
chapter 64

quake's visible-
surface
determination

eparating All Things Seen from

Years ago, I was wor anished video adapter manufac-
clone. The fellow who was designing Video Seven’s
ked around the clock for months to make his VGA
nfident he had pretty much maxed out its perfor-
ishing touches on his chip design, however, news
r, Paradise, had juiced up the performance of the

about what sort of FIFO, or how
much it helped, or ahything else. Nonetheless, Tom, normally an affable, laid-back
sort, took on the wide-awake, haunted look of a man with too much caffeine in him
and no answers to show for it, as he tried to figure out, from hopelessly thin informa-
tion, what Paradise had done. Finally, he concluded that Paradise must have put a
write FIFO between the system bus and the VGA, so that when the CPU wrote to
video memory, the write immediately went into the FIFO, allowing the CPU to keep
on processing instead of stalling each time it wrote to display memory.
Tom couldn’t spare the gates or the time to do a full FIFO, but he could implement a
onedeep FIFO, allowing the CPU to get one write ahead of the VGA. He wasn’t sure
how well it would work, but it was all he could do, so he put it in and taped out the chip.

1179

The one-deep FIFO turned out to work astonishingly well; for a time, Video Seven’s
VGAs were the fastest around, a testament to Tom’s ingenuity and creativity under
pressure. However, the truly remarkable part of this story is that Paradise’s FIFO design
turned out to bear not the slightest resemblance to Tom’s, and didn’t work as well.
Paradise had stuck a read FIFO between display memory and the video output stage of
the VGA, allowing the video output to read ahead, so that when the CPU wanted to
access display memory, pixels could come from the FIFO while the CPU was serviced
immediately. That did indeed help performance-but not as much as Tom’s write FIFO.

What we have here is as neat a parable about the nature of creative design as one p could hope to find. The scrap of news about Paradise j . chip contained almost no
actual information, but it forced Tom to push past the limits he had unconsciously
set in coming up with his original design. And, in the end, I think that the single
most important element of great design, whether it be hardware, software, or any
creative endeavor, is precisely what the Paradise news triggered in Tom: the abil-
ity to detect the limits you have built into the way you think about your design, and
then transcend those limits.

The problem, of course, is how to go about transcending limits you don’t even know
you’ve imposed. There’s no formula for success, but two principles can stand you in
good stead: simplify and keep on trylng new things.
Generally, if you find your code getting more complex, you’re fine-tuning a frozen
design, and it’s likely you can get more of a speed-up, with less code, by rethinking
the design. A really good design should bring with it a moment of immense satisfac-
tion in which everything falls into place, and you’re amazed at how little code is
needed and how all the boundary cases just work properly.
As for how to rethink the design, do it by pursuing whatever ideas occur to you, no
matter how off-the-wall they seem. Many of the truly brilliant design ideas I’ve heard
of over the years sounded like nonsense at first, because they didn’t fit my precon-
ceived view of the world. Often, such ideas are in fact off-the-wall, butjust as the news
about Paradise’s chip sparked Tom’s imagination, aggressively pursuing seemingly
outlandish ideas can open up new design possibilities for you.
Case in point: The evolution of Quake’s 3-D graphics engine.

VSD: The Toughest 3-0 Challenge of All
I’ve spent most of my waking hours for the last several months working on Quake, id
Software’s successor to DOOM, and I suspect I have a few more months to go. The
very best things don’t happen easily, nor quickly-but when they happen, all the
sweat becomes worthwhile.
In terms of graphics, Quake is to DOOM as DOOM was to its predecessor, Wolfenstein
3-D. Quake adds true, arbitrary 3-D (you can look up and down, lean, and even fall

1 180 Chapter 64

on your side), detailed lighting and shadows, and 3-D monsters and players in place
of DOOM’S sprites. Someday I hope to talk about how all that works, but for the here
and now I want to talk about what is, in my opinion, the toughest 3-D problem of all:
visible surface determination (drawing the proper surface at each pixel), and its close
relative, culling (discarding non-visible polygons as quickly as possible, a way of accelerat-
ing visible surface determination). In the interests of brevity, I’ll use the abbreviation
VSD to mean both visible surface determination and culling from now on.
Why do I think VSD is the toughest 3-D challenge? Although rasterization issues
such as texture mapping are fascinating and important, they are tasks of relatively
finite scope, and are being moved into hardware as 3-D accelerators appear; also,
they only scale with increases in screen resolution, which are relatively modest.
In contrast, VSD is an open-ended problem, and there are dozens of approaches
currently in use. Even more significantly, the performance of VSD, done in an unso-
phisticated fashion, scales directly with scene complexity, which tends to increase as
a square or cube function, so this very rapidly becomes the limiting factor in render-
ing realistic worlds. I expect VSD to be the increasingly dominant issue in realtime
PC 3-D over the next few years, as 3-D worlds become increasingly detailed. Already,
a good-sized Quake level contains on the order of 10,000 polygons, about three times
as many polygons as a comparable DOOM level.

The Structure of Quake Levels
Before diving into VSD, let me note that each Quake level is stored as a single huge 3-D
BSP tree. This BSP tree, like any BSP, subdivides space, in this case along the planes of
the polygons. However, unlike the BSP tree I presented in Chapter 62, Quake’s BSP tree
does not store polygons in the tree nodes, as part of the splitting planes, but rather
in the empty (non-solid) leaves, as shown in overhead view in Figure 64.1.
Correct drawing order can be obtained by drawing the leaves in front-to-back or
back-to-front BSP order, again as discussed in Chapter 62. Also, because BSP leaves
are always convex and the polygons are on the boundaries of the BSP leaves, facing
inward, the polygons in a given leaf can never obscure one another and can be drawn
in any order. (This is a general property of convex polyhedra.)

Culling and Visible Surface Determination
The process of VSD would ideally work as follows: First, you would cull all polygons that
are completely outside the view frustum (view pyramid), and would clip away the irrel-
evant portions of any polygons that are partially outside. Then, you would draw only
those pixels of each polygon that are actuallyvisible from the current viewpoint, as shown
in overhead view in Figure 64.2, wasting no time overdrawing pixels multiple times; note
how little of the polygon sets in Figure 64.2 actually need to be drawn. Finally, in a per-
fect world, the tests to figure out what parts of which polygons are visible would be free,

Quake’s Visible-Surkrce Determination 1 1 8 1

1 Chapter 64

and the processing time would be the same for all possible viewpoints, giving the game a
smooth visual flow.
As it happens, it is easy to determine which polygons are outside the frustum or
partially clipped, and it’s quite possible to figure out precisely which pixels need to be
drawn. Alas, the world is far from perfect, and those tests are far from free, so the real
trick is how to accelerate or skip various tests and still produce the desired result.
As I discussed at length in Chapter 62, given a BSP, it’s easy and inexpensive to walk
the world in front-to-back or back-to-front order. The simplest VSD solution, which I
in fact demonstrated earlier, is to simply walk the tree back-to-front, clip each poly-
gon to the frustum, and draw it if it’s facing forward and not entirely clipped (the
painter’s algorithm). Is that an adequate solution?
For relatively simple worlds, it is perfectly acceptable. It doesn’t scale very well, though.
One problem is that as you add more polygons in the world, more transformations
and tests have to be performed to cull polygons that aren’t visible; at some point,
that will bog considerably performance down.

Nodes Inside and Outside the View Frustum
Happily, there’s a good workaround for this particular problem. As discussed earlier,
each leaf of a BSP tree represents a convex subspace, with the nodes that bound the
leaf delimiting the space. Perhaps less obvious is that each node in a BSP tree also
describes a subspace-the subspace composed of all the node’s children, as shown
in Figure 64.3. Another way of thinking of this is that each node splits the subspace

Quake‘s Visible-Surface Determination 1 1 83

The substance described by node E.
Figure 64.3

into two pieces created by the nodes above it in the tree, and the node’s children
then further carve that subspace into all the leaves that descend from the node.
Since a node’s subspace is bounded and convex, it is possible to test whether it is
entirely outside the frustum. If it is, all of the node’s children are certain to be fully
clipped and can be rejected without any additional processing. Since most of the
world is typically outside the frustum, many of the polygons in the world can be
culled almost for free, in huge, node-subspace chunks. It’s relatively expensive to
perform a perfect test for subspace clipping, so instead bounding spheres or boxes
are often maintained for each node, specifically for culling tests.
So culling to the frustum isn’t a problem, and the BSP can be used to draw back-to-
front. What, then, is the problem?

Overdraw
The problem John Carmack, the driving technical force behind DOOM and Quake,
faced when he designed Quake was that in a complex world, many scenes have an
awful lot of polygons in the frustum. Most of those polygons are partially or entirely
obscured by other polygons, but the painter’s algorithm described earlier requires
that every pixel of every polygon in the frustum be drawn, often only to be over-
drawn. In a 10,000-polygon Quake level, it would be easy to get a worst-case overdraw
level of 10 times or more; that is, in some frames each pixel could be drawn 10 times
or more, on average. No rasterizer is fast enough to compensate for an order of such
magnitude and more work than is actually necessary to show a scene; worse still, the
painter’s algorithm will cause a vast difference between best-case and worst-case per-
formance, so the frame rate can vary wildly as the viewer moves around.
So the problem John faced was how to keep overdraw down to a manageable level,
preferably drawing each pixel exactly once, but certainly no more than two or three
times in the worst case. As with frustum culling, it would be ideal if he could elimi-
nate all invisible polygons in the frustum with virtually no work. It would also be a
plus if he could manage to draw only the visible parts of partially-visible polygons,
but that was a balancing act in that it had to be a lower-cost operation than the
overdraw that would otherwise result.
When I arrived at id at the beginning of March 1995, John already had an engine
prototyped and a plan in mind, and I assumed that our work was a simple matter of
finishing and optimizing that engine. If I had been aware of id’s history, however, I
would have known better. John had done not only DOOM, but also the engines for
Wolfenstein 3-D and several earlier games, and had actually done several different
versions of each engine in the course of development (once doing four engines in
four weeks), for a total of perhaps 20 distinct engines over a four-year period. John’s
tireless pursuit of new and better designs for Quake’s engine, from every angle he
could think of, would end only when we shipped the product.

1 184 Chapter 64

By three months after I arrived, only one element of the original VSD design was
anywhere in sight, and John had taken the dictum of “try new things” farther than
I’d ever seen it taken.

The Beam Tree
John’s original Quake design was to draw front-to-back, using a second BSP tree to
keep track of what parts of the screen were already drawn and which were still empty
and therefore drawable by the remaining polygons. Logically, you can think of this
BSP tree as being a 2-D region describing solid and empty areas of the screen, as
shown in Figure 64.4, but in fact it is a 3-D tree, of the sort known as a beam tree. A
beam tree is a collection of 3-D wedges (beams), bounded by planes, projecting out
from some center point, in this case the viewpoint, as shown in Figure 64.5.
In John’s design, the beam tree started out consisting of a single beam describing
the frustum; everything outside that beam was marked solid (so nothing would
draw there), and the inside of the beam was marked empty. As each new polygon
was reached while walking the world BSP tree front-to-back, that polygon was con-
verted to a beam by running planes from its edges through the viewpoint, and any
part of the beam that intersected empty beams in the beam tree was considered
drawable and added to the beam tree as a solid beam. This continued until either
there were no more polygons or the beam tree became entirely solid. Once the
beam tree was completed, the visible portions of the polygons that had contrib-
uted to the beam tree were drawn.

Quake’s Visible-Surface Determination 1 1 85

Figure 64.4

Beams as wedges projecting from the viewpoint to polygon edges.
Figure 64.5

The advantage to working with a 3 D beam tree, rather than a 2-D region, is that deter-
mining which side of a beam plane a polygon vertex is on involves only checking the sign
of the dot product of the ray to the vertex and the plane normal, because all beam planes
run through the origin (the viewpoint). Also, because a beam plane is completely de-
scribed by a single normal, generating a beam from a polygon edge requires only a
crossproduct of the edge and a ray from the edge to the viewpoint. Finally, bounding
spheres of BSP nodes can be used to do the aforementioned bulk culling to the frustum.
The early-out feature of the beam tree-stopping when the beam tree becomes solid-
seems appealing, because it appears to cap worst-case performance. Unfortunately,
there are still scenes where it’s possible to see all the way to the sky or the back wall of
the world, so in the worst case, all polygons in the frustum will still have to be tested
against the beam tree. Similar problems can arise from tiny cracks due to numeric
precision limitations. Beam-tree clipping is fairly time-consuming, and in scenes with
long view distances, such as views across the top of a level, the total cost of beam
processing slowed Quake’s frame rate to a crawl. So, in the end, the beam-tree ap-
proach proved to suffer from much the same malady as the painter’s algorithm: The
worst case was much worse than the average case, and it didn’t scale well with in-
creasing level complexity.

3-D Engine du lour
Once the beam tree was working, John relentlessly worked at speeding up the 3-D
engine, always t y n g to improve the design, rather than tweaking the implementation.
At least once a week, and often every day, he would walk into my office and say

1 186 Chapter 64

“Last night I couldn’t get to sleep, so I was thinking ...” and I’d know that I was
about to get my mind stretched yet again. John tried many ways to improve the
beam tree, with some success, but more interesting was the profusion of wildly
different approaches that he generated, some of which were merely discussed, oth-
ers of which were implemented in overnight or weekend-long bursts of coding, in
both cases ultimately discarded or further evolved when they turned out not to
meet the design criteria well enough. Here are some of those approaches, pre-
sented in minimal detail in the hopes that, like Tom Wilson with the Paradise FIFO,
your imagination will be sparked.

Subdividing Raycast
Rays are cast in an 8x8 screen-pixel grid; this is a highly efficient operation because
the first intersection with a surface can be found by simply clipping the ray into the
BSP tree, starting at the viewpoint, until a solid leaf is reached. If adjacent rays don’t
hit the same surface, then a ray is cast halfway between, and so on until all adjacent
rays either hit the same surface or are on adjacent pixels; then the block around
each ray is drawn from the polygon that was hit. This scales very well, being limited
by the number of pixels, with no overdraw. The problem is dropouts; it’s quite pos-
sible for small polygons to fall between rays and vanish.

Vertex-Free Surfaces
The world is represented by a set of surface planes. The polygons are implicit in the
plane intersections, and are extracted from the planes as a final step before drawing.
This makes for fast clipping and a very small data set (planes are far more compact
than polygons), but it’s time-consuming to extract polygons from planes.

The Draw-Buffer
Like a z-buffer, but with 1 bit per pixel, indicating whether the pixel has been
drawn yet. This eliminates overdraw, but at the cost of an inner-loop buffer test,
extra writes and cache misses, and, worst of all, considerable complexity. Varia-
tions include testing the draw-buffer a byte at a time and completely skipping
fully-occluded bytes, or branching off each draw-buffer byte to one of 256 un-
rolled inner loops for drawing 0-8 pixels, in the process possibly taking advantage
of the ability of the x86 to do the perspective floating-point divide in parallel
while 8 pixels are processed.

Span-Based Drawing
Polygons are rasterized into spans, which are added to a global span list and clipped
against that list so that only the nearest span at each pixel remains. Little sorting is
needed with front-to-back walking, because if there’s any overlap, the span already in
the list is nearer. This eliminates overdraw, but at the cost of a lot of span arithmetic;
also, every polygon still has to be turned into spans.

Quake’s Visible-Surface Determination 1 1 87

Portals
The holes where polygons are missing on surfaces are tracked, because it’s only
through such portals that line-of-sight can extend. Drawing goes front-to-back, and
when a portal is encountered, polygons and portals behind it are clipped to its lim-
its, until no polygons or portals remain visible. Applied recursively, this allows drawing
only the visible portions of visible polygons, but at the cost of a considerable amount
of portal clipping.

Breakthrough!
In the end, John decided that the beam tree was a sort of second-order structure,
reflecting information already implicitly contained in the world BSP tree, so he
tackled the problem of extracting visibility information directly from the world
BSP tree. He spent a week on this, as a byproduct devising a perfect DOOM (2-D)
visibility architecture, whereby a single, linear walk of a DOOM BSP tree produces
zero-overdraw 2-D visibility. Doing the same in 3-D turned out to be a much more
complex problem, though, and by the end of the week John was frustrated by the
increasing complexity and persistent glitches in the visibility code. Although the
direct-BSP approach was getting closer to working, it was taking more and more
tweaking, and a simple, clean design didn’t seem to be falling out. When I left
work one Friday, John was preparing to try to get the direct-BSP approach working
properly over the weekend.
When I came in on Monday, John had the look of a man who had broken through to
the other side-and also the look of a man who hadn’t had much sleep. He had
worked all weekend on the direct-BSP approach, and had gotten it working reason-
ably well, with insights into how to finish it off. At 3:30 Monday morning, as he lay in
bed, thinking about portals, he thought of precalculating and storing in each leaf a
list of all leaves visible from that leaf, and then at runtime just drawing the visible
leaves back-to-front for whatever leaf the viewpoint happens to be in, ignoring all
other leaves entirely.
Size was a concern; initially, a raw, uncompressed potentially visible set (PVS) was
several megabytes in size. However, the PVS could be stored as a bit vector, with 1 bit
per leaf, a structure that shrunk a great deal with simple zero-byte compression.
Those steps, along with changing the BSP heuristic to generate fewer leaves (choos-
ing as the next splitter the polygon that splits the fewest other polygons appears to
be the best heuristic) and sealing the outside of the levels so the BSPer can remove
the outside surfaces, which can never be seen, eventually brought the PVS down to
about 20 Kb for a good-size level.
In exchange for that 20 Kb, culling leaves outside the frustum is speeded up (be-
cause only leaves in the PVS are considered), and culling inside the frustum costs
nothing more than a little overdraw (the PVS for a leaf includes all leaves visible

1 188 Chapter 64

from anywhere in the leaf, so some overdraw, typically on the order of 50 percent
but ranging up to 150 percent, generally occurs). Better yet, precalculating the
PVS results in a leveling of performance; worst case is no longer much worse than
best case, because there’s no longer extra VSD processing-just more polygons
and perhaps some extra overdraw-associated with complex scenes. The first time
John showed me his working prototype, I went to the most complex scene I knew
of, a place where the frame rate used to grind down into the single digits, and spun
around smoothly, with no perceptible slowdown.
John says precalculating the PVS was a logical evolution of the approaches he had
been considering, that there was no moment when he said “Eureka!” Nonetheless,
it was clearly a breakthrough to a brand-new, superior design, a design that, to-
gether with a still-in-development sorted-edge rasterizer that completely eliminates
overdraw, comes remarkably close to meeting the “perfect-world’’ specifications we
laid out at the start.

Simplify, and Keep on Trying New Things
What does it all mean? Exactly what I said up front: Simplify, and keep trying new
things. The precalculated PVS is simpler than any of the other schemes that had
been considered (although precalculating the PVS is an interesting task that I’ll dis-
cuss another time). In fact, at runtime the precalculated PVS is just a constrained
version of the painter’s algorithm. Does that mean it’s not particularly profound?
Not at all. All really great designs seem simple and even obvious-once they’ve
been designed. But the process of getting there requires incredible persistence
and a willingness to try lots of different ideas until the right one falls into place, as
happened here.

p My friend Chris Hecker has a theory that all approaches work out to the same
thing in the end, since they all reflect the same underlying state and functionali@.
In terms of underlying theory, I’ve found that to be true; whether you do perspec-
tive texture mapping with a divide or with incremental hyperbolic calculations,
the numbers do exactly the same thing. When it comes to implementation, however,
my experience is that simply time-shifting an approach, or matching hardware
capabilities better, or caching can make an astonishing difference.

My friend Terje Mathisen likes to say that “almost all programming can be viewed as
an exercise in caching,” and that’s exactly what John did. No matter how fast he
made his VSD calculations, they could never be as fast as precalculating and looking
up the visibility, and his most inspired move was to yank himself out of the “faster
code” mindset and realize that it was in fact possible to precalculate (in effect, cache)
and look up the PVS.
The hardest thing in the world is to step outside a familiar, pretty good solution to a
difficult problem and look for a different, better solution. The best ways I know to do

Quake‘s Visible-Surface Determination 1 1 89

that are to keep trying new, wacky things, and always, always, always try to simplify.
One of John’s goals is to have fewer lines of code in each 3-D game than in the
previous game, on the assumption that as he learns more, he should be able to do
things better with less code.
So far, it seems to have worked out pretty well for him.

Learn Now, Pay Forward
There’s one other thing-I’d like to mention before I close this chapter. Much of what
I’ve learned, and a great deal of what I’ve written, has been in the pages of Dr: Dobb’s
Journal. As far back as I can remember, DDJhas epitomized the attitude that sharing
programming information is A Good Thing. I know a lot of programmers who were
able to leap ahead in their development because of Hendrix’s Tiny C, or Stevens’ D-
Flat, or simply by browsing through DDJs annual collections. (Me, for one.)
Understandably, most companies understandably view sharing information in a very
different way, as potential profit lost-but that’s what makes DDJso valuable to the
programming community.
It is in that spirit that id Software is allowing me to describe in these pages (which
also appeared in one of the DDJspecial issues) how Quake works, even before Quake
has shipped. That’s also why id has placed the full source code for Wolfenstein 3-D
on ftp.idsoftware.com/idstuff/source; and although you can’tjust recompile the code
and sell it, you can learn how a full-blown, successful game works. Check wolfsrc.txt
in the above-mentioned directory for details on how the code may be used.
So remember, when it’s legally possible, sharing information benefits us all in the
long run. You can pay forward the debt for the information you gain here and else-
where by sharing what you know whenever you can, by writing an article or book or
posting on the Net. None of us learns in a vacuum; we all stand on the shoulders of
giants such as Wirth and Knuth and thousands of others. Lend your shoulders to
building the future!

References
Foley, James D., et al., Computer Graphics: Principles and Practice, Addison Wesley, 1990,
ISBN 0-201-121 10-7 (beams, BSP trees, VSD) .
Teller, Seth, Visibility Computations in Densely Occluded Polyhedral Environments (disser-
tation), available on http://theory.lcs.mit.edu/-Seth/ along with several other papers
relevant to visibility determination.

Teller, Seth, Visibility Preprocessing for Interactive Walkthroughs, SIGGRAPH 91 proceed-
ings, pp. 61-69.

1 190 Chapter 64

	previous:
	home:
	next:

