


i”B 
” Back in high school, I took a precalculus class from Mr. Bourgeis,  whose  most  notable 

characteristics wer6bcessant pacing and truly enormous feet. My friend Barry,  who 
sat in  the back row,  rig$$ behind  me, claimed that  it was because of his large feet  that 
Mr. Bourgeis was so resd se feet were so heavy,  Barry hypothesized, that if  Mr. 
Bourgeis remained id any one place for too long,  the  floor would give way under  the 
strain, plunging  thekmfortunate  teacher deep  into  the mantle of the  Earth and pos- 
sibly all the way thr&gh to China. Many amusing cartoons were  drawn  to this effect. 
UnfortunatelyJ3dh-y -*,e”..’:“ was too busy drawing cartoons, or,  alternatively, sleeping, to 
actually learn any math.  In  the  long  run,  that  didn’t  turn  out to be a  handicap  for 
Barry,  who went on’ko become vice-president of  sales for a ham-packing company, 
where presumably he  has rarely called upon to derive the  quadratic  equation. Barry’s 
lack  of scholarship caused some problems back then,  though. On  one memorable 
occasion, Barry was half-asleep,  with  his  eyes open  but unfocused and his chin bal- 
anced on his hand in the classic “if I fall asleep my head will fall  off  my hand  and I’ll 
wake up” posture, when Mr. Bourgeis popped  a killer problem: 
“Barry,  solve this for X, please.” On  the blackboard lay the  equation: 

8: 

x - 1 = 0  

“Minus 1,” Barry  said promptly. 
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Mr. Bourgeis shook his head mournfully. “Try again.” Barry thought  hard.  He knew 
the  fundamental rule  that the answer to  most mathematical questions is either 0, 1, 
infinity, -1, or minus infinity (do  not apply this rule to balancing your checkbook, 
however); unfortunately, that gave him only a 25 percent  chance of guessing right. 
“One,” I whispered surreptitiously. 
“Zero,” Barry announced. Mr. Bourgeis shook his head even more sadly. 
“One,” I whispered louder. Barry looked still more thoughtful-a bad sign-so I 
whispered “one” again, even louder. Barry looked so thoughtful that his eyes nearly 
rolled up into his head,  and I realized that  he was just  doing his best to convince Mr. 
Bourgeis that Barry had solved this one by himself. 
As Barry neared the climax  of  his stimng performance and  opened his mouth to  speak, 
Mr. Bourgeis looked at  him with great  concern. “Barry, can you hear  me all right?” 
“Yes, sir,” Barry replied. ‘Why?” 
‘Well, I could  hear  the answer  all the way up  here. Surely  you could  hear  it  just  one 
row  away?” 
The class went wild. They  might as well have sent us home early for all we accom- 
plished the rest of the day. 
I like to think I know more  about  performance  programming  than Barry  knew about 
math. Nonetheless, I always welcome good ideas and comments, and many readers 
have sent me a slew  of those over the years. So in this chapter,  I  think I’ll return  the 
favor by devoting a chapter to reader feedback. 

Another  Look  at LEA 
Several people have pointed  out that while LEA is great  for performing certain addi- 
tions (see Chapter 6), it isn’t a  perfect  replacement  for ADD. What’s the difference? 
LEA, an addressing instruction by trade, doesn’t affect the flags,  while the arithmetic 
ADD instruction  most certainly does. This is no  problem when performing additions 
that involve  only quantities  that fit in one  machine word (32 bits in 386 protected 
mode, 16 bits otherwise), but it renders LEAuseless for multiword operations, which 
use the Carry  flag to tie together partial results. For example, these instructions 

A D D   E A X ,  EBX 
A D C   E D X ,   E C X  

could not be replaced 

L E A  EAX.CEAX+EBXI 
A D C   E D X ,   E C X  

because LEA doesn’t affect the Carry  flag. 

170 Chapter 9 



The no-carry characteristic of LEA becomes  a  distinct advantage when performing 
pointer  arithmetic, however. For instance,  the following code uses LEA to advance 
the  pointers while adding  one 128-bit memory variable to  another such variable: 

MOV E C X . 4  :# o f  3 2 - b i t   w o r d s   t o  add 
c L C  

:no c a r r y   i n t o   t h e   i n i t i a l  ADC 
ADDLOOP:  

MOV E A X . [ E S I I  : g e t   t h e   n e x t   e l e m e n t  o f  o n e   a r r a y  
ADC [EDII . € A X  :add i t  t o   t h e   o t h e r   a r r a y ,   w i t h   c a r r y  
L E A   E S I . [ € S I + 4 1  :advance one a r r a y ’ s   p o i n t e r  
L E A   E D I ,   [ E D I + 4 ]  : a d v a n c e   t h e   o t h e r   a r r a y ’ s   p o i n t e r  

LOOP  ADDLOOP 

(Yes, I could use LODSD instead of MOV/LEA, I’m just illustrating  a  point here. 
Besides, LODS is only 1 cycle faster than MOV/LEA on  the 386, and is actually more 
than twice as slow on  the 486.) If  we used ADD rather  than LEA to advance the 
pointers,  the  carry  from  one ADC to the  next would  have to be preserved with either 
PUSHF/POPF or LAHF/SAHF. (Alternatively, we could use multiple INCs, since 
INC doesn’t affect the Carry flag.) 
In  short, LEA is indeed  different  from ADD. Sometimes  it’s better. Sometimes not; 
that’s the  nature of the various instruction  substitutions and optimizations  that will 
occur to you over time. There’s no such thing as “best”  instructions on  the x86; it all 
depends  on what you’re trying to do. 
But there  sure  are a  lot of interesting  options,  aren’t  there? 

The  Kennedy Portfolio 
ReaderJohn Kennedy regularly passes along  intriguing assembly programming tricks, 
many  of  which  I’ve never seen  mentioned anywhere else. John likes to  optimize  for 
size, whereas I lean more toward speed, but many  of his optimizations are  good  for 
both purposes. Here  are a few of my favorites: 
John’s  code  for  setting AX to its absolute value is: 

CWD 
XOR  AX.DX 
SUB AX.DX 

This  does nothing when bit 15 of AX is 0 (that is, if AX is positive). When AX is 
negative, the  code  “nots” it and  adds 1, which is exactly  how  you perform  a two’s 
complement  negate. For the case where AX is not negative, this trick usually beats 
the stuffing out of the  standard  absolute value code: 

A N D   A X . A X  : n e g a t i v e ?  
JNS I s p o s i t i v e  ;no 
NEG AX :yes,negate i t  

I s p o s i t i v e :  
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However, John’s  code is  slower on a 486; as you’re no doubt coming to realize (and as 
I’ll explain in Chapters 12 and  13), the 486  is an optimization world unto itself. 
Here’s how John copies  a block of  bytes from DS:SI to ES:DI,  moving  as much  data as 
possible a word at a time: 

SHR C X . l  
REP  MOVSW 

:word  count 
:copy  as many words   as   poss ib le  

ADC C X , C X  :CX-1  i f  c o p y   l e n g t h  was odd, 

REP  MOVSB 
;O e l s e  
:copy  any  odd  byte 

(ADC CX,CX can be replaced with RCL CX,l; which is faster depends  on  the proces- 
sor  type.) It might  be hard  to believe that  the above is faster  than this: 

SHR C X . l  :word c o u n t  
REP MOVSW :copy  as many words  as 

: p o s s i b l e  
JNC CopyDone  ;done i f  even   copy   length  
MOVSB : c o p y   t h e  odd b y t e  

CopyDone: 

However, it generally is. Sure, if the  length is odd,  John’s  approach  incurs  a  penalty 
approximately  equal to the REP startup time for MOVSB. However,  if the  length is 
even, John’s  approach  doesn’t  branch, saving  cycles and  not emptylng  the  prefetch 
queue. If copy lengths  are evenly distributed between even and  odd, John’s  approach 
is faster in most  x86  systems. (Not  on the 486, though.) 
John also points out that on  the 386, multiple LEAs can  be  combined  to  perform 
multiplications  that  can’t be handled by a single L E A ,  much as multiple shifts and 
adds  can be used for  multiplication, only  faster. LEA can be used to multiply in a 
single instruction on the 386, but only by the values 2,3,4,5,8,   and 9; several LEAS 
strung  together  can  handle  a  much wider range of values.  For example, video pro- 
grammers  are  undoubtedly familiar with the following code to multiply AX times 80 
(the width in bytes  of the  bitmap in most PC display modes) : 

SHL A X . l  :*2 
SHL A X . l  : *4  
SHL A X . l  : *8 
SHL A X . l  :*16 
MOV B X . A X  
SHL A X . l  ;*32 
SHL A X . l  : *64 
ADD A X . B X  ;*EO 

Using LEA on  the 386, the above could be reduced  to 

LEA E A X .  [EAX*ZI 
LEA EAX.[EAX*81 

: *2 
;*16 

LEA EAX.[EAX+EAX*41 :*EO 
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which  still isn’t as fast as using a  lookup table like 

M O V  EAX.MultiplesOf80Table[EAX*41 

but is close and takes a  great  deal less space. 
Of course, on  the 386, the shift and  add version could also be  reduced to this consid- 
erably more efficient code: 

SHL A X . 4  
MOV B X . A X  

; *16 

SHL A X . 2  ;*64 
A D D   A X . B X  ; *80 

Speeding Up Multiplication 
That brings us to multiplication, one of the slowest  of  x86 operations  and one  that 
allows for considerable optimization. One way to speed up multiplication is to use shift 
and  add, LEA, or a  lookup table to hard-code a multiplication operation  for  a fixed 
multiplier, as  shown  above. Another is to take advantage of the early-out feature of the 
386 (and  the 486, but  in  the interests of brevity  I’ll just say “386” from now on) by 
arranging your operands so that  the multiplier (always the rightmost operand follow- 
ing MUL or IMUL) is no larger than  the other  operand. 

Why?  Because  the  386  processes  one multiplier  bit per cycle and immediately P ends a  multiplication  when  all  sign@ant  bits of  the multiplier have been pro- 
cessed, so f m e r  cycles  are required to multiply  a  large  multiplicand times a small 
multiplier than a  small  multiplicand times a large multipliel; by a factor  of about 
1 cycle for  each significant multiplier bit eliminated. 

(There’s  a  minimum  execution time on this trick; below 3 significant multiplier bits, 
no additional cycles are saved.) For example,  multiplication of 32,767 times 1 is 12 
cycles faster than multiplication of 1 times 32,727. 
Choosing the  right  operand as the multiplier  can work wonders. According to pub- 
lished specs, the 386 takes 38  cycles to multiply by a  multiplier with 32 significant bits 
but only 9 cycles to multiply by a  multiplier of 2, a  performance  improvement of 
more  than  four times! (My tests regularly indicate  that  multiplication takes 3 to 4 
cycles longer  than  the specs indicate,  but  the cycle-per-bit advantage of smaller mul- 
tipliers holds true nonetheless.) 
This  highlights another  interesting  point: MUL and IMUL on the 386 are so fast that 
alternative multiplication  approaches, while generally still faster, are worthwhile only 
in truly time-critical code. 

On 386SXs and  uncached 386s, where code size can significantly affect perfor- P mance  due  to instruction prefetching, the compact MUL and IMUL instructions 
can approach  and in some  cases  even outperform  the  “optimized ’’ alternatives. 
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All in all, MUL and IMUL are reasonable performers  on  the 386, no  longer to be 
avoided in  most cases-and  you can help that  along by arranging your code to make 
the smaller operand  the multiplier whenever you know which operand is smaller. 
That doesn’t mean  that your code  should test and swap operands to make sure  the 
smaller one is the multiplier; that rarely pays off. I’m speaking more of the case 
where you’re scaling an array up by a value that’s always in the  range of, say, 2 to 10; 
because the scale  value will  always be small and  the array elements may  have  any 
value, the scale  value  is the logical choice for the multiplier. 

Optimizing  Optimized Searching 
Rob Williams  writes  with a wonderful optimization to the REPNZ SCASB-based opti- 
mized  searching routine I discussed in Chapter 5. As a quick refresher, I described 
searching a buffer for a text  string as  follows:  Scan for the first byte of the text string 
with REPNZ SCASB, then use REPZ CMF’S to check for a full match whenever REPNZ 
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SCASB finds  a  match  for the first character, as  shown in Figure 9.1. The principle is 
that most buffer  characters won’t match the first character of any  given string, so 
REPNZ SCASB, by far  the fastest way to search on  the PC, can  be  used  to  eliminate 
most potential  matches;  each  remaining  potential  match  can  then  be  checked  in its 
entirety with REPZ  CMPS. 
Rob’s revelation, which he credits  without  explanation to Edgar Allen Poe  (search 
nevermore?), was that by far the slowest part of the whole deal is handling REPNZ 
SCASB matches, which require  checking the  remainder of the string with REPZ 
CMPS and restarting REPNZ SCASB if no match is found. 

Rob  points out  that  the  number of REPNZ SCASB matches can easily be reduced P simply  by scanning for the character in the searched-for  string that appears least 
often in the  buffer being  searched. 

Imagine, if you  will, that  you’re  searching  for the string “EQUAL,.” By  my approach, 
you’d use REPNZ SCASB to scan for  each  occurrence of “E,” which crops up quite 
often  in  normal text. Rob points  out  that it would  make more sense to scan for ‘‘a” 
then back up  one  character  and check the whole string when a “ Q  is found, as 
shown in Figure 9.2. “ Q  is likely to  occur  much less often, resulting  in many  fewer 
whole-string checks and  much faster processing. 
Listing 9.1 implements  the scan-on-first-character approach. Listing 9.2 scans for 
whatever character  the caller specifies. Listing 9.3 is a test program  used  to  compare 
the two approaches. How much  difference  does Rob’s revelation make? Plenty.  Even 
when the  entire C function call to Findstring is  timed-strlen  calls, parameter  push- 
ing, calling, setup,  and all-the version of Findstring in Listing 9.2, which is directed 
by Listing 9.3 to scan for the infrequently-occurring ‘ Q ”  is about 40 percent faster 
on a 20 MHz cached 386 for  the test search of Listing 9.3 than is the version of 
Findstring in Listing 9.1, which always scans for  the first character,  in this case “E.” 
However,  when only the search  loops (the  code  that actually does  the  searching)  in 
the two versions of Findstring are  compared, Listing 9.2 is more  than twice as fast as 
Listing 9.1-a remarkable  improvement over code  that already uses REPNZ SCASB 
and REPZ  CMPS. 
What I like so much  about Rob’s approach is that it demonstrates  that  optimization 
involves much  more  than  instruction selection and cycle counting. Listings 9.1 and 
9.2 use pretty  much the same instructions, and even use the same approach of scan- 
ning with REPNZ SCASB and using REPZ  CMPS to  check  scanning matches. 

The difference between  Listings 9.1 and 9.2 (which gives  you more  than a  dou- P bling ofperformance) is  due entirely to understanding the  nature of the data  being 
handled, and biasing the code to reject that knowledge. 
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LISTING 9.1 19- 1 .ASM 
; Searches a t e x t   b u f f e r   f o r  a t e x t   s t r i n g .  Uses REPNZ SCASB t o  scan 
; t h e   b u f f e r   f o r   l o c a t i o n s   t h a t  m a t c h   t h e   f i r s t   c h a r a c t e r  of t h e  
; searched- fo r   s t r i ng ,   t hen  uses REPZ CMPS t o  check f u l l y   o n l y   t h o s e  
; l o c a t i o n s   t h a t  REPNZ  SCASB has i d e n t i f i e d  as p o t e n t i a l  matches. 

; Adapted  from Zen o f  Assembly  Language,  by  Michael  Abrash 

; C smal l   mode l -ca l lab le  as: 
; unsigned  char * FindStr ing(uns igned  char  * Buf fe r ,  
; unsigned in t   Bu f fe rLeng th .   uns igned   cha r  * Searchst r ing.  
; unsigned i n t   S e a r c h S t r i n g L e n g t h ) ;  

: Returns a p o i n t e r   t o   t h e   f i r s t  match f o r   S e a r c h s t r i n g   i n   B u f f e r . o r  
; a  NULL p o i n t e r  i f  no  match i s  f o u n d .   B u f f e r   s h o u l d   n o t   s t a r t   a t  
; o f f s e t  0 i n   t h e   d a t a  segment t o   a v o i d   c o n f u s i n g  a match a t  0 w i t h  
; no match  found. 
Parms s t r u c  

B u f f e r  
Buf ferLength dw ? : l e n g t h   o f   b u f f e r   t o   s e a r c h  

dw 2 dup(?)  ;pushed  BP/return  address 
dw ? ; p o i n t e r   t o   b u f f e r   t o   s e a r c h  
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: p o i n t e r   t o   s t r i n g   f o r   w h i c h   t o   s e a r c h  
: l e n g t h   o f   s t r i n g   f o r   w h i c h   t o   s e a r c h  

S e a r c h s t r i n g  dw 
SearchSt r ingLength  dw 

? 
? 

Parms  ends 
.model  smal 1 
.code 
p u b l i c   - F i n d s t r i n g  

p u s h   b p   ; p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i   : p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  
c l  d  ;make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   p o i n t e r s  
mov s i . [ b p + S e a r c h S t r i n g ]   ; p o i n t e r   t o   s t r i n g   t o   s e a r c h   f o r  
mov bx . [bp+SearchSt r i ngLeng th l  : l e n g t h   o f   s t r i n g  
and  bx.bx 
j z  F indStr ingNotFound  :no  match i f  s t r i n g  i s  0 l e n g t h  
mov d x . [ b p + B u f f e r L e n g t h l   : l e n g t h   o f   b u f f e r  
sub d x . b x   ; d i f f e r e n c e   b e t w e e n   b u f f e r  and s t r i n g   l e n g t h s  
j c  FindStr ingNotFound  :no  match i f  s e a r c h   s t r i n g   i s  

i n c   d x   : d i f f e r e n c e   b e t w e e n   b u f f e r  a n d   s e a r c h   s t r i n g  

- F i n d s t r i n g   p r o c   n e a r  

; l o n g e r   t h a n   b u f f e r  

: l e n g t h s ,   p l u s  1 ( #  o f   p o s s i b l e   s t r i n g   s t a r t  
: l o c a t i o n s   t o   c h e c k   i n   t h e   b u f f e r )  

mov d i  .ds 
mov e s . d i  
mov d i , [ b p + B u f f e r l   : p o i n t  E S : D I  t o   b u f f e r   t o   s e a r c h   t h r u  
1 o d s b   : p u t   t h e   f i r s t   b y t e   o f   t h e   s e a r c h   s t r i n g   i n  AL 
mov b p . s i   : s e t   a s i d e   p o i n t e r   t o   t h e   s e c o n d   s e a r c h   b y t e  
d e c   b x   : d o n ' t   n e e d   t o   c o m p a r e   t h e   f i r s t   b y t e   o f   t h e  

: s t r i n g   w i t h  CMPS: w e ' l l  do i t  w i t h  SCAS 
F i n d S t r i n g L o o p :  

mov c x . d x   : p u t   r e m a i n i n g   b u f f e r   s e a r c h   l e n g t h   i n  C X  
r e p n z   s c a s b   : s c a n   f o r   t h e   f i r s t   b y t e   o f   t h e   s t r i n g  
j n z  F indSt r ingNotFound  :no t   found,  s o  t he re ' s   no   ma tch  

: found.  s o  we have a p o t e n t i a l   m a t c h - c h e c k   t h e  
; r e s t   o f   t h i s   c a n d i d a t e   l o c a t i o n  

push d i  :remember t h e   a d d r e s s   o f   t h e   n e x t   b y t e   t o   s c a n  
mov d x . c x   ; s e t   a s i d e   t h e   r e m a i n i n g   l e n g t h   t o   s e a r c h   i n  

mov s i  .bp ; p o i n t   t o   t h e   r e s t   o f   t h e   s e a r c h   s t r i n g  
mov cx.bx : s t r i n g   l e n g t h   ( m i n u s   f i r s t   b y t e )  
s h r   c x . 1  : c o n v e r t   t o   w o r d   f o r   f a s t e r   s e a r c h  
j n c   F i n d S t r i n g W o r d  :do  word  search i f  no  odd  byte 
cmpsb ;compare  the  odd  byte 
j n z   F i n d S t r i n g N o M a t c h  ;odd by te   doesn ' t   ma tch ,  so we 

: t h e   b u f f e r  

; h a v e n ' t   f o u n d   t h e   s e a r c h   s t r i n g   h e r e  
F indSt r ingWord :  

j cxz   F indSt r ingFound  ; tes t   whether   we 've   a l ready   checked 
: t h e   w h o l e   s t r i n g :  i f  s o .  t h i s   i s  a match 
: b y t e s   l o n g :  i f  s o .  we've  found a match 

repz  cmpsw : c h e c k   t h e   r e s t   o f   t h e   s t r i n g  a word a t  a t i m e  
j z  F indSt r ingFound ; i t ' s  a match 

pop d i  ; g e t   b a c k   p o i n t e r   t o   t h e   n e x t   b y t e   t o   s c a n  
and  dx.dx : i s   t h e r e   a n y t h i n g   l e f t   t o   c h e c k ?  
j n z   F i n d S t r i n g L o o p  : y e s - c h e c k   n e x t   b y t e  

sub  ax.ax ; r e t u r n  a NULL p o i n t e r   i n d i c a t i n g   t h a t   t h e  
jmp  F indStr ingDone : s t r i n g  was n o t   f o u n d  

F indSt r ingNoMatch :  

F indSt r ingNotFound:  
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FindSt r ingFound:  
pop  ax ; p o i n t   t o   t h e   b u f f e r   l o c a t i o n   a t   w h i c h   t h e  
dec  ax ; s t r i n g  was f o u n d   ( e a r l i e r  we pushed  the  

: a d d r e s s   o f   t h e   b y t e   a f t e r   t h e   s t a r t   o f   t h e  
; p o t e n t i a l   m a t c h )  

F indSt r ingDone:  
pop d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
p o p   b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

- F i n d s t r i n g   e n d p  
end 

LISTING 9.2 L9-2.ASM 
; Searches a t e x t   b u f f e r   f o r  a t e x t   s t r i n g .  Uses REPNZ SCASB t o  scan 
; t h e   b u f f e r   f o r   l o c a t i o n s   t h a t   m a t c h  a s p e c i f i e d   c h a r a c t e r   o f   t h e  
; s e a r c h e d - f o r   s t r i n g ,   t h e n   u s e s  REPZ CMPS t o  check f u l l y   o n l y   t h o s e  
; l o c a t i o n s   t h a t  REPNZ SCASB has i d e n t i f i e d  as p o t e n t i a l   m a t c h e s .  

: C s m a l l   m o d e l - c a l l a b l e   a s :  
; uns igned   cha r  * F i n d S t r i n g ( u n s i g n e d   c h a r  * B u f f e r ,  
: u n s i g n e d   i n t   B u f f e r L e n g t h .   u n s i g n e d   c h a r  * S e a r c h s t r i n g .  
; u n s i g n e d   i n t   S e a r c h S t r i n g L e n g t h .  
; u n s i g n e d   i n t   S c a n C h a r O f f s e t ) ;  

; Returns  a p o i n t e r  t o  t h e   f i r s t  match f o r   S e a r c h s t r i n g   i n   B u f f e r . o r  
: a NULL p o i n t e r  i f  no match i s  f o u n d .   B u f f e r   s h o u l d   n o t   s t a r t   a t  
: o f f s e t  0 i n   t h e   d a t a  segment t o   a v o i d   c o n f u s i n g  a m a t c h   a t  0 w i t h  
; n o  match  found. 
Parms s t r u c  

B u f f e r  dw ? 
B u f f e r L e n g t h  
S e a r c h s t r i n g  dw ? ; p o i n t e r   t o   s t r i n g   f o r   w h i c h   t o   s e a r c h  
SearchSt r ingLength  dw ? 
ScanCharOf fse t  dw ? ; o f f s e t   i n   s t r i n g   o f   c h a r a c t e r   f o r  

Parms  ends 

dw 2 d u p ( ? )  ;pushed  BP/return  address 

dw ? ; l e n g t h   o f   b u f f e r   t o   s e a r c h  
; p o i n t e r   t o   b u f f e r   t o   s e a r c h  

; l e n g t h   o f   s t r i n g   f o r   w h i c h   t o   s e a r c h  

; w h i c h   t o   s c a n  

.model  smal 1 

.code 
p u b l i c   - F i n d s t r i n g  

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i   ; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
push d i  
c l  d  :make s t r i n g   i n s t r u c t i o n s   i n c r e m e n t   p o i n t e r s  
mov s i . [ b p + S e a r c h S t r i n g ]   ; p o i n t e r   t o   s t r i n g   t o   s e a r c h   f o r  
mov cx.[bp+SearchStringLengthl ; l e n g t h   o f   s t r i n g  
j cxz   F indS t r i ngNo tFound  ;no match i f  s t r i n g   i s  0 l e n g t h  
mov d x . [ b p + B u f f e r L e n g t h l   ; l e n g t h   o f   b u f f e r  
sub   dx .cx   ; d i f f e rence   be tween   bu f fe r   and   sea rch  

j c  F indSt r ingNotFound ;no match i f  s e a r c h   s t r i n g   i s  
; l o n g e r   t h a n   b u f f e r  

i n c   d x  ; d i f f e r e n c e   b e t w e e n   b u f f e r   a n d   s e a r c h   s t r i n g  
; l e n g t h s ,   p l u s  1 ( #  o f   p o s s i b l e   s t r i n g   s t a r t  
; l o c a t i o n s   t o   c h e c k   i n   t h e   b u f f e r )  

- F i   n d S t r i   n g   p r o c   n e a r  

; l e n g t h s  

mov d i  .ds 
mov e s . d i  
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mov d i  , [ b p + B u f f e r l  : p o i n t  E S : D I  t o   b u f f e r   t o   s e a r c h   t h r u  
mov bx. [bp+ScanCharOf fset l  ; o f f s e t   i n   s t r i n g   o f   c h a r a c t e r  

add d i   . b x  : p o i n t  E S : D I  t o   f i r s t   b u f f e r   b y t e   t o  scan 
mov a l .Cs i+bx l  : p u t   t h e   s c a n   c h a r a c t e r   i n  AL 
i n c   b x  : s e t  BX t o   t h e   o f f s e t   b a c k   t o   t h e   s t a r t   o f   t h e  

: on  which t o  scan 

: p o t e n t i a l   f u l l   m a t c h   a f t e r  a scan  match, 
: a c c o u n t i n g   f o r   t h e   1 - b y t e   o v e r r u n   o f  
: REPNZ SCASB 

F indS t r i ngLoop :  
rnov cx .dx  : p u t   r e m a i n i n g   b u f f e r   s e a r c h   l e n g t h   i n  CX 
repnz  scasb : s c a n   f o r   t h e   s c a n   b y t e  
j nz   F indS t r i ngNo tFound  :no t   f ound ,  s o  t h e r e ' s  no match 

; found.  s o  we have a p o t e n t i a l   m a t c h - c h e c k   t h e  
: r e s t   o f   t h i s   c a n d i d a t e   l o c a t i o n  

push d i  :remember t h e   a d d r e s s   o f   t h e   n e x t   b y t e   t o   s c a n  
mov d x . c x   : s e t   a s i d e   t h e   r e m a i n i n g   l e n g t h   t o   s e a r c h   i n  

sub d i   . b x   ; p o i n t   b a c k   t o   t h e   p o t e n t i a l   s t a r t   o f   t h e  

mov s i , [ b p + S e a r c h S t r i n g l  : p o i n t   t o   t h e   s t a r t   o f   t h e   s t r i n g  
mov cx.[bp+SearchStringLengthl : s t r i n g   l e n g t h  
s h r   c x . 1  : c o n v e r t   t o   w o r d   f o r   f a s t e r   s e a r c h  
j n c   F i n d S t r i n g W o r d  :do  word  search i f  no o d d   b y t e  
cmpsb ;compare t h e  odd b y t e  
j n z   F i n d S t r i n g N o M a t c h  ;odd b y t e   d o e s n ' t   m a t c h .  so  we 

; t h e   b u f f e r  

: match i n   t h e   b u f f e r  

; h a v e n ' t   f o u n d   t h e   s e a r c h   s t r i n g   h e r e  
F indS t r i ngWord :  

j c x z   F i n d S t r i n g F o u n d  ; i f  t h e   s t r i n g   i s   o n l y  1 b y t e   l o n g ,  

repz  cmpsw ; c h e c k   t h e   r e s t   o f   t h e   s t r i n g  a word a t  a t i m e  
j z   F i n d S t r i n g F o u n d  : i t ' s  a match 

pop d i  : g e t   b a c k   p o i n t e r   t o   t h e   n e x t   b y t e   t o   s c a n  
and  dx.dx ; i s   t h e r e   a n y t h i n g   l e f t   t o   c h e c k ?  
j n z   F i n d S t r i n g L o o p  ; y e s - c h e c k   n e x t   b y t e  

sub   ax .ax   : re tu rn  a  NULL p o i n t e r   i n d i c a t i n g   t h a t   t h e  
jmp  F indSt r ingDone : s t r i n g  was n o t   f o u n d  

p o p   a x   : p o i n t   t o   t h e   b u f f e r   l o c a t i o n   a t   w h i c h   t h e  
sub  ax.bx : s t r i n g  was f o u n d   ( e a r l i e r  we pushed t h e  

: we've  found a match 

F indStr ingNoMatch:  

F indStr ingNotFound:  

F indS t r i ngFound :  

: a d d r e s s   o f   t h e   b y t e   a f t e r   t h e   s c a n   m a t c h )  
F i   n d S t r i  ngDone: 

pop d i   : r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  
pop s i  
p o p   b p   ; r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
r e t  

_ F i n d s t r i n g  endp 
end 

LISTING 9.3 19-3.C 
I* Program t o   e x e r c i s e   b u f f e r - s e a r c h   r o u t i n e s   i n   L i s t i n g s  9 . 1  & 9 . 2  * /  
#i n c l  ude < s t d i  0. h> 
# i n c l u d e   < s t r i n g . h >  

# d e f i n e  DISPLAYLLENGTH 40 
e x t e r n   u n s i g n e d   c h a r  * F i n d S t r i n g ( u n s i g n e d   c h a r  *, u n s i g n e d   i n t .  

v o i d   m a i n ( v o i d 1 :  
uns igned  char  *, u n s i g n e d   i n t .   u n s i g n e d   i n t ) ;  
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s t a t i c   u n s i g n e d   c h a r   T e s t B u f f e r C ]  - "When, i n   t h e   c o u r s e   o f  human \ 
events ,  i t  becomes n e c e s s a r y   f o r  o n e   p e o p l e   t o   d i s s o l v e   t h e  \ 
p o l i t i c a l  bands   wh ich   have  connected   them  w i th   another ,   and  to  \ 
assume  among the powers of  the  earth  the  separate and equal s t a t i o n  \ 
t o  w h i c h   t h e   l a w s   o f   n a t u r e   a n d   o f   n a t u r e ' s  God e n t i t l e   t h e m . . . " :  

v o i d   m a i n 0  { 
s t a t i c   u n s i g n e d   c h a r   T e s t S t r i n g L l  - "equa l " ;  
uns igned  char  TempBufferCDISPLAY-LENGTH+ll; 
uns igned  char   *MatchPt r :  

/ *  S e a r c h   f o r   T e s t s t r i n g  and r e p o r t   t h e   r e s u l t s  * /  
i f  ( ( M a t c h P t r  - F i n d S t r i n g ( T e s t 6 u f f e r .  

( u n s i g n e d   i n t )  s t r l e n ( T e s t 6 u f f e r ) .  T e s t s t r i n g .  
( u n s i g n e d   i n t )  s t r l e n ( T e s t S t r i n g ) .  1)) - NULL) { 

/ *  T e s t s t r i n g   w a s n ' t   f o u n d  */  
p r i n t f ( " \ " % s \ "   n o t   f o u n d \ n " ,   T e s t s t r i n g ) ;  

/ *  T e s t s t r i n g  was f o u n d .   Z e r o - t e r m i n a t e   T e m p B u f f e r ;   s t r n c p y  
won' t   do it i f  DISPLAY-LENGTH c h a r a c t e r s   a r e   c o p i e d  * /  

TempBuffer[DISPLAYLLENGTHl - 0:  
p r i n t f ( " \ " % s \ "   f o u n d .   N e x t  %d c h a r a c t e r s   a t   m a t c h : \ n \ " % s \ " \ n " ,  

1 e l s e  I 

T e s t s t r i n g .  DISPLAY-LENGTH. 
s t rncpy(TempBuf fe r .   MatchPt r ,  DISPLAY-LENGTH)): 

I 
1 

You'll notice that  in Listing 9.2 I didn't use a table of character  frequencies in En- 
glish text to determine  the character  for which to scan, but  rather let the caller make 
that choice. Each buffer of  bytes has unique characteristics, and English-letter fre- 
quency  could well be inappropriate. What if the buffer is filled with French text? 
Cyrillic? What if it isn't text that's being  searched? It  might be worthwhile for  an 
application to build a  dynamic frequency table for each buffer so that  the best scan 
character  could be chosen for  each search. Or perhaps  not, if the search isn't time- 
critical or  the buffer is small. 
The  point is that you can improve performance dramatically by understanding  the 
nature of the data with  which  you  work. (This is equally true  for high-level language 
programming, by the way.) Listing 9.2 is very similar to and only  slightly more com- 
plex than Listing 9.1; the difference lies not in elbow grease or cycle counting  but in 
the organic  integrating optimizer technology we all carry around in our heads. 

Short  Sorts 
David Stafford (recently of Borland and Borland Japan) who happens to be one of 
the best assembly language programmers I've ever met, has written a C-callable rou- 
tine that sorts an array of integers in ascending  order.  That wouldn't be particularly 
noteworthy, except  that David's routine, shown in Listing 9.4, is  exactly 25 bytes long. 
Look at  the code; you'll keep saying to yourself,  "But this doesn't  work.. .oh, yes, I 
guess it  does." As they say in the Prego spaghetti sauce ads, it's in thereand what a 
job of packing. Anyway,  David  says that  a  24byte  sort  routine  eludes  him,  and  he'd 
like  to  know if anyone can come up with one. 
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LISTING  9.4  19-4.ASM 

.-""..._".."___..."""""..""....""...""..""."""...."... 

: S o r t s  an a r r a y  o f  i n t s .  C c a l l a b l e   ( s m a l l   m o d e l ) .  2 5  b y t e s .  
; v o i d   s o r t (   i n t  num. i n t  a [ ]  1: 

; C o u r t e s y   o f   D a v i d   S t a f f o r d .  
.".."___..."_.""""..""...""....""..""...."""."".."".. 

.model m a l  1 
.code 

pub1 i c   - s o r t  

t o p :  mov 
xchg 
xchg 

cmp 
j l  

i nc 
i nc 
1 oop 

-so r t :   pop  
POP 
POP 
push 
dec 
push 
push 
j g  

r e t  

end 

dx.   Cbxl   :swap  two  ad jacent   in tegers 
d x ,  [bx+E] 
dx.  Cbxl 

dx.   Cbxl  
t o p  

bx 
bx 
t o p  

dx 

bx 
bx 

c x  

cx 
cx 

; d i d  we put   them i n  
:no.  swaD them  back 

:go t o   n e x t   i n t e g e r  

: g e t   r e t u r n   a d d r e s s  
; g e t   c o u n t  
; g e t   p o i n t e r  
: r e s t o r e   p o i n t e r  
:decrement  count 
:save  count 

t h e   r i g h t   o r d e r ?  

( e n t r y   p o i n t )  

d x   ; r e s t o r e   r e t u r n   a d d r e s s  
t o p  : i f  cx > 0 

FuII 32-Bit Division 
One of the most annoying  limitations of the x86 is that while the dividend operand 
to the DIV instruction  can  be 32 bits in size, both  the divisor and  the result  must  be 
16 bits. That's particularly annoying  in  regards to the result  because  sometimes you 
just don't know whether the ratio of the dividend to the divisor  is greater than 64K-1 or 
not-and  if  you  guess  wrong,  you get that godawful  Divide By Zero interrupt. So, what is 
one  to  do when the result  might not fit in 16 bits, or when the dividend is larger than 
32 bits? Fall back to a software division approach?  That will  work-but oh so slowly. 
There's  another  technique that's  much faster than a pure software approach,  albeit 
not so flexible. This  technique allows arbitrarily large dividends and results, but  the 
divisor is still limited to16 bits. That's not perfect, but it does solve a number of 
problems, in particular  eliminating the possibility of a Divide By Zero interrupt  from 
a too-large result. 
This  technique involves nothing  more complicated  than  breaking up  the division 
into word-sized chunks,  starting with the most significant word  of the dividend. The 
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Bit 47 Dividend Bit 0 

The most  significant  word 
is divided by the  divisor. 

I The remainder is tacked  onto 
the  front of the  next  most -1 
significant  word,  and the  result And so on... 
is divided by the  divisor. 

1 
The quotient  goes  to  the The quotient  goes  to  the 
corresponding  word of corresponding  word of 
the  full  quotient. the  full  quotient. 

Bit 47 1 1 Bit 0 

Quotient 

Fast multiword division on  the 386. 
Figure 9.3 

most significant word is divided by the divisor  (with no chance of overflow because 
there  are only 16 bits in each) ; then  the  remainder is prepended to the  next 16 bits 
of dividend, and  the process is repeated, as  shown in Figure 9.3. This process is 
equivalent  to dividing by hand,  except  that  here we stop to carry the  remainder 
manually only after  each word of the  dividend;  the  hardware divide takes care of the 
rest. Listing 9.5 shows a  function  to divide an arbitrarily  large  dividend by a 16-bit 
divisor, and Listing 9.6 shows a  sample division  of a  large  dividend.  Note  that  the 
same principle can be applied  to  handling  arbitrarily  large  dividends  in 386 native 
mode  code, but in that case the  operation can proceed  a dword, rather  than a word, 
at  a  time. 
As for  handling  signed division  with arbitrarily  large dividends, that  can be done 
easily enough by remembering  the signs of the dividend and divisor, dividing the 
absolute value  of the  dividend by the  absolute value of the divisor, and applying  the 
stored signs to  set  the proper signs for  the  quotient and remainder. There may be 
more clever ways to  produce  the  same  result, by using IDN, for  example; if you  know 
of one,  drop  me a  line c/o Coriolis Group Books. 

LISTING 9.5 L9-5.ASM 
; Div ides an a r b i t r a r i l y   l o n g   u n s i g n e d   d i v i d e n d  by a 16-b i t   uns igned  
: d i v i s o r .  C n e a r - c a l l a b l e  a s :  
: unsigned i n t   D i v ( u n s i g n e d   i n t  * Div idend,  
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i n t   D i v i d e n d L e n g t h ,   u n s i g n e d   i n t   D i v i s o r ,  
uns igned i n t  * Q u o t i e n t ) ;  

; R e t u r n s   t h e   r e m a i n d e r   o f   t h e   d i v i s i o n .  

: Tes ted  w i th  TASM 2. 

D iv idendLeng th  dw ? 

D i v i s o r  dw ? 

Q u o t i e n t  dw ? 

parms s t r u c  

D i v i d e n d  dw ? ; p o i n t e r   t o   v a l u e   t o   d i v i d e .   s t o r e d   i n   I n t e l  
; o r d e r .  w i th  l s b   a t   l o w e s t   a d d r e s s ,  msb a t  
; h ighes t .   Must   be  composed o f  an i n t e g r a l  
; number o f  words 
;# o f  b y t e s   i n   D i v i d e n d .  Must be a mu1 t i p l e  
; o f  2 
: v a l u e   b y   w h i c h   t o   d i v i d e .   M u s t   n o t   b e   z e r o ,  
: o r  a D i v i d e  By Z e r o   i n t e r r u p t  will occur  
: p o i n t e r   t o   b u f f e r   i n   w h i c h   t o   s t o r e   t h e  
: r e s u l t   o f   t h e   d i v i s i o n ,  i n  I n t e l   o r d e r .  
: The q u o t i e n t   r e t u r n e d   i s   o f   t h e  same 
; l e n g t h  as t h e   d i v i d e n d  

dw 2 dup ( ? )  ;pushed BP & r e t u r n   a d d r e s s  

Darms ends 

.model  small  

.code 
p u b l i c  - D i  v 

p u s h   b p   : p r e s e r v e   c a l l e r ' s   s t a c k   f r a m e  
mov b p . s p   ; p o i n t   t o   o u r   s t a c k   f r a m e  
push s i  
push d i  

; p r e s e r v e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

s t d   ; w e ' r e   w o r k i n g   f r o m  msb t o   l s b  
mov ax.ds 
mov e s . a x   ; f o r  STOS 
mov cx. [bp+Div idendLength]  
sub  cx.2 
mov s i   . [ b p + D i v i d e n d l  
add s i   , c x   ; p o i n t   t o   t h e   l a s t   w o r d   o f   t h e   d i v i d e n d  

mov d i  , [bp+Ouot ient ]  
add d i   . c x   ; p o i n t   t o   t h e   l a s t   w o r d   o f   t h e   q u o t i e n t  

mov b x . [ b p + D i v i s o r l  
s h r   c x , l  
i n c   c x  ;# o f  words t o  process 
sub  dx.dx  :convert  i n i t i a l   d i v i s o r  word t o  a 3 2 - b i t  

- D i v   p r o c   n e a r  

; ( t h e   m o s t   s i g n i f i c a n t   w o r d )  

; b u f f e r   ( t h e  most s i g n i f i c a n t   w o r d )  

; v a l u e   f o r  D I V  
DivLoop: 

1 odsw ; g e t   n e x t   m o s t   s i g n i f i c a n t   w o r d   o f   d i v i s o r  
d i v   b x  
s t o s w   ; s a v e   t h i s   w o r d   o f   t h e   q u o t i e n t  

:DX c o n t a i n s   t h e   r e m a i n d e r   a t   t h i s   o o i n t .  

1 oop D i  vLoop 
mov ax,dx 

c l  d 
pop d i  
pop s i  
POP bP 

ready t o  prepend t o   t h e   n e x t   d i v i i o r   w o r d  

r e t u r n   t h e   r e m a i n d e r  

r e s t o r e   d e f a u l t   D i r e c t i o n   f l a g   s e t t i n g  
r e s t o r e   c a l l e r ' s   r e g i s t e r   v a r i a b l e s  

r e s t o r e   c a l l e r ' s   s t a c k   f r a m e  
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r e t  

end 
-Div  endp 

LISTING 9.6 19-6.C 
/*  Sample  use o f   D i v   f u n c t i o n   t o   p e r f o r m   d i v i s i o n  when t h e   r e s u l t  

d o e s n ' t  f i t  i n  16 b i t s  * /  

# i n c l u d e   < s t d i o . h >  

e x t e r n   u n s i g n e d   i n t   D i v ( u n s i g n e d   i n t  * D i v i d e n d ,  
i n t   D i v i d e n d L e n g t h .   u n s i g n e d   i n t   D i v i s o r ,  
u n s i g n e d   i n t  * Q u o t i e n t ) ;  

m a i n 0  { 
u n s i g n e d   l o n g  m, i - 0x20000001; 
u n s i g n e d   i n t  k .  j = 0x10; 

k - D i v ( ( u n s i g n e d   i n t  *)&i. s i z e o f ( i ) .  j. ( u n s i g n e d   i n t   * ) & I n ) ;  
p r i n t f ( " % l u  / %u - % l u  r %u\n", i. j .  m. k ) ;  

1 

Sweet Spot Revisited 
Way back in Volume 1, Number 1 of PC TECHNIQUES, (April/May 1990) I wrote the 
very first of that magazine's HAX (#l), which extolled the virtues of placing your 
most  commonly-used automatic (stack-based) variables  within the stack's  "sweet spot," 
the  area between +127 to  -128  bytes away from BP, the stack frame  pointer. The 
reason was that  the 8088 can store addressing displacements that fall within that 
range  in  a single byte; larger displacements require  a full word  of storage, increasing 
code size  by a byte per instruction, and thereby slowing down performance  due to 
increased instruction  fetching time. 
This takes on new prominence in 386 native mode, where straying from  the sweet 
spot costs not  one,  but two or  three bytes. Where  the 8088 had two possible displace- 
ment sizes, either byte or word, on  the 386 there  are  three possible  sizes:  byte, word, 
or dword. In native mode (32-bit protected mode), however, a prefix byte is needed 
in order to use a word-sized displacement, so a variable located outside the sweet 
spot requires  either two extra bytes (an extra  displacement byte plus a prefix byte) 
or  three extra bytes (a dword  displacement  rather  than  a byte displacement).  Either 
way, instructions grow  alarmingly. 
Performance may or may not suffer from missing the sweet spot, depending  on  the 
processor, the memory  architecture, and  the  code mix. On a 486, prefix bytes often 
cost a cycle; on a 386SX, increased code size often slows performance because in- 
structions must be fetched through  the half-pint l6bi t  bus; on a 386, the effect 
depends  on  the instruction mix and  whether there's  a  cache. 

On balance, though, it b as important to keep your most-used variables in the stackb 1 sweet  spot in 386 native mode as it was on the 8088. 
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In assembly, it’s easy to control  the  organization of your stack frame.  In C, however, 
you’ll have to figure out  the allocation scheme your compiler uses to allocate auto- 
matic variables, and declare  automatics  appropriately to produce  the desired effect. 
It  can be done: I did  it  in  Turbo C some years back, and  trimmed  the size of a  pro- 
gram (admittedly, a large one) by several K-not bad, when  you consider  that the 
“sweet spot”  optimization is essentially free, with no code  reorganization,  change in 
logic, or heavy thinking involved. 

Hard-core Cycle Counting 
Next, we come to an item that cycle counters will love, especially since it involves 
apparently  incorrect  documentation on Intel’s part. According to Intel’s documents, 
all RCR and RCL instructions, which perform  rotations through  the Carry flag, as 
shown in Figure 9.4, take 9 cycles on  the 386 when working with a register operand. 
My measurements indicate that  the 9-cycle execution time almost holds true for multibit 
rotate-through-carries, which  I’ve timed at 8 cycles apiece;  for  example, RCR  AX,CL 
takes 8 cycles on my 386, as does RCL DX,2. Contrast  that with ROR and ROL, which 
can  rotate  the  contents of a register any number of bits in just 3 cycles. 
However, rotating by one bit through  the Carry flag does not take 9 cycles, contrary  to 
Intel’s 80386 Programmer’s Refwence Manual, or even 8 cycles. In fact, RCR reg,l and 

I 

-”+Ll”- car,,, Bit 15 AX Bit 0 

RCR AX, 1 

car,,, D“+- Bit 15 
AX Bit 0 

RCL AX, 1 

AX 
ROR AX, 1 

car,,, cl“+ Bit 15 
AX Bit 0 

ROL AX, 1 

Performing  rotate instructions using the Carvflag. 
Figure 9.4 
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RCL reg1 take 3 cycles, just like ROR, ROL, SHR, and SHL. At least, that’s how  fast 
they run  on my 386, and I very much  doubt  that you’ll find  different  execution times 
on  other 386s. (Please let  me know if  you do, though!) 
Interestingly, according to Intel’s i486 Microprocessor  Programmer’s Reference Manual, 
the 486 can RCR or RCL a register by one bit in 3 cycles, but takes between 8 and 30 
cycles to perform a multibit register RCR or RCL! 
No great lesson here,  just a caution to be leery of multibit RCR and RCL when 
performance matters-and to take cycle-time documentation with a grain of salt. 

Hardwired Far Jumps 
Did  you  ever wonder how to code a far jump to an absolute address in assembly 
language? Probably not,  but if you  ever do, you’re going to be glad for this next  item, 
because the obvious solution doesn’t work. You might  think all it would  take to jump 
to, say, 1000:5  would be JMP FAR PTR 1000:5, but you’d be wrong. That won’t  even 
assemble. You might  then  think to construct in memory  a  far pointer containing 
1000:5,  as in the following: 

Ptr dd ? 

mov word p t r   C P t r l . 5  
mov word p t r  CPtr+E].lDOOh 
jmp CPtrl 

That will work, but  at a price in performance.  On  an 8088, JMP DWORD PTR [ m m ]  
(an indirect far jump) takes at least 37 cycles; JMP DWORD PTR label (a direct  far 
jump) takes only 15 cycles (plus, almost certainly, some cycles for  instruction fetch- 
ing).  On a 386, an indirect  far jump is documented to take at least 43 cycles in  real 
mode  (31 in protected mode); a  direct  far jump is documented to take at least 12 
cycles, about  three times  faster. In  truth,  the difference between those two  is no- 
where near that big; the fastest I’ve measured  for a direct far jump is 21 cycles, and 
I’ve measured  indirect farjumps as  fast  as 30 cycles, so direct is  still  faster, but  not by 
so much. (Oh, those cycle-time documentation blues!) Also, a  direct  far jump is 
documented to  take at least 27 cycles in  protected  mode; why the big difference in 
protected  mode,  I have no idea. 
At any rate, to return to our original problem of jumping to  1000:5: Although an 
indirect  far jump will work, a  direct  far jump is  still preferable. 
Listing 9.7 shows a short  program  that  performs  a  direct  far call  to  1000:5. (Don’t 
run it, unless you want to crash your system!) It  does this by creating  a  dummy seg- 
ment at 1000H, so that the label FarLabel can be created with the desired far  attribute 
at  the  proper location. (Segments created with “AT” don’t cause the generation of 
any actual bytes or  the allocation of  any memory; they’re just templates.) It’s a little 
kludgey, but  at least it does work. There may be a better solution; if you have one, 
pass it  along. 
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LISTING 9.7  19-7.ASM 
: Program t o  p e r f o r m  a d i r e c t  far jump t o  address 1000:5. 
: *** Do n o t   r u n   t h i s   p r o g r a m !  I t ‘ s  j u s t  an  example o f  how *** 
: *** t o   b u i l d  a d i r e c t   f a r  jump t o  an abso lu te   add ress  *** 

: T e s t e d   w i t h  TASM 2 and MASM 5 .  

FarSeg  segment a t  OlOOOh 

FarLabe l   l abe l  far 
FarSeg  ends 

o r g  5 

.model  smal  1 

.code 

jmp  FarLabel 
end s t a r t  

s t a r t :  

By the way,  if you’re wondering how I figured this out, I merely applied my good 
friend  Dan Illowsky’s long-standing rule  for  dealing with MASM: 
If the obvious doesn’t work (and it usually doesn’t),  just try everything you can think 
of, no matter how ridiculous, until you find  something  that does-a rule with plenty 
of history on its side. 

Setting 32-Bit Registers:  Time  versus Space 
To finish up this chapter, consider these two items. First, in 32-bit protected  mode, 

sub  eax.eax 
i n c  eax 

takes 4 cycles  to execute, but is only 3 bytes long, while 

mov eax.1 

takes  only 2 cycles to execute, but is 5 bytes long (because native mode constants are 
dwords and  the MOV instruction doesn’t sign-extend). Both code  fragments  are 
ways to set EAX to 1 (although  the first  affects the flags and  the  second doesn’t) ; this 
is a classic trade-off of speed  for space. Second, 

o r   e b x . - 1  

takes 2 cycles  to execute and is 3 bytes long, while 

mov ebx. -1 

takes 2 cycles to execute and is 5 bytes long.  Both  instructions set EBX to -1; this is a 
classic  trade-off  of-gee,  it’s not a trade-off at all, is it? OR is a better way to set  a 32- 
bit register to  all  1-bits, just as SUB or XOR is a better way to set a register to all  0-bits. 
Who woulda thunk it? Just goes to  show  how the 32-bit displacements and constants 
of 386 native mode  change  the familiar landscape of 80x86 optimization. 
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Be warned,  though,  that I’ve found OR, AND,  ADD, and  the like to be a cycle  slower 
than MOV when working with immediate  operands on the 386 under some  circum- 
stances,  for  reasons that  thus far escape me. This just  reinforces  the first rule of 
optimization: Measure your code  in  action,  and  place  not your trust  in  documented 
cycle  times. 
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