neg bx ;sin(Angle) = cos(90-Angle)
mov cx,word ptr CosTable[bx+30*10*4+2] ;look up cosine
mov bx,word ptr CosTable[bx+90*10*4]
Jjmp CSDone
align ALIGNMENT
Quadrantl:
neg bx
add bx,180*10 ;convert to angie between 0 and 90
shl bx,2
mov ax,word ptr CosTable[bx] ;:1ook up cosine
mov dx,word ptr CosTable[bx+2]
neg dx snegative in this quadrant
neg ax
sbb dx,0
neg bx ;sin(Angle) = cos(90-Angie)
mov cx,word ptr CosTable[bx+90*10*4+2] ;lo0k up cosine
mov bx,word ptr CosTable[bx+90*10*4]
jmp short CSDone
align ALIGNMENT
BottomHalf: ;quadrant 2 or 3
neg bx
add bx,360*10 ;convert to angle between 0 and 180

1014 Chapter 54

cmp bx,90*10 ;quadrant 2 or 3
Jja Quadrant2

;quadrant 3
sht bx,2
mov ax,word ptr CosTable[bx] ;Took up cosine
mov dx,word ptr CosTable[bx+2]
neg bx ;sin(Angle) = cos(90-Angle)

mov cx,word ptr CosTable[90*10*4+bx+2] ;look up sine
mov bx,word ptr CosTable[90*10*4+bx]

neg ¢x ;negative in this quadrant
neg bx
sbb ¢x,0

jmp short CSDone

align ALIGNMENT

Quadrant2:
neg bx
add bx,180*10 ;convert to angle between 0 and 90
shl bx,2
mov ax,word ptr CosTable[bx] ;1ook up cosine
mov dx,word ptr CosTable[bx+2]
neg dx ;negative in this quadrant
neg ax
sbb dx,0
neg bx ;sin(Angle) = cos(90-Angle)

mov cx,word ptr CosTable[90*10*4+bx+2] :look up sine
mov bx,word ptr CosTable[90*10*4+bx]

neg Cx ;negative in this quadrant
neg bx
sbb ¢x,0
CSDone:
push bx

mov bx,[bp]l.Cos
mov [bx],ax

mov [bx+2],dx
mov bx,[bpl.Sin
pop ax

mov [bx],ax

mov [bx+2],cx

endif ;USE386

pop bp srestore stack frame
ret
_CosSin endp

Matrix multiplies Xform by SourceVec, and stores the result in
DestVec. Multipiies a 4x4 matrix times a 4x1 matrix; the result
is a 4x1 matrix, Cheats by assuming the W coord is 1 and the

; bottom row of the matrix is 0 0 0 1, and doesn't bother to set
the W coordinate of the destination.

C near-callable as:

; void Xformvec(Xform WorkingXform, Fixedpoint *SourceVec,

; Fixedpoint *DestVec);

; This assembly code is equivalent to this € code:
H int i;

3-D Shading 1015

H for (i=0; i<3; i++)
DestVec[i] = FixedMul(WorkingXform[1][0], SourceVec[0]) +

B FixedMul(WorkingXform[i1[1], SourceVec[1]) +
H FixedMul(WorkingXform{i1[2], SourceVec[2]) +
H WorkingXform[i][3]: /* no need to multiply by W =1 */
XVparms struc

dw 2 dup(?) ;return address & pushed BP
WorkingXform dw ? ;pointer to transform matrix
SourceVec dw ? ;pointer to source vector
DestVec dw ? ;pointer to destination vector

XVparms ends

; Macro for non-386 multiply. AX, BX, CX, DX destroyed.

FIXED_MUL

MACRO M1,M2

Tocal CheckSecondOperand,SaveSignStatus,FixedMulDone

sub ¢x,cx
mov bx,word ptr [&M1&+2]
and bx,bx
jns CheckSecondOperand
neg bx
neg word ptr [&M1&]
sbb bx,0
mov word ptr [&M1&+2],bx
inc ¢x
CheckSecondOperand:
mov bx,word ptr [&M2&+2]
and bx,bx
jns SaveSignStatus
neg bx
neg word ptr [&M2&]
sbb bx,0
mov word ptr [&M2&+2],bx
xor cx,1
SaveSignStatus:
push c¢x
mov ax,word ptr [&M1&+2]
mul word ptr [&M2&+2]
mov cX,ax H
mov ax,word ptr [&M1&+2]
mui word ptr [&M24&]
mov bx,ax
add cx,dx
mov ax,word ptr [&M1&]
mul word ptr [&M2&+2]
add bx,ax
adc cx,dx
mov ax,word ptr [&M1&]
mul word ptr [&M24&]
if MUL_ROUNDING_ON
add ax,8000h
adc bx,dx

1016 Chapter 54

;do four partial products and

; add them together, accumulating
; the result in CX:BX

;figure out signs, so we can use
; unsigned multiplies

;assume both operands positive

sfirst operand negative?

ino
;yes, so negate first operand

;mark that first operand is negative

;second operand negative?
;no
;yes, so negate second operand

smark that second operand is negative

sremember sign of result; 1 if resuit
; negative, 0 if result nonnegative
;high word times high word

;assume no overflow into DX

;high word times Tow word

;Tow word times high word

:1ow word times lTow word

sround by adding 2~(-17)

else ;!MUL_ROUNDING_ON

add bx,dx
endif ;MUL_ROUNDING_ON
adc ¢x,0

mov dx,cx

mov ax,bx

pop cx

and c¢x,cx

jz FixedMulDone

neg dx

neg ax

sbb dx,0
FixedMulDone:

ENDM

align ALIGNMENT

public _XformVec
_XformVec proc near

push bp

mov bp,sp

push si

push di

if USE386

mov si,[bpl.WorkingXform

mov bx,[bp]l.SourceVec
mov di,[bp].DestVec

soff=0
doff=0
REPT 3
mov eax,[si+soff]
imul dword ptr [bx]
if MUL_ROUNDING_ON
add eax,8000h
adc edx,0
endif ;MUL_ROUNDING_ON
shrd eax,edx,16
mov ecx,eax

mov eax,[sit+soff+4}]

imul dword ptr [bx+4]
if MUL_ROUNDING_ON

add eax,8000h

adc edx,0
endif ;MUL_ROUNDING_ON

shrd eax,edx,16

add ecx,eax

mov eax,[si+soff+8]

imul dword ptr [bx+8]
if MUL_ROUNDING_ON

add eax,8000h

adc edx,0
endif ;MUL_ROUNDING_ON

shrd eax,edx,16

add ecx,eax

add ecx,[si+soff+12]
mov [di+doff],ecx

;don’t round

;is the result negative?
;no, we're all set
;yes, so negate DX:AX

;preserve stack frame
:set up Tocal stack frame
;preserve register variables

;SI points to xform matrix
;BX points to source vector
;DI points to dest vector

;do once each for dest X, Y, and Z
;column 0 entry on this row
;xform entry times source X entry

;round by adding 27~(-17)
;whole part of result is in DX

;shift the result back to 16.16 form
;set running total

;column 1 entry on this row
;xform entry times source Y entry

;round by adding 24(-17)
;whole part of result is in DX

;shift the result back to 16.16 form
;running total for this row

;column 2 entry on this row
;:xform entry times source Z entry

;round by adding 24(-17)
;whole part of result is in DX

;shift the result back to 16.16 form
;running total for this row

;add in translation
;save the result in the dest vector

3-D Shading

1017

soff=soff+16
doff=doff+4

ENDM

else ;1USE386

mov si,[bpl.WorkingXform
mov di,[bp].SourceVec
mov bx,[bpl.DestVec
push bp
soff=0
doff=~0
REPT 3
push bx
push word ptr [si+soff+2]
push word ptr [si+soff]
push word ptr [di+2]
push word ptr [di]
call _FixedMul
add sp,8
mov cx,ax ;set running total
mov bp,dx
push c¢x
push word ptr [si+soff+4+2]
push word ptr [sitsoff+4]
push word ptr [di+4+2]
push word ptr [di+4]
call _FixedMul
add sp,8
pop cx
add cx,ax
adc bp,dx
push c¢x
push word ptr [si+soff+8+2]
push word ptr [si+soff+8]
push word ptr [di+8+2]
push word ptr [di+8]
call _FixedMul
add sp,8
pop ¢x
add cx,ax
adc bp,dx
add cx,[si+soff+12]
adc bp,[si+soff+12+2]
pop bx
mov [bx+doff],cx
mov [bx+doff+2],bp
soff=soff+16
doff=doff+4
ENDM
pop bp

endif ;USE386

pop
pop

di
si

1018 Chapter 54

:SI points to xform matrix
;DI points to source vector
;BX points to dest vector
;preserve stack frame pointer

;:do once each for dest X, Y, and Z
;remember dest vector pointer

;xform entry times source X entry
;clear parameters from stack

;preserve tow word of running total

sxform entry times source Y entry
sclear parameters from stack
srestore low word of running total
;running total for this row

;preserve lTow word of running total

;xform entry times source Z entry

;clear parameters from stack

;restore low word of running total
srunning total for this row

;add in translation

;restore dest vector pointer
;save the result in the dest vector

;restore stack frame pointer

;restore register variables

pop bp
ret
_XformVec endp

;restore stack frame

Matrix multiplies SourceXforml by SourceXform2 and stores the

; result in DestXform. Multiplies a 4x4 matrix times a 4x4 matrix;
; the result is a 4x4 matrix. Cheats by assuming the bottom row of
; each matrix is 0 0 0 1, and doesn't bother to set the bottom row

; of the destination.
3 C near-callable as:

H void ConcatXforms(Xform SourceXforml, Xform SourceXform2,

H Xform DestXform)

; This assembly code is equivalent to this C code:

H int i, j;

H for (i=0; i<3; i++) {
H for (j=0; j<3; j++)
H DestXform[i][j] =

: FixedMul (SourceXforml[i][0], SourceXform2[01[j]) +
: FixedMul (SourceXforml[i1[1], SourceXform2[1]1[j]) +
; FixedMul(SourceXforml{i][2], SourceXform2[21[j1);

; DestXform[i1[3] =

FixedMul(SourceXforml[i][0], SourceXform2[0][3]) +
FixedMul(SourceXforml[i]1[1], SourceXform2[1]1[3]) +
FixedMul (SourceXforml[il[2], SourceXform2[2][3]) +

H SourceXforml[iJ1[3]:
: }

CXparms struc

dw 2 dup(?)
SourceXforml dw ?
SourceXform2 dw ?
DestXform dw ?

CXparms ends

align ALIGNMENT
public _ConcatXforms

;return address & pushed BP

;pointer to first source xform matrix
;pointer to second source xform matrix
;pointer to destination xform matrix

_ConcatXforms proc near
push bp ;preserve stack frame
mov bp,sp ;set up local stack frame
push si ;preserve register variables
push di
if USE386
mov bx,[bp].SourceXform2 ;BX points to xform2 matrix
mov si,[bpl.SourceXforml ;SI points to xforml matrix
mov di,[bpl.DestXform ;DI points to dest xform matrix
roff=0 ;row offset
REPT 3 ;once for each row
coff=0 ;column offset
REPT 3 ;once for each of the first 3 columns,
; assuming O as the bottom entry (no
; translation)
mov eax,[si+roff] ;column O entry on this row

imul dword ptr [bx+coff]

;times row 0 entry in column

3-D Shading

1019

if MUL_ROUNDING_ON

add eax,8000h ;round by adding 24(-17)
adc edx,0 ;swhole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;shift the result back to 16.16 form
mov ecx,eax ;set running total
mov eax,[si+roff+4] ;scolumn 1 entry on this row
imul dword ptr [bx+coff+16] ;times row 1 entry in col
if MUL_ROUNDING_ON
add eax,8000h ;round by adding 22(-17)
adc edx,0 ;whole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;shift the result back to 16.16 form
add ecx,eax ;running total
mov eax,[si+roff+8] ;column 2 entry on this row
imul dword ptr [bx+coff+32) ;times row 2 entry in col
if MUL_ROUNDING_ON
add eax,8000h ;round by adding 2~(-17)
adc edx,0 ;whole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;:shift the result back to 16.16 form
add ecx,eax ;running total
mov [di+coff+roff],ecx ;save the result in dest matrix
coff=coff+4 ;point to next col in xform2 & dest
ENDM

;now do the fourth column, assuming
: 1 as the bottom entry, causing
; translation to be performed

mov eax,[si+roff] ;column 0 entry on this row
imul dword ptr [bx+coff] ;times row 0 entry in column
if MUL_ROUNDING_ON
add eax,8000h sround by adding 2~(-17)
adc edx,0 ;whole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;shift the result back to 16.16 form
mov ecx,eax ;set running total
mov eax,[si+roff+4] ;column 1 entry on this row
imul dword ptr [bx+coff+16] ;times row 1 entry in col
if MUL_ROUNDING_ON
add eax,8000h sround by adding 24(-17)
adc edx,0 ;whole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;shift the result back to 16.16 form
add ecx,eax ;running total
mov eax,[si+roff+8] ;column 2 entry on this row
imul dword ptr [bx+coff+32] ;times row 2 entry in col
if MUL_ROUNDING_ON
add eax,8000h sround by adding 2~(-17)
adc edx,0 ;whole part of result is in DX
endif ;MUL_ROUNDING_ON
shrd eax,edx,16 ;shift the result back to 16.16 form
add ecx,eax ;running total
add ecx,[si+roff+12] ;add in translation

1020 Chapter 54

mov
coff=coff+4

roff=roff+l16
ENDM

else ;!USE386

mov
mov
mov
push

roff=0

REPT 3
coff=0

REPT 3

push
push
push
push
push
call

add
mov
mov

push
push
push
push
push
call

add
pop
add
adc

push
push
push
push
push
call

add
pop
add
adc

pop
mov
mov

[di+coff+roffl,ecx

di,[bp].SourceXform2
si,[bpl.SourceXforml
bx,[bpl.DestXform

bp

bx

word ptr [si+roff+2]
word ptr [si+roff]
word ptr [di+coff+2]
word ptr [di+coff]
_FixedMul

sp,8
CX,ax ;set running total
bp.dx

cX
word ptr [si+roff+4+2]
word ptr [si+roff+4]
word ptr [di+coff+16+2]
word ptr [di+coff+16]
_FixedMul

sp,8
cX
cX,ax
bp,dx

cx
word ptr [si+roff+8+2]
word ptr [si+roff+8]
word ptr [di+coff+32+2]
word ptr [di+coff+32]
_FixedMul

sp,8
(33
cX,ax
bp,dx

bx
[bx+coff+roff],cx
[bx+coff+roff+2],bp

;save the result in dest matrix
;point to next col in xform2 & dest

;point to next col in xform2 & dest

;DI points to xform2 matrix

;ST points to xforml matrix

;BX points to dest xform matrix
;preserve stack frame pointer

;row offset

;once for each row

;column offset

;once for each of the first 3 columns,
; assuming 0 as the bottom entry (no

; translation)

;remember dest vector pointer

;column 0 entry on this row times row 0
; entry in column
;clear parameters from stack

;preserve low word of running total

;column 1 entry on this row times row 1
; entry in column

;clear parameters from stack

;restore low word of running total
;running total for this row

;preserve lTow word of running total

;column 1 entry on this row times row 1
; entry in column

;clear parameters from stack

;restore low word of running total
;running total for this row

;restore DestXForm pointer
;save the result in dest matrix

3-D Shading

1021

coff=coff+4

coff=coff+4

ENDM

push
push
push
push
push
call

add
mov
mov

push
push
push
push
push
call

add
pop
add
adc

push
push
push
push
push
call

add
pop
add
adc

add
add

pop
mov
mov

roff=roff+16

ENDM

pop

endif ;USE386

pop
pop
pop
ret

_ConcatXforms

1022 Chapter 54

end

bx

word ptr [si+roff+2]
word ptr [si+roff]
word ptr [di+coff+2]
word ptr [di+coff]
_FixedMul

sp.8
CX,ax ;set running total
bp,dx

(33

word ptr [si+roff+4+2]
word ptr [si+roff+4]
word ptr [di+coff+16+2]
word ptr [ditcoff+16]
_FixedMul

sp.8
cX
CX,ax
bp,dx

cX
word ptr [si+roff+8+2]
word ptr [si+roff+8]
word ptr [ditcoff+32+2]
word ptr [di+coff+32]
_FixedMul

sp.8
cX
cX,ax
bp,dx

cx, [si+roff+l2]
bp.[si+roff+12+2]

bx

[bx+coff+roff],cx
[bx+coff+roff+2],bp

bp

di
si
bp

endp

;point to next col in xform2 & dest

;now do the fourth column, assuming
; 1 as the bottom entry, causing

; translation to be performed
;remember dest vector pointer

;column 0 entry on this row times row 0
; entry in column
;clear parameters from stack

;preserve low word of running total

;column 1 entry on this row times row 1
; entry in column

;clear parameters from stack

;restore low word of running total
;running total for this row

;preserve low word of running total

;column 1 entry on this row times row 1
i entry in column

;clear parameters from stack

srestore low word of running total
;running total for this row

;add in translation
srestore DestXForm pointer
;save the result in dest matrix

;point to next col in xform2 & dest

;point to next col in xform2 & dest

;restore stack frame pointer

;restore register variables

;restore stack frame

Shading

So far, the polygons out of which our animated objects have been built have had
colors of fixed intensities. For example, a face of a cube might be blue, or green, or
white, but whatever color it is, that color never brightens or dims. Fixed colors are
easy to implement, but they don’t make for very realistic animation. In the real world,
the intensity of the color of a surface varies depending on how brightly it is illumi-
nated. The ability to simulate the illumination of a surface, or shading, is the next
feature we’ll add to X-Sharp.

The overall shading of an object is the sum of several types of shading components.
Ambient shadingis illumination by what you might think of as background light, light
that’s coming from all directions; all surfaces are equally illuminated by ambient
light, regardless of their orientation. Directed lighting, producing diffuse shading, is
illumination from one or more specific light sources. Directed light has a specific
direction, and the angle at which it strikes a surface determines how brightly it lights
that surface. Specular reflection is the tendency of a surface to reflect light in a mirror-
like fashion. There are other sorts of shading components, including transparency
and atmospheric effects, but the ambient and diffuse-shading components are all
we’re going to deal with in X-Sharp.

Ambient Shading

The basic model for both ambient and diffuse shading is a simple one. Each surface
has a reflectivity between 0 and 1, where 0 means all light is absorbed and 1 means all
light is reflected. A certain amount of light energy strikes each surface. The energy
(intensity) of the light is expressed such that if light of intensity 1 strikes a surface
with reflectivity 1, then the brightest possible shading is displayed for that surface.
Complicating this somewhat is the need to support color; we do this by separating
reflectance and shading into three components each—red, green, and blue—and
calculating the shading for each color component separately for each surface.

Given an ambientlight red intensity of IA , and a surface red reflectance R, the
displayed red ambient shading for that surface, as a fraction of the maximum red
intensity, is simply min(IA_ X R, 1). The green and blue color components are
handled similarly. That’s really all there is to ambient shading, although of course we
must design some way to map displayed color components into the available palette
of colors; I'll do that in the next chapter. Ambient shading isn’t the whole shading

picture, though. In fact, scenes tend to look pretty bland without diffuse shading.

Diffuse Shading

Diffuse shading is more complicated than ambient shading, because the effective
intensity of directed light falling on a surface depends on the angle at which it strikes
the surface. According to Lambert’s law, the light energy from a directed light source

3-D Shading 1023

striking a surface is proportional to the cosine of the angle at which it strikes the
surface, with the angle measured relative to a vector perpendicular to the polygon (a
polygon normal), as shown in Figure 54.1. If the red intensity of directed light is
ID_,, the red reflectance of the surface is R ,, and the angle between the incoming
directed light and the surface’s normal is theta, then the displayed red diffuse shad-
ing for that surface, as a fraction of the largest possible red intensity, is min
(ID_ ¥R xcos(0), 1).

That’s easy enough to calculate—but seemingly slow. Determining the cosine of an
angle can be sped up with a table lookup, but there’s also the task of figuring out the
angle, and, all in all, it doesn’t seem that diffuse shading is going to be speedy enough
for our purposes. Consider this, however: According to the properties of the dot
product (denoted by the operator “®”, as shown in Figure 54.2), cos(0)=(vew) / vl X Iwl),
where v and w are vectors, 0 is the angle between v and w, and Ivl is the length of v.
Suppose, now, that v and w are unit vectors; that is, vectors exactly one unit long.
Then the above equation reduces to cos(8)=vew. In other words, we can calculate
the cosine between N, the unit-normal vector (one-unit-long perpendicular vector)
of a polygon, and L', the reverse of a unit vector describing the direction of a light
source, with just three multiplies and two adds. (I'll explain why the light-direction
vector must be reversed later.) Once we have that, we can easily calculate the red

Light from directed Polygon normal (perpendicular vector)
illumination source
D, of energy E.

0

Polygon surtace

Illumination by a directed light source.
Figure 54.1

For two vectors v and w, as follows: the dot product v ® w is:

\Z W,
v=1yv w= W, Veoew=vwW+VvVW+ VW,
V3 w3

The dot product of two vectors.
Figure 54.2

1024 Chapter 54

diffuse shading from a directed light source as min(ID xR _ x(L'® N), 1) and like-
wise for the green and blue color components.

The overall red shading for each polygon can be calculated by summing the ambient-
shading red component with the diffuse-shading component from each light source,
asinmin((IA xR)+ (ID_,XR _X(L'®N))+ (ID_ xR _X(L'®N)) +..., 1) where
ID ,, and L are the red intensity and the reversed unit-direction vector, respec-
tively, for spotlight 0. Listing 54.2 shows the X-Sharp module DRAWPOBJ.C, which
performs ambient and diffuse shading. Toward the end, you will find the code that
performs shading exactly as described by the above equation, first calculating the
ambient red, green, and blue shadings, then summing that with the diffuse red,
green, and blue shadings generated by each directed light source.

LISTING 54.2 DRAWPOBJ.C

/* Draws all visible faces in the specified polygon-based object. The object
must have previously been transformed and projected, so that all vertex
arrays are filled in. Ambient and diffuse shading are supported. */

#include "polygon.h"

void DrawPObject(PObject * ObjectToXform)
{
int i, j, NumFaces = ObjectToXform->NumFaces, NumVertices;
int * VertNumsPtr, Spot;
Face * FacePtr = ObjectToXform->Facelist;
Point * ScreenPoints = QObjectToXform->ScreenVertexlList;
PointListHeader Polygon;
Fixedpoint Diffusion;
Model1Color ColorTemp;
ModellIntensity IntensityTemp;
Point3 UnitNormal, *NormalStartpoint, *NormalEndpoint;
long vl, v2, wl, w2;
Point Vertices[MAX_POLY_LENGTH];

/* Draw each visible face (polygon) of the object in turn */
for (i=0; i<NumFaces; i++, FacePtr++) {

/* Remember where we can find the start and end of the polygon's
unit normal in view space, and skip over the unit normal endpoint
entry. The end and start points of the unit normal to the polygon
must be the first and second entries in the polgyon's vertex list.
Note that the second point is also an active polygon vertex */

VertNumsPtr = FacePtr->VertNums;

NormalEndpoint = &0bjectToXform->XformedVertexList[*VertNumsPtr++];

NormalStartpoint = &0bjectToXform->XformedVertexList[*VertNumsPtr];

/* Copy over the face's vertices from the vertex list */

NumVertices = FacePtr->NumVerts;

for (j=0: j<NumVertices; j++)

Vertices[j] = ScreenPoints[*VertNumsPtr++];

/* Draw only if outside face showing (if the normal to the polygon
in screen coordinates points toward the viewer; that is, has a
positive Z component) */

vl = Vertices[1].X - Vertices[0].X;

wl Vertices[NumVertices-1].X - Vertices[0].X;

v2 Vertices[1].Y - Vertices[01.Y;

w2 = Vertices[NumVertices-1].Y - Vertices[0].Y;

if ((v1*w2 - v2*wl) > 0) {

/* It is facing the screen, so draw */

3-D Shading

1025

/* Appropriately adjust the extent of the rectangle used to
erase this object later */
for (j=0; j<NumVertices; j++) {
if (Vertices[jl.X >
ObjectToXform->EraseRect[NonDisplayedPage].Right)
if (Vertices[j].X < SCREEN_WIDTH)
ObjectToXform->EraseRect[NonDisplayedPage].Right =
Vertices[j]l.X;
else ObjectToXform->EraseRect[NonDisplayedPage].Right =
SCREEN_WIDTH;
if (Vertices[jl.Y >
ObjectToXform->EraseRect[NonDisplayedPage].Bottom)
if (Vertices[jl.Y < SCREEN_HEIGHT)
ObjectToXform->EraseRect[NonDisplayedPage].Bottom =
Vertices[j].Y:
else ObjectToXform->EraseRect[NonDisplayedPage].Bottom=
SCREEN_HEIGHT;
if (Vertices(jl.X <
ObjectToXform->EraseRect[NonDisplayedPage].left)
if (Vertices[jl.X > 0)
ObjectToXform->EraseRect[NonDispTayedPage].left =
Vertices[jl1.X;
else ObjectToXform->EraseRect[NonDisplayedPage].Left=0;
if (Vertices[jl.Y <
ObjectToXform->EraseRect[NonDisplayedPage].Top)
if (Vertices[jl.Y > 0)
ObjectToXform->EraseRect[NonDisplayedPage].Top =
Vertices[jl.Y:
else ObjectToXform->EraseRect[NonDisplayedPagel.Top=0;

/* See if there's any shading */
if (FacePtr->ShadingType == 0) {
/* No shading in effect, so just draw */
DRAW_POLYGON(Vertices, NumVertices, FacePtr->Colorlndex, 0, 0);
} else {
/* Handle shading */
/* Do ambient shading, if enabled */
if (AmbientOn && (FacePtr->ShadingType & AMBIENT_SHADING)) {
/* Use the ambient shading component */
IntensityTemp = AmbientIntensity;
} else {
SET_INTENSITY(IntensityTemp, 0, 0, 0);
}
/* Do diffuse shading, if enabled */
if (FacePtr->ShadingType & DIFFUSE_SHADING) {
/* Calculate the unit normal for this polygon, for use in dot
products */
UnitNormal.X = NormalEndpoint->X - NormalStartpoint->X;
UnitNormal.Y = NormalEndpoint->Y - NormalStartpoint->Y;
UnitNormal.Z = NormalEndpoint->Z - NormalStartpoint->Z;
/* Calculate the diffuse shading component for each active
spotlight */
for (Spot=0; Spot<MAX_SPOTS; Spot++) (
if (SpotOn[Spot] != 0) {

/* Spot is on, so sum, for each color component, the
intensity, accounting for the angle of the light rays
relative to the orientation of the polygon */

/* Calculate cosine of angle between the 1ight and the
polygon normal; skip if spot is shining from behind
the polygon */

1026 Chapter 54

if ((Diffusion = DOT_PRODUCT(SpotDirectionView[Spotl,
UnitNormal)) > 0) {

IntensityTemp.Red +=
FixedMul(SpotIntensity[Spot].Red, Diffusion);

IntensityTemp.Green +=
FixedMul(SpotIntensity[Spot].Green, Diffusion);

IntensityTemp.Blue +=
FixedMul(SpotIntensity[Spot].Blue, Diffusion);

}
}
/* Convert the drawing color to the desired fraction of the
brightest possible color */
IntensityAdjustColor(&ColorTemp, &FacePtr->FullColor,
&IntensityTemp);
/* Draw with the cumulative shading, converting from the general
color representation to the best-match color index */
DRAW_POLYGON(Vertices, NumVertices,
ModelColorToColorIndex(&ColorTemp), 0, 0);

}

Shading: Implementation Details

In order to calculate the cosine of the angle between an incoming light source and a
polygon’s unit normal, we must first have the polygon’s unit normal. This could be
calculated by generating a cross-product on two polygon edges to generate a nor-
mal, then calculating the normal’s length and scaling to produce a unit normal.
Unfortunately, that would require taking a square root, so it’s not a desirable course
of action. Instead, I've made a change to X-Sharp’s polygon format. Now, the first
vertex in a shaded polygon’s vertex list is the end-point of a unit normal that starts at
the second point in the polygon’s vertex list, as shown in Figure 54.3. The first point
isn’t one of the polygon’s vertices, but is used only to generate a unit normal. The

Vertex O must be the endpoint of a unit
® starting at vertex 1. This point
/ is not part of the polygon.

Vertex 1 must be the startpoint of
a unit normal ending at vertex 0.
This point is part of the polygon. Polygon

Vertex 2

Vertex 3

The unit normal in the polygon data structure.
Figure 54.3

3-D Shading 1027

Reversed unit
vector L' toward

irected .
Light from directed illumination source D, ﬁlgrﬁ:: :)urce Polygon unit
of energy E, with direction expressed by normal N
the unit vector L
0

Polygon surface

The reversed light source vector.
Figure 54.4

second point, however, is a polygon vertex. Calculating the difference vector be-
tween the first and second points yields the polygon’s unit normal. Adding a
unit-normal endpoint to each polygon isn’t free; each of those end-points has to be
transformed, along with the rest of the vertices, and that takes time. Still, it’s faster
than calculating a unit normal for each polygon from scratch.

We also need a unit vector for each directed light source. The directed light sources
I've implemented in X-Sharp are spotlights; that is, they’re considered to be point
light sources that are infinitely far away. This allows the simplifying assumption that
all light rays from a spotlight are parallel and of equal intensity throughout the dis-
played universe, so each spotlight can be represented with a single unit vector and a
single intensity. The only trick is that in order to calculate the desired cos(theta)
between the polygon unit normal and a spotlight’s unit vector, the direction of the
spotlight’s unit vector must be reversed, as shown in Figure 54.4. This is necessary
because the dot product implicitly places vectors with their start points at the same
location when it’s used to calculate the cosine of the angle between two vectors. The
light vector is incoming to the polygon surface, and the unit normal is outbound, so
only by reversing one vector or the other will we get the cosine of the desired angle.

Given the two unit vectors, it’s a piece of cake to calculate intensities, as shown in
Listing 54.2. The sample program DEMOI, in the X-Sharp archive on the listings
disk (built by running K1.BAT), puts the shading code to work displaying a rotating
ball with ambient lighting and three spot lighting sources that the user can turn on
and off. What you’ll see when you run DEMOL is that the shading is very good—face
colors change very smoothly indeed—so long as only green lighting sources are on.
However, if you combine spotlight two, which is blue, with any other light source,
polygon colors will start to shift abruptly and unevenly. As configured in the demo,
the palette supports a wide range of shading intensities for a pure version of any one
of the three primary colors, but a very limited number of intensity steps (four, in this

1028 Chapter 54

Previous Home Next

case) for each color component when two or more primary colors are mixed. While
this situation can be improved, it is fundamentally a result of the restricted capabili-
ties of the 256-color palette, and there is only so much that can be done without a
larger color set. In the next chapter, I'll talk about some ways to improve the quality
of 256-color shading.

3-D Shading 1029

	previous:
	home:
	next:

