Speeding
Up C with
Assembly
Language

When I was a senig
one Terry Jacks, so
weeks atop Kasey Kas
good song, primaril
song was a hit, but, a
forgotten one- or
Don’t Be a Hero,”

in high school, a pop song called “Seasons in the Sun,” sung by
&d up the pop charts and spent, as best I can recall, two straight

al.), I heard it everywhere for a month or so, then gave it not
15 years.

ame across a review of a Rhino Records collection of obscure
1970s pop hits. Kndigring that Jeff Duntemann is an aficionado of such esoterica
(who do you know who owns an album by The Peppermint Trolley Company?), I sent
the review to him. He was amused by it and, as we kicked the names of old songs
around, “Seasons in the Sun” came up. I expressed my wonderment that a song that
really wasn’t very good was such a big hit.

“Well,” said Jeff, “I think it suffered in the translation from the French.”

Ah-ha! Mystery solved. Apparently everyone but me knew that it was translated from
French, and that novelty undoubtedly made the song a big hit. The translation was
also surely responsible for the sappy lyrics; dollars to donuts that the original French
lyrics were stronger.

151

Which brings us without missing a beat to this chapter’s theme, speeding up C with
assembly language. When you seek to speed up a C program by converting selected
parts of it (generally no more than a few functions) to assembly language, make sure
you end up with high-performance assembly language code, not fine-tuned C code.
Compilers like Microsoft C/C++ and Watcom C are by now pretty good at fine-tun-
ing C code, and you’re not likely to do much better by taking the compiler’s assembly
language output and tweaking it.

*‘p To make the process of transiating C code to assembly language worth the trouble,
you must ignore what the compiler does and design your assembly language code
Jfrom a pure assembly language perspective. With a merely adequate translation, you

risk laboring mightily for little or no reward.

Apropos of which, when was the last time you heard of Terry Jacks?

Billy, Don’t Be a Compiler

The key to optimizing C programs with assembly language is, as always, writing good
assembly language code, but with an added twist. Rule 1 when converting C code to
assembly is this: Don’t think like a compiler. That’s more easily said than done, espe-
cially when the C code you’re converting is readily available as a model and the
assembly code that the compiler generates is available as well. Nevertheless, the prin-
ciple of not thinking like a compiler is essential, and is, in one form or another, the
basis for all that I'll discuss below.

Before I discuss Rule 1 further, let me mention rule number 0: Only optimize where it
matters. The bulk of execution time in any program is spent in a very small portion of
the code, and most code beyond that small portion doesn’t have any perceptible
impact on performance. Unless you’re supremely concerned with code size (an area
in which assembly-only programs can excel), I'd suggest that you write most of your
code in C and reserve assembly for the truly critical sections of your code; that’s the
formula that I find gives the most bang for the buck.

This is not to say that complete programs shouldn’t be designed with optimized as-
sembly language in mind. As you’ll see shortly, orienting your data structures towards
assembly language can be a salubrious endeavor indeed, even if most of your code is
in C. When it comes to actually optimizing code and/or converting it to assembly,
though, do it only where it matters. Get a profiler—and use it!

Also make it a point to concentrate on refining your program design and algorith-
mic approach at the conceptual and/or C levels before doing any assembly language
optimization.

152 Chapter 8

P Assembly language optimization is the final and far from the only step in the opti-
mization chain, and as such should be performed last; converting to assembly too
soon can lock in your code before the design is optimal. At the very least, conver-
sion to assembly tends to make future changes and debugging more difficult, slowing
you down and limiting your options.

Don’t Call Your Functions on Me, Baby

In order to think differently from a compiler, you must understand both what com-
pilers and C programmers tend to do and how that differs from what assembly
language does well. In this pursuit, it can be useful to examine the code your com-
piler generates, either by viewing the code in a debugger or by having the compiler
generate an assembly language output file. (The latter is done with /Fa or /Fc in
Microsoft C/C++ and -S in Borland C++.)

C programmers tend to modularize their code with lots of function calls. That’s
good for readable, reliable, reusable code, and it allows the compiler to optimize
better because it can deal with fewer variables and statements in each optimization
arena—but it’s not so good when viewed from the assembly language level. Calls and
returns are slow, especially in the large code model, and the pushes required to put
parameters on the stack are expensive as well.

What this means is that when you want to speed up a portion of a C program, you
should identify the entire critical portion and move all of that critical portion into an
assembly language function. You don’t want to move a part of the inner loop into
assembly language and then call it from C every time through the loop; the function
call and return overhead would be unacceptable. Carve out the critical code en masse
and move it into assembly, and try to avoid calls and returns even in your assembly
code. True, in assembly you can pass parameters in registers, but the calls and re-
turns themselves are still slow; if the extra cycles they take don’t affect performance,
then the code they’re in probably isn’t critical, and perhaps you’ve chosen to convert
too much code to assembly, eh?

Stack Frames Slow So Much

C compilers work within the stack frame model, whereby variables reside in a block
of stack memory and are accessed via offsets from BP. Compilers may store a couple
of variables in registers and may briefly keep other variables in registers when they’re
used repeatedly, but the stack frame is the underlying architecture. It’s a nice archi-
tecture; it’s flexible, convenient, easy to program, and makes for fairly compact code.
However, stack frames have a few drawbacks. They must be constructed and destroyed,
which takes both time and code. They are so easy to use that they tend to bias the
assembly language programmer in favor of accessing memory variables more often
than might be necessary. Finally, you cannot use BP as a general-purpose register if

Speeding Up C with Assembly Language

153

you intend to access a stack frame, and having that seventh register available is some-
times useful indeed.

That doesn’t mean you shouldn’t use stack frames, which are useful and often neces-
sary. Just don’t fall victim to their undeniable charms.

Torn Between Two Segments

C compilers are not terrific at handling segments. Some compilers can efficiently handle
a single far pointer used in a loop by leaving ES set for the duration of the loop. But two
far pointers used in the same loop confuse every compiler I've seen, causing the full
segment:offset address to be reloaded each time either pointer is used.

This particularly affects performance in 286 protected mode (under OS/2 1.X or
the Rational DOS Extender, for example) because segment loads in protected mode
take a minimum of 17 cycles, versus a mere 2 cycles in real mode.

In assembly language you have full control over segments. Use it, and, if necessary,
reorganize your code to minimize segment loading.

Why Speeding Up Is Hard to Do

You might think that the most obvious advantage assembly language has over C is
that it allows the use of all forms of instructions and all registers in all ways, whereas
C compilers tend to use a subset of registers and instructions in a limited number of
ways. Yes and no. It’s true that C compilers typically don’t generate instructions such
as XLAT, rotates, or the string instructions. On the other hand, XLAT and rotates
are useful in a limited set of circumstances, and string instructions are used in the C
library functions. In fact, C library code is likely to be carefully optimized by experts,
and may be much better than equivalent code you’d produce yourself.

Am I saying that C compilers produce better code than you do? No, I'm saying that
they can, unless you use assembly language properly. Writing code in assembly lan-
guage rather than C guarantees nothing.

You can write good assembly, bad assembly, or assembly that is virtually indistin-
guishable from compiled code; you are more likely than not to write the latter if
you think that optimization consists of tweaking compiled C code.

Sure, you can probably use the registers more efficiently and take advantage of an
instruction or two that the compiler missed, but the code isn’t going to get a whole
lot faster that way.

True optimization requires rethinking your code to take advantage of assembly lan-
guage. A C loop that searches through an integer array for matches might compile

154 Chapter 8

A. What the compiler outputs:
LoopTop:
mov ax,[bp-8] :Get the searched-for value
cmp [di],ax ;Is this a match?
jz Match ;Yes
add di,2 ;No, advance the pointer
dec si ;Decrement the Toop counter
jnz LoopTop ;Continue if there are more data points
B. Removing stack frame access:
LoopTop:
Todsw ;Get the next array value
cmp ax,bx ;:Does it match the searched-for value?
jz Match iYes
loop LoopTop ;No, continue if there are more data points

Twweaked compiler output for a loop.
Figure 8.1

to something like Figure 8.1A. You might look at that and tweak it to the code shown
in Figure 8.1B.

Congratulations! You’ve successfully eliminated all stack frame access, you've used
LOOP (although DEC SI/JNZ is actually faster on 386 and later machines, as I ex-
plained in the last chapter), and you’ve used a string instruction. Unfortunately, the
new code isn’t going to run very much faster. Maybe 25 percent faster, maybe a little
more. Big deal. You've eliminated the trappings of the compiler—the stack frame
and the restricted register usage—but you're still thinking like the compiler. Try this:

repnz scasw
jz Match

It’s a simple example—but, I hope, a convincing one. Stretch your brain when you
optimize.

Taking It to the Limit

The ultimate in assembly language optimization comes when you change the rules;
that is, when you reorganize the entire program to allow the use of better assembly
language code in the small section of code that most affects overall performance.
For example, consider that the data searched in the last example is stored in an array
of structures, with each structure in the array containing other information as well.
In this situation, REP SCASW couldn’t be used because the data searched through
wouldn’t be contiguous.

Speeding Up C with Assembly Language 155

However, if the need for performance in searching the array is urgent enough, there’s
no reason why you can’t reorganize the data. This might mean removing the array
elements from the structures and storing them in their own array so that REP SCASW
could be used.

Organizing a program’s data so that the performance of the critical sections can
be optimized is a key part of design, and one that’s easily shortchanged unless,
during the design stage, you thoroughly understand and work to bring together
your data needs, the critical sections of your program, and potential assembly
language optimizations.

More on this shortly.
To recap, here are some things to look for when striving to convert C code into
optimized assembly language:
* Move the entire performance-critical section into a single assembly language
function.

* Don’t use calls or stack frame accesses inside the critical code, if possible, and
avoid unnecessary memory accesses of any kind.

* Change segments as infrequently as possible.

* Optimize in terms of what assembly does well, not in terms of fine-tuning com-
piled C code.

» Change the rules to the benefit of assembly, if necessary; for example, reorga-
nize data structures to allow efficient assembly language processing.

That said, let me show some of these precepts in action.

A C-to-Assembly Case Study

Listing 8.1 is the sample C application I'm going to use to examine optimization in
action. Listing 8.1 isn’t really complete—it doesn’t handle the “no-matches” case
well, and it assumes that the sum of all matches will fit into an int—but it will do just
fine as an optimization example.

LISTING 8.1 L8-1.C

/* Program to search an array spanning a linked 1ist of variable-
sized blocks, for all entries with a specified ID number,
and return the average of the values of all such entries. Each of
the variable-sized blocks may contain any number of data entries,
stored as an array of structures within the block. */

#include <stdio.h>
#ifdef __TURBOC__
f#include <alloc.h>
felse

#include <malloc.h>
frendif

156 Chapter 8

void main(void);
void exit(int);
unsigned int FindIDAverage(unsigned int, struct BlockHeader *);
/* Structure that starts each variable-sized block */
struct BlockHeader ({
struct BlockHeader *NextBlock; /* Pointer to next block, or NULL
if this is the last block in the
linked Tist */
unsigned int BlockCount; /* The number of DataElement entries
in this variable-sized block */

b

/* Structure that contains one element of the array we'll search */
struct DataElement {

unsigned int ID; /* ID # for array entry */

unsigned int Value; /* Value of array entry */
1

void main{void) {
int i,j;
unsigned int IDTofind;
struct BlockHeader *BaseArrayBlockPointer,*WorkingBlockPointer;
struct DataElement *WorkingDataPointer;
struct BlockHeader **LastBlockPointer;

printf("ID # for which to find average: ");
scanf("%d",&IDToFind);
/* Build an array across 5 blocks, for testing */
/* Anchor the Tinked list to BaseArrayBlockPointer */
LastBlockPointer = &BaseArrayBlockPointer;
/* Create 5 blocks of varying sizes */
for (i =1; i < 6; i++) {
/* Try to get memory for the next block */
if ((WorkingBlockPointer =
(struct BlockHeader *) malloc(sizeof(struct BlockHeader) +
sizeof(struct DataElement) * i * 10)) == NULL) {
exit(l);
}
/* Set the # of data elements in this block */
WorkingBlockPointer->BlockCount = i * 10;
/* Link the new block into the chain */
*LastBlockPointer = WorkingBlockPointer:
/* Point to the first data field */
WorkingDataPointer =
(struct DataElement *) ((char *)WorkingBlockPointer +
sizeof(struct BlockHeader));
/* Fill the data fields with ID numbers and values */
for (j = 0; j < (i * 10); j++, WorkingDataPointer++) {
WorkingDataPointer->ID = j:
WorkingDataPointer->Value = i * 1000 + j;
}
/* Remember where to set link from this block to the next */
LastBlockPointer = &WorkingBlockPointer->NextBlock;
}
/* Set the Tast block's "next block™ pointer to NULL to indicate
that there are no more blocks */
WorkingBlockPointer->NextBlock = NULL;
printf("Average of all elements with ID %d: %u\n",
IDToFind, FindIDAverage(IDToFind, BaseArrayBlockPointer));

Speeding Up C with Assembly Language

157

exit(0);
}

/* Searches through the array of DataElement entries spanning the
linked 1ist of variable-sized blocks, starting with the block
pointed to by BlockPointer, for all entries with IDs matching
SearchedforID, and returns the average value of those entries. If
no matches are found, zero is returned */

unsigned int FindIDAverage(unsigned int SearchedForID,
struct BlockHeader *BlockPointer)
{
struct DataElement *DataPointer;
unsigned int IDMatchSum;
unsigned int IDMatchCount;
unsigned int WorkingBlockCount;

IDMatchCount = IDMatchSum = 0;

/* Search through all the linked blocks until the Tast block
(marked with a NULL pointer to the next block) has been
searched */

do {

/* Point to the first DataElement entry within this block */
DataPointer =
(struct DataElement *) ((char *)BlockPointer +
sizeof(struct BlockHeader));
/* Search all the DataElement entries within this block
and accumulate data from all that match the desired 1D */
for (WorkingBlockCount=0;
WorkingBlockCount<BlockPointer->BlockCount;
WorkingBlockCount++, DataPointer++) {
/* 1f the ID matches, add in the value and increment the
match counter */
if (DataPointer->ID == SearchedForlID) {
IDMatchCount++;
IDMatchSum += DataPointer->Value;
}
}
/* Point to the next block, and continue as long as that pointer
isn't NULL */

} while ((BlockPointer = BlockPointer->NextBlock) != NULL):

/* Calculate the average of all matches */

if (IDMatchCount == ()
return(0); /* Avoid division by 0 */

else
return(IDMatchSum / IDMatchCount);

}

The main body of Listing 8.1 constructs a linked list of memory blocks of various
sizes and stores an array of structures across those blocks, as shown in Figure 8.2. The
function FindIDAverage in Listing 8.1 searches through that array for all matches to
a specified ID number and returns the average value of all such matches.
FindIDAverage contains two nested loops, the outer one repeating once for each
linked block and the inner one repeating once for each array element in each block.
The inner loop—the critical one—is compact, containing only four statements, and
should lend itself rather well to compiler optimization.

158 Chapter 8

BlockHeader->NextBlock Pointer to—>
BlockHeader->BlockCount
DataElement[0]1->1D
DataElement[0]->Value
DataElement[1]->ID
Datatlement[1]->Value

L———} BlockHeader->NextBlock

BlockHeader->BlockCount
DataElement[0]->ID
DataElement[0]->Value

Array Element O

Array Element 1

] Array Element 2

BlockHeader->NextBlock
BlockHeader->BlockCount
DataElement{0]->ID
DataElement[0]->Value
DataElement[11->ID
DataElement[1]->Value
Datatlement[2]->1I0
Dataklement[2]->Value

Array Element 3

Array Element 4

Array Element 5

Linked array storage format (version 1).
Figure 8.2

As it happens, Microsoft C/C++ does optimize the inner loop of FindIDAverage nicely.
Listing 8.2 shows the code Microsoft C/C++ generates for the inner loop, consisting of
a mere seven assembly language instructions inside the loop. The compiler is smart
enough to convert the loop index variable, which counts up but is used for nothing but
counting loops, into a count-down variable so that the LOOP instruction can be used.

LISTING 8.2 18-2.COD

; Code generated by Microsoft C for inner loop of FindIDAverage.
;| *** for (WorkingBlockCount=0;

N el WorkingBlockCount<BlockPointer->BlockCount;
Hb WorkingBlockCount++, DataPointer++) {
mov WORD PTR [bp-61,0 ;WorkingBlockCount
mov bx,WORD PTR [bp+6] ;BlockPointer
cmp WORD PTR [bx+21,0
je $FB264
mov cx,WORD PTR [bx+2]
add WORD PTR [bp-6],cx :WorkingBlockCount
mov di,WORD PTR [bp-2] ;IDMatchSum
mov dx,WORD PTR [bp-4] ;IDMatchCount
$L20004:
;| *** if (DataPointer->ID == SearchedForID) {
mov ax,WORD PTR [si]
cmp WORD PTR [bp+4],ax ;SearchedForID
jne $1265

Speeding Up C with Assembly Language 159

3| IDMatchCount++;

inc dx
B ekl IDMatchSum += DataPointer->Value;
add di,WORD PTR [si+2]
kL
; ,***] }
$1265:
add si.4
loop $L20004
mov WORD PTR [bp-2]1,di ;IDMatchSum
mov WORD PTR [bp-47,dx ;IDMatchCount

$FB264:

It’s hard to squeeze much more performance from this code by tweaking it, as exem-
plified by Listing 8.3, a fine-tuned assembly version of FindIDAverage that was
produced by looking at the assembly output of MS C/C++ and tightening it. Listing

8.3 eliminates all stack frame access in the inner loop, but that’s about all the tight-

ening there is to do. The result, as shown in Table 8.1, is that Listing 8.3 runs a
modest 11 percent faster than Listing 8.1 on a 386. The results could vary consider-
ably, depending on the nature of the data set searched through (average block size
and frequency of matches). But, then, understanding the typical and worst case con-

ditions is part of optimization, isn’t it?

; Typically optimized assembly Tanguage version of FindIDAverage.
SearchedForID equ 4 ;Passed parameter offsets in the
BlockPointer equ 6 ; stack frame (skip over pushed BP

; and the return address)

NextBlock equ
BlockCount equ
1D equ
Value equ

;Field offsets in struct BlockHeader

;struct DataElement field offsets

0
2
BLOCK_HEADER_SIZE equ 4 ;Number of bytes in struct BlockHeader
0
2
4

DATA _ELEMENT_SIZE equ
.model small

.code
pubiic _FindlUDAverage

Listing 8.1

(MSC with maximum optimization)

Listing 8.3

(Assembly)

Listing 8.4

(Optimized assembly)

Listing 8.6

(Optimized assembly with reorganized data)

;Number of bytes in struct DataElement

On 20 MHz 386

294 microseconds

265

212

100

Table 8.1 Execution Times of FindIDAverage.

160 Chapter 8

On 10 MHz 286

768 microseconds

644

486

207

_FindIDAverage proc near

push bp ;Save caller’'s stack frame

mov bp.sp ;Point to our stack frame

push di ;Preserve C register variables
push si

sub dx, dx ;IDMatchSum = 0

mov bx, dx ;IDMatchCount = 0

mov si,[bp+BlockPointer] ;Pointer to first block
mov ax,[bp+SearchedForID] ;ID we're looking for

; Search through all the linked blocks until the Tast block
: (marked with a NULL pointer to the next block) has been searched.

BlockLoop:
; Point to the first DataElement entry within this block.
lea di,[si+BLOCK_HEADER_SIZE]

; Search through all the DataElement entries within this block
; and accumulate data from all that match the desired ID.

mov cx,[si+BlockCount]

Jjexz DoNextBlock ;No data in this block
IntraBlockLoop:

cmp [di+ID],ax ;Do we have an ID match?

jnz NoMatch ;No match

inc bx ;We have a match; IDMatchCount++;

add dx,[di+Value] ;IDMatchSum += DataPointer->Value;
NoMatch:

add di,DATA_ELEMENT_SIZE ;point to the next element

loop IntraBlockLoop
; Point to the next block and continue if that pointer isn't NULL.

DoNextBlock:
mov si,[si+NextBlock] ;Get pointer to the next block
and si,si ;Is it a NULL pointer?
jnz BlockLoop ;No, continue
; Calculate the average of all matches.
sub ax,ax ;Assume we found no matches
and bx,bx
jz Done :We didn’'t find any matches, return O
xchg ax,dx ;Prepare for division
div bx ;Return IDMatchSum / IDMatchCount
Done: pop si ;Restore C register variables
pop di
pop bp ;Restore caller's stack frame
ret
_FindIDAverage ENDP
end

Listing 8.4 tosses some sophisticated optimization techniques into the mix. The loop
is unrolled eight times, eliminating a good deal of branching, and SCASW is used
instead of CMP [DI],AX. (Note, however, that SCASW is in fact slower than CMP
[DI],AX on the 386 and 486, and is sometimes faster on the 286 and 8088 only be-
cause it’s shorter and therefore may prefetch faster.) This advanced tweaking produces
a 39 percent improvement over the original C code—substantial, but not a tremen-
dous return for the optimization effort invested.

Speeding Up C with Assembly Language

161

LISTING 8.4 L8-4.ASM

; Heavily optimized assembly language version of FindIDAverage.

; Features an unrolled loop and more efficient pointer use.

SearchedForlD equ 4 ;Passed parameter offsets in the

BlockPointer equ 6 ; stack frame (skip over pushed BP
; and the return address)

NextBlock equ 0 ;Field offsets in struct BlockHeader
BlockCount equ 2
BLOCK_HEADER_SIZE equ 4 ;Number of bytes in struct BlockHeader
1D equ 0 ;struct DataElement field offsets
Value equ 2
DATA_ELEMENT_SIZE equ 4 ;Number of bytes in struct DataElement

.model small

.code

public _FindIDAverage
_FindIDAverage proc near

push bp ;Save caller's stack frame

mov bp.sp ;Point to our stack frame

push di ;Preserve C register variables

push si

mov di,ds ;Prepare for SCASW

mov es,di

cld

sub dx,dx ; IDMatchSum = 0

mov bx, dx ;IDMatchCount = 0

mov si,[bp+BlockPointer] ;Pointer to first block

mov ax,[bp+SearchedForlID] ;ID we're looking for

; Search through all of the linked blocks until the last block
; (marked with a NULL pointer to the next block) has been searched.

BlocklLoop:
; Point to the first DataElement entry within this block.
Tea di,[si+BLOCK _HEADER SIZE]

; Search through all the DataElement entries within this block
; and accumulate data from all that match the desired ID.

mov cx,[si+BlockCount] ;Number of elements in this block
jexz DoNextBlock ;Skip this block if it's empty
mov bp,cx ;***stack frame no longer available*x*=*
add cx,7
shr cx,1 ;Number of repetitions of the unrolled
shr cx,1 ; loop = (BlockCount + 7) / 8
shr cx,1
and bp,7 ;Generate the entry point for the
shl bp.1 ; first, possibly partial pass through
Jjmp cs:[LoopEntryTable+bp] ; the unrolled loop and
; vector to that entry point

align 2

LoopEntryTable Tabel word
dw LoopEntry8,LoopEntryl, LoopEntry2, LoopEntry3
dw LoopEntry4,LoopEntry5, LoopEntry6, LoopEntry7

M_IBL macro Pl
lTocal NoMatch

LoopEntry&Pl&:

scasw ;Do we have an ID match?

jnz NoMatch ;No match

;We have a match

inc bx ;IDMatchCount++;

add dx,[di] ;IDMatchSum += DataPointer->Value;
NoMatch:

add di,DATA_ELEMENT_SIZE-2 ;point to the next element

; (SCASW advanced 2 bytes already)

162 Chapter 8

endm

align 2
IntraBlockLoop:
M_IBL 8
M_IBL 7
M_IBL 6
M_IBL 5
M_IBL 4
M_IBL 3
M_IBL 2
M_IBL 1
loop IntraBlocklLoop
; Point to the next block and continue if that pointer isn't NULL.
DoNextBlock:
mov si,[si+NextBlock] ;Get pointer to the next block
and si,si ;Is it a NULL pointer?
jnz BlockLoop ;No, continue
; Calculate the average of all matches.
sub ax,ax ;Assume we found no matches
and bx,bx
jz Done ;We didn't find any matches, return 0
xchg ax,dx ;Prepare for division
div bx ;Return IDMatchSum / IDMatchCount
Done: pop si ;Restore C register variables
pop di
pop bp ;Restore caller's stack frame
ret
_FindIDAverage ENDP
end

Listings 8.5 and 8.6 together go the final step and change the rules in favor of assem-
bly language. Listing 8.5 creates the same list of linked blocks as Listing 8.1. However,
instead of storing an array of structures within each block, it stores fwo arrays in each
block, one consisting of ID numbers and the other consisting of the corresponding
values, as shown in Figure 8.3. No information is lost; the data is merely rearranged.

LISTING 8.5

L8-5.C

/* Program to search an array spanning a linked list of variable-
sized blocks, for all entries with a specified ID number,
and return the average of the values of all such entries. Each of

the variable-

sized blocks may contain any number of data entries,

stored in the form of two separate arrays, one for ID numbers and
one for values. */

#include <stdio.

h>

#ifdef __TURBOC__

#include <alloc
ffelse

.h>

f#include <malloc.h>

f#endif

void main(void)
void exit(int);
extern unsigned

int FindIDAverage2(unsigned int,
struct BlockHeader *);

Speeding Up C with Assembly Language

163

BlockHeader->NextBlock Pointer to—>
BlockHeader->BlockCount

ID[0]

ID[1] Array Elements
Value[0] 0&1
Value[1]

BlockHeader->NextBlock
BlockHeader->BlockCount
ID[0]

Value[0]

Array Element 2

—

I—-—} BlockHeader->NextBlock

BlockHeader->BlockCount
1D0[0]

ID[1]

ID[2]

Value[0]

Value[l]

Value[2]

Array Elements
3 through 5

Linked array storage format (version 2).
Figure 8.3

/* Structure that starts each variable-sized block */
struct BlockHeader {
struct BlockHeader *NextBlock; /* Pointer to next block, or NULL
if this is the last block in the
Tinked list */
unsigned int BlockCount; /* The number of DataElement entries
in this variable-sized block */
1

void main(void) {
int i,j;
unsigned int IDToFind;
struct BlockHeader *BaseArrayBlockPointer,*WorkingBlockPointer;
int *WorkingDataPointer;
struct BlockHeader **LastBlockPointer;

printf("ID # for which to find average: ");
scanf("%d",&IDToFind);

/* Build an array across 5 blocks, for testing */
/* Anchor the linked 1ist to BaseArrayBlockPointer */
LastBlockPointer = &BaseArrayBlockPointer;
/* Create 5 blocks of varying sizes */
for (i = 1; i < 6; i++) {
/* Try to get memory for the next block */

164 Chapter 8

if ((WorkingBlockPointer =
(struct BlockHeader *) malloc(sizeof(struct BlockHeader) +
sizeof(int) * 2 * i * 10)) == NULL) {
exit(l);
}
/* Set the number of data elements in this block */
WorkingBlockPointer->BlockCount = i * 10;
/* Link the new block into the chain */
*LastBlockPointer = WorkingBlockPointer;
/* Point to the first data field */
WorkingDataPointer = (int *) ((char *)WorkingBlockPointer +
sizeof(struct BlockHeader));
/* Fill the data fields with ID numbers and values */
for (j = 0; j < (i * 10); j++, WorkingDataPointer++) (
*WorkingDataPointer = j;
*(WorkingDataPointer + i * 10) = i * 1000 + j;
}
/* Remember where to set link from this block to the next */
LastBlockPointer = &WorkingBlockPointer->NextBlock;
}
/* Set the last block's "next block" pointer to NULL to indicate
that there are no more blocks */
WorkingBlockPointer->NextBlock = NULL;
printf(“Average of all elements with ID %d: %u\n",
IDToFind, FindIDAverage2(IDToFind, BaseArrayBlockPointer));
exit(0);

LISTING 8.6 L8-6.ASM

; Alternative optimized assembly language version of FindIDAverage
; requires data organized as two arrays within each block rather

; than as an array of two-value element structures. This allows the
; use of REP SCASW for ID searching.

SearchedForlID equ 4 ;Passed parameter offsets in the
BlockPointer equ 6 ; stack frame (skip over pushed BP
; and the return address)

NextBlock equ 0 ;Field offsets in struct BlockHeader
BlockCount equ 2
BLOCK_HEADER_SIZEequ 4 ;Number of bytes in struct BlockHeader

.model small

.code

public _FindIDAverage?2
_FindIDAverage2 proc near

push bp ;Save caller's stack frame

mov bp,sp ;Point to our stack frame

push di ;Preserve C register variables

push si

mov di.ds ;Prepare for SCASW

mov es,di

cld

mov si,[bptBlockPointer] ;Pointer to first block

mov ax, [bp+SearchedForID] ;ID we're Tooking for

sub dx,dx ;IDMatchSum = 0

mov bp,dx ;IDMatchCount = 0

;***stack frame no longer availablex**
; Search through all the linked blocks until the last block
; (marked with a NULL pointer to the next block) has been searched.

Speeding Up C with Assembly Language

165

BlockLoop:
; Search through all the DataElement entries within this block
; and accumulate data from all that match the desired ID.
mov cx,[si+BlockCount]
Jjexz DoNextBlock ;Skip this block if there's no data
; to search through
mov bx,cx ;We'll use BX to point to the
shl bx,1 ; corresponding value entry in the
; case of an ID match (BX is the
; length in bytes of the ID array)
; Point to the first DataElement entry within this block.
lea di,[si+BLOCK_HEADER_SIZE]

IntraBlockLoop:
repnz scasw :Search for the ID
jnz DoNextBlock ;No match, the block is done
inc bp ;We have a match; IDMatchCount++;
add dx,[di+bx-2] ;IDMatchSum += DataPointer->Value;

; (SCASW has advanced DI 2 bytes)
and cX,Cx ;Is there more data to search through?
jnz IntraBlockLoop syes

; Point to the next block and continue if that pointer isn't NULL.
DoNextBlock:
mov si,[si+NextBlock] ;Get pointer to the next block
and si,si ;Is it a NULL pointer?
Jjnz BlockLoop ;No, continue
; Calculate the average of all matches.
sub ax,ax ;Assume we found no matches
and bp,bp
jz Done ;We didn't find any matches, return 0
xchg ax,dx ;Prepare for division
div bp :Return IDMatchSum / IDMatchCount
Done: pop si ;Restore C register variables
pop di
pop bp ;Restore caller's stack frame
ret
_FindIDAverage2 ENDP
end

The whole point of this rearrangement is to allow us to use REP SCASW to search
through each block, and that’s exactly what FindIDAverage2 in Listing 8.6 does. The
result: Listing 8.6 calculates the average about three times as fast as the original C
implementation and more than twice as fast as Listing 8.4, heavily optimized as the
latter code is.

I trust you get the picture. The sort of instruction-by-instruction optimization that so
many of us love to do as a kind of puzzle is fun, but compilers can do it nearly as well
as you can, and in the future will surely do it better. What a compiler can’t do is tie
together the needs of the program specification on the high end and the processor
on the low end, resulting in critical code that runs just about as fast as the hardware
permits. The only software that can do that is located north of your sternum and
slightly aft of your nose. Dust it off and put it to work—and your code will never
again be confused with anything by Hamilton, Joe, Frank, and Reynolds or Bo
Donaldson and the Heywoods.

166 Chapter 8

	next:
	home:
	previous:

